气相色谱检测器结构与原理
- 格式:ppt
- 大小:4.57 MB
- 文档页数:72
气相色谱仪原理、结构及操作1、基本原理气相色谱GC是一种分离技术;实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析;混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离;待分析样品在汽化室汽化后被惰性气体即载气,一般是N2、He等带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡;但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出;当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图假设样品分离出三个组分,它包含了色谱的全部原始信息;在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线;2、气相色谱结构及维护进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃;正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”即不是样品本身的峰,从而影响分析;解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫;一般更换进样隔垫的周期以下面三个条件为准:1出现“鬼峰”;2保留时间和峰面积重现性差;3手动进样次数70次,或自动进样次数50次以后;玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型;衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱;如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响;比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换;玻璃衬管清洗的原则和方法当以下现象:1出现“鬼峰”;2保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗;清洗的方法和步骤如下:1拆下玻璃衬管;2取出石英玻璃棉;3用浸过溶剂比如丙酮的纱布清洗衬管内壁; 玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm;要求填充均匀、平整;气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次;由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了;再生的方法是:1卸下过滤器,反方向连接于原色谱柱位置;2再生条件:载气流速40~50ml/min,温度340℃,时间5h;检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛;无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果;因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术;目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器FID、火焰热离子检测器FTD、火焰光度检测器FPD、热导检测器TCD、电子俘获检测器ECD等;下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器FID1 FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等;所以检测这些物质时不应使用FID;2FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1;3FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题;在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱;测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然;无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门;4为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度;检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火;消除污染的办法是对喷嘴和气路管道的清洗;具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡;2.4.2 火焰热离子检测器FTDFTD使用注意事项:1 铷珠:避免样品中带水,使用寿命大约600~700h;2 载气:N2或He,要求纯度%;一般He的灵敏度高;3 空气:最好是选钢瓶空气,无油;4 氢气:要求纯度%;另外需要注意的是使用FTD时,不能使用含氰基固定液的色谱柱,比如OV-1701;2.4.3火焰光度检测器FPDFPD使用注意事项:1 FPD也是使用氢火焰,故安全问题与FID相同;2 顶部温度开关常开250℃;3 FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为100~120ml/min,而尾吹气和柱流量之和为20~25ml/min;分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;4 更换滤光片或点火时,应先关闭光电倍增管电源;5 火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温;2.4.4热导检测器TCDTCD使用注意事项:1确保热丝不被烧断;在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;2载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;3用氢气作载气时,气体排至室外;4基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈; 池体污染;清洗措施:正己烷浸泡冲洗;2.4.5 电子俘获检测器ECDECD使用注意事项:1 气路安装气体过滤器和氧气捕集器;氧气捕集器再生:2 使用填充柱时也需供给尾吹气2~3ml/min;3 操作温度为250~350℃;无论色谱柱温度多么低,ECD的温度均不应低于250℃, 否则检测器很难平衡;4 关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入;3、基本操作加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上. 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火;本着上述原则气比应按下法调节:1氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许;进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确1排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点;还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉;2保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手通常是左手把针插入垫片.洼射大体积样品即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟;。
气相色谱仪的基本原理与结构一、气相色谱仪的基本原理:色谱法,又称色谱法或色谱法,是一种利用物质的溶解性和吸附性的物理化学分离方法。
分离原理是基于流动相和固定相混合物中各组分功能的差异。
以气体作为流动相的色谱法称为气相色谱法(Gas Chromatography,简称GC),气相色谱是机械化程度很高的色谱方法,广泛应用于小分子量复杂组分物质的定量分析。
流动相:携带样品通过整个系统的流体,也称为载气。
固定相:色谱柱中的固定相、载体、固定液和填料。
二、气相色谱仪的组成:气相色谱仪主要由气路系统、采样系统、分离系统、检测及温控系统和记录系统组成。
图1. 气相色谱仪结构简图1. 气相色谱仪的气路系统气相色谱仪的气路系统包括气源、净化干燥管和载气流速控制装置,是一个载气连续运行的密闭管路系统,通过气相色谱仪的气路系统获得纯净、流速稳定的载气。
气相色谱仪的气路系统气密性、流量监测的准确性及载气流速的稳定性都是影响气相色谱仪性能的重要因素。
气相色谱仪中常用的载气有氢气、氮气和氩气,纯度要求99.999%以上,化学惰性好,不与待测组分反应。
载气的选择除了要求考虑待测组分的分离效果之外,还要考虑待测组分在不同载气条件下的检测器灵敏度。
2. 气相色谱仪的进样系统气相色谱仪的进样系统主要包括进样器和气化室两部分。
(1)注射器:根据待测组分的不同相态,采用不同的注射器。
通常,液体样品用平头微量进样器进样,如图2所示。
气体样品通常通过旋转六通阀或色谱仪提供的吸头微量进样器注入,如图2所示。
图2. 气体、液体进样器固体试样一般先溶解于适当试剂中,然后用微量注射器以液体方式进样。
(2)气化室:气化室一般由一根不锈钢管制成,管外绕有加热丝,作用是将液体试样瞬间完全气化为蒸气。
气化室热容量要足够大,且无催化效应,以确保样品在气化室中瞬间气化且不分解。
3. 气相色谱仪的分离系统气相色谱仪的分离系统是气相色谱仪的核心部分,作用是将待测样品中的各个组分进行分离。
气相色谱仪测气原理
气相色谱仪(Gas Chromatograph,简称GC)是一种基于气体样品分离和检测原理的分析仪器。
其主要原理是基于物质在流动气体载气流中的分配和再分配作用。
首先,待测气体样品通过进样系统被引入到色谱柱中。
色谱柱是一种长而细的管道,内壁被涂上了一种称为固定相的物质。
固定相可以是液体或固体。
然后,通过携带气体(称为载气流)的辅助下,样品被推入色谱柱内部。
载气流可以是一种惰性气体,如氮气或氢气。
在载气流和样品的共同作用下,样品成分在色谱柱内被分离。
不同的样品成分在色谱柱内的固定相上有不同的吸附性质,因此它们在相互作用下以不同的速率移动。
样品成分分离程度的好坏与固定相的性质以及样品成分间相互作用的强度有关。
当样品成分在色谱柱内移动到检测器位置时,检测器会产生相应的信号。
不同的检测器可以根据测量物理性质的不同原理来选择,如热导检测器、荧光检测器、质谱仪等。
接下来,通过记录和分析检测器的输出信号可以确定样品中各组分的含量和相对含量。
这可以通过比较样品产生的信号与标准样品或者库中的参考信号进行定量或者定性分析来实现。
总的来说,气相色谱仪通过在载气流下对样品成分进行分离、
检测和分析,能够快速准确地确定气体样品中各种成分的组成和含量,具有广泛的应用价值。
气相色谱pdhid检测器原理气相色谱(Gas Chromatography,简称GC)是一种常用于化学分析的技术,主要用于分离和检测混合物中的化合物。
在气相色谱仪中,检测器是至关重要的一个组成部分,负责检测色谱柱输出的化合物并对其进行定量分析。
气相色谱检测器的种类繁多,其中之一就是pdHID检测器,pdHID是pulsed discharge helium ionization detector的缩写,中文译为脉冲放电氦离子检测器。
pdHID检测器是一种灵敏度高、响应速度快的检测器,适用于检测低浓度的溶剂残留、挥发性有机物等。
pdHID检测器的原理可以分为以下几个方面来解释:首先是脉冲放电源部分。
gc色谱柱出口的气体通过脉冲放电源,脉冲放电源中产生高电压的脉冲电场,使得氦气分子发生电离,产生氦离子和电子。
氦离子具有很高的能量,可以穿透到色谱柱出口的气体中。
其次是电离室部分。
氦离子和电子进入电离室,与色谱柱出口的气体中的分子发生碰撞,使得分子发生电离。
这些离子化的分子会产生电流信号,通过检测器采集并放大,最终转换为检测信号。
然后是检测信号处理部分。
检测器会对电流信号进行放大和处理,然后转换为色谱图谱上的峰。
通过测量峰面积或峰高,可以得到各个化合物的浓度信息。
pdHID检测器的优势在于其灵敏度高、稳定性好、响应速度快等特点。
与其他检测器相比,pdHID检测器在检测低浓度的化合物时有明显的优势,可以提高分析的准确性和可靠性。
总的来说,pdHID检测器作为气相色谱的一种重要检测器,具有独特的优势和原理。
通过对其工作原理的深入理解,可以更好地应用于实际的化学分析中,提高分析的效率和准确性。
气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定》:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱仪检测原理
气相色谱仪(Gas Chromatograph, GC)是一种常用的分析仪器,用于分离和定量分析混合物中的各种成分。
其基本原理是利用气相色谱柱对样品中不同组分间的相互作用力差异进行分离。
气相色谱仪主要由进样系统、色谱柱、检测器和数据处理系统组成。
首先,样品通过进样系统被引入到色谱柱中。
色谱柱是由一种或多种固定相填充的管状结构,通常用毛细管或开放管道制成。
不同成分的样品在色谱柱中会经历一系列的相互作用,包括气相-固相、气相-液相以及固相-液相之间的作用。
当样品混合物进入色谱柱后,各个组分会因为与固定相的相互作用力不同而以不同的速率通过柱子。
这些组分在柱子中逐渐分离,较强的相互作用力会导致分子停留时间较长,较弱的作用力则会导致分子通过速度更快。
最终,各个组分会在柱子出口处逐个出现。
在色谱柱出口处的检测器会检测到各个组分的信号,并将其转化为电信号进行记录和分析。
常用的检测器包括热导率检测器(Thermal Conductivity Detector, TCD)、火焰离子化检测器(Flame Ionization Detector, FID)、质谱检测器(Mass Spectrometer, MS)等。
最后,数据处理系统会对检测器得到的信号进行处理和分析。
通过与标准品比对或者与数据库中的谱图进行比对,可以确定样品中各个组分的种类和含量。
总的来说,气相色谱仪的检测原理是基于不同组分间的相互作用力差异,在色谱柱中进行逐渐分离,并通过检测器和数据处理系统进行信号检测和分析,从而实现对混合物中各种成分的定量和定性分析。
气相色谱仪原理结构及操作气相色谱(Gas Chromatography,GC)是一种常用的分离和分析技术,通过样品在气相载体中的分配和传递过程,实现对不同物质成分的分离、鉴定和定量分析。
气相色谱仪是实现气相色谱分析的主要设备,其基本原理、结构和操作步骤如下:一、气相色谱仪的原理:气相色谱仪的基本原理是通过气相载体(通常为气体或液体)将待分析物质从进样口注入色谱柱中,样品在色谱柱中沿着固定相或液相产生分配、传递和吸附等过程,不同成分在固定相中的速率不同,从而实现分离,然后再通过检测器检测到各个分离出的组分并进行定量分析。
二、气相色谱仪的结构:1.进样系统:包括进样口和进样装置,用于将样品引入到色谱柱中。
常用的进样方式有气体进样、液体进样、固体进样等。
2.色谱柱:色谱柱是气相色谱的核心组件,通常由玻璃管或不锈钢管制成。
内部涂有固定相(固态色谱柱)或固定液相(毛细管色谱柱)用于分离样品组分。
3.载气系统:用于将气相载体送入色谱柱中,常用的载气有惰性气体(如氦气、氮气)。
4.柱温控制系统:用于控制色谱柱的温度,以影响分离效果。
柱温的选择要根据样品的性质和分离效果进行调整。
5.检测器:用于检测样品中的组分并产生电信号。
常见的检测方法有热导检测器(TCD)、火焰光度检测器(FID)、质谱检测器(MS)等。
三、气相色谱仪的操作步骤:1.打开气相色谱仪电源,启动冷却系统,使柱温控制系统达到设定温度。
2.准备样品:根据实验需要,选择恰当的样品,将其制备成适当的溶液或气态样品。
3.进样准备:根据样品的性质和进样方式,选择适当的进样方式,如气体进样、液体进样等。
进样量要根据色谱柱和样品的性质进行调整。
4.样品进样:将样品引入进样装置中,通过控制进样阀门或推进准备好的样品进样器,使样品进入色谱柱中。
5.色谱分离:根据实验需要,设定合适的色谱柱温度、载气流速等条件,使样品在色谱柱中进行有效分离。
6.检测和记录:根据需要,选择合适的检测器进行检测,并将检测到的信号记录下来。
------------------沈阳光正分析仪器有限公司http://www.sygzyq. com/cn/index.asp(欢迎咨询访问)由气相色谱仪的工作原理可以看出气相色谱仪最重要的两个配置就是色谱柱和检测器气相色谱仪的原理气相色谱仪以气体作流动相(载气),当样品进入汽化室汽化后,被载气带入色谱柱内,样品中各组份在流动相和固定相之间进行反复多次的分配,由于样品中各组份的性质不同,在色谱柱中两相间的分配系数和吸附系数不同,在载气带动下各组份在柱子中的运行速度也不同,经过一定的柱长后,各组份在柱子末端分离开,然后导入接在柱子后的检测器,按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。
气相色谱柱选择指南1)柱长度的选择分辨率与柱长的平方根成正比。
在其他条件不变的情况下,为取得加倍的分辨率需有4倍的柱长。
较短的柱子适于较简单的样品,尤其是由那些在结构、极性和挥发性上相差较大的组分组成的样品。
一般来说:15m的短柱用于快速分离较简单的样品,也适于扫描分析;30m的色谱柱是最常用的柱长,大多数分析在此长度的柱子上完成;50m、60m或更长的色谱柱用于分离比较复杂的样品。
应该注意,柱长增加分析时间也增加。
2)柱内径的选择柱径直接影响柱子的效率、保留特性和样品容量。
小口径柱比大口径柱有更高柱效,但柱容量更小。
0.25mm:具有较高的柱效,柱容量较低。
分离复杂样品较好。
0.32mm:柱效稍低于0.25mm的色谱柱,但柱容量约高60%。
0.53mm:具有类似于填充柱的柱容量,可用于分流进样,也可用于不分流进样,当柱容量是主要考虑因素时(如痕量分析),选择大口径毛细管柱较为合适。
3)液膜厚度的选择液膜厚度影响柱子的保留特性和柱容量。
厚度增加,保留也增加。
0.1~0.2μm :薄液膜厚度的毛细管柱比厚液膜的毛细管柱洗脱组分快,所需柱温度低,且高温下柱流失较小,适用高沸点的化合物的分析。
Agilent 气相色谱仪检测器原理1、火焰离子化检测器(FID)样品和载气经过柱子后进入FID的氢气-空气火焰中。
氢气-空气火焰本省只产生少许离子,但是有机化合物燃烧时,产生的离子数量增加。
极化电压把这下离子吸引到火焰附近的收集极上。
产生的电流与燃烧的样品量成正比。
用一个电流计检测电流并转换成数字信号,送到输出装置。
2、热导检测器(TCD)TCD比较两种电流的热导率。
两种气流是纯的载气(也叫参比气)和带样品成分的载气(也叫柱流出物)。
这种检测器有一个电加热的热丝,因此热丝比检测器本体要热。
当参比气和不含样品的载气交替通过时,热丝温度保持恒定。
当加上加上样品时,为保持热丝温度恒定其电流会有变化,每秒钟两种电流在热丝上切换5次,电流的差别被测量并记录下来。
氦(或氢)作为载气时,样品引起热导率下降。
使用氮气时,由于大多数物质都比氮气的传导好,所有热导率通常增加。
因此,在检测过程中TCD不会破坏样品,所以这种检测器可串联装在火焰离子检测器和其他检测器前面。
3、氮磷检测器(NPD)NPD通过氢气/空气等离子体传送样品和载气。
一个加热陶瓷元---常叫铷珠---处于喷嘴上方。
低的氢气/空气比率不能维持火焰,使碳氢化合物的电离减至最小,而铷珠表面的碱离子促进有机氮或有机磷化合物的电离。
输出的电流与收集到的离子数正比。
用静电计测量并将其转换数字形式,传送到一个输出设备。
4、电子捕获检测器(ECD)Agilent有两种型号的电子捕获检测器,与微池检测器(简称u-ECD)相比,“常规”检测器(简称ECD)的内部体积大(大约10倍)。
这两种型号可以通过检测器的顶盖来区分---E CD的顶盖是实心的,而u-ECD的顶盖是有孔的。
电子捕获检测器(ECD)包括一个镀有63Ni(一种放射性同位素)的检测器池。
63Ni释放β粒子,它与载气分子碰撞,产生低能电子---每个β粒子能产生大约100个电子。
这些自由电子形成小电流---称为参比或固定电流---在一个脉冲回路中被收集并被测定。
简述气象色谱仪的原理组成及应用气相色谱分析于1952 年出现,经过50 年的发展已成为重要的近代分析手段之一,由于它具有分离效能高,分析速度快,定量结果准,易于自动化等特点;且当其与质谱,计算机结合进行色-质联用分析时,又能对复杂的多组分混合物进行定性和定量分析。
首先我们对气象色谱仪进行探讨:1 气象色谱流程与分离原理气象色谱仪分离的原理:分离原理是气体流动相携带混合物流过色谱柱中的固定相,混合物与固定相发生作用,并在两相间分配。
由于各组分在性质和结构上的差异,发生作用的大小、强弱也有差异,因此不同组分在固定相中滞留时间有长有短,从而按先后不同的次序从固定相中流出,从而达到各组分分离的目的。
气象色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。
可用流程方框图表示,如下图:2 气象色谱仪的基本组成和核心部分2.1气路控制系统主要作用是为了保证进样系统、色谱柱系统和检测器的正常工作提供稳定的载气和有关检测器必须的燃气、助燃气以及辅助气体,气路控制系统的好坏将直接影响仪器的分离效率、灵敏度和稳定性,从而将直接影响定性定量的准确性。
气路控制系统主要由开关阀、稳定阀、针型阀、压力表、电子流量计等部件组成。
2.3 色谱柱和柱箱色谱柱的作用就是分离混合物样品中的有关组分。
是色谱分析的关键部分,主要有填充柱和毛细柱两大类。
色谱柱选用的正确与否,将直接影响分离的效率、稳定性和检测灵敏度。
柱箱就是装接和容纳各种色谱柱的精密控温的炉箱,是色谱仪的重要组成部分之一,柱箱结构设计的合理与否,将直接影响整体性能。
2.4 检测器检测器是气象色谱仪的心脏部分,它的功能就是把随载气流出色谱柱的各种组分进行非电量转换,将组分转变为电信号,便于记录测量的处理。
检测器的性能直接影响整机仪器的性能,主要影响稳定性和灵敏度,检测器的性能也决定了该仪器的应用范围。
一般色谱仪的检测器都有热导检测器和氢焰检测器:A 热导检测器的原理:气体具有热导作用,不同物质具有不同的热导系数,热导检测器就是根据不同物质热导系数的差别而设计的,它对有机、无机样品均匀响应,而不破坏样品,可用于常量分析。
气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC 都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱检测器结构和原理气相色谱检测器的结构和原理有多种类型,包括火焰离子化检测器(flame ionization detector, FID)、热导检测器(thermal conductivity detector, TCD)、电子捕获检测器(electron capture detector, ECD)、氮磷检测器(nitrogen phosphorus detector, NPD)、火焰光度检测器(flame photometric detector, FPD)、质谱检测器(mass spectrometry detector, MSD)等。
其中,FID是最常用的气相色谱检测器之一,其基本结构由火焰、回收电子系统和信号放大系统组成。
FID检测器的工作原理是将气相色谱柱的输出物与存在于火焰中的氢/空气混合气体反应,产生离子电流。
火焰中的氢气不仅提供离子源,还提供还原剂,使得大多数有机化合物在离子源产生的热火焰中完全燃烧并生成离子。
离子电流经过电极收集,并通过电流放大器转换为可测量的电压信号。
信号的幅度与样品分析物的浓度成正比,从而可以定量分析样品。
TCD是另一种常见的气相色谱检测器,其结构由电极、热电偶、连接电缆和信号放大器组成。
TCD检测器的工作基于被检测物质与载气之间的热导性差异。
当两个检测室(一个是参比室,另一个是分析室)之间有气流通过时,样品分析室中的热电偶温度上升,而参比室中的热电偶温度不变。
这是因为分析室中的气体因样品分析而发生物质转化,其热导性不同于参考室中的气体。
这种温度差可以被热电偶测量,并通过信号放大器转化为电压信号,从而定量分析样品。
ECD是一种高灵敏的检测器,广泛用于环境科学研究和有机分析。
ECD检测器的主要组成部分包括离子化器、收集极、流动控制器和信号放大器。
在ECD中,进样进入离子化器,并与放射性核素发生反应,生成密度高的负离子。
负离子与放射性核素的相互作用导致收集极电离而生成电流。
HID检测器简介氦电离检测器(HID)是一种重要的气相色谱检测器,具有检测灵敏度高、通用性强等特点。
一、发展历程1955 年,人们发现稀有气体在恒定射线辐射下有一定离子流,当痕量杂质气体加入后离子流将增加。
1958 年,基于此结果设计了氩电离检测器(AID),但其只能检测电离电位小于 11.7eV 的化合物。
1960 年,首次使用 HID,随后电离源从α - 射线改为β - 射线源,池体积逐渐减小,成为广泛使用的气相色谱检测器之一。
80 年代末 90 年代初,非放射性 HID 逐渐发展成熟,出现了放电电离检测器(DID)和脉冲放电氦电离检测器(PDHID)。
二、结构与工作原理(一)结构HID 结构通常有平行板和同轴式两种,平行板式 HID 结构示意图如图1所示。
在池体中心的绝缘材料中安放两个电极,负极内接放射源,外接负直流高压电源;收集极为阳极,外接微电流放大器。
两电极相距较近,池体积多为 100 - 200μL,可与内径为 0.25mm 以上的毛细管柱连接。
放射源通常用氚钛或氚钪源,耐温分别达 250℃和 325℃。
图1 HID结构示意图(二)工作原理HID 的工作原理通常基于潘宁效应,即电子与稀有气体碰撞形成亚稳态原子,该亚稳态原子的激发能传递到样品分子或原子;如果样品分子或原子的电离电位(IP)小于亚稳态原子的激发电位,样品将通过碰撞被电离,使离子流增大。
当氦载气和被测组分进入 HID 池,在β射线轰击下,组分分子可直接被电离,也可氦先激发成亚稳态,然后 He * 与组分分子相撞,使其电离。
除氖以外,所有化合物在 HID 上应该都是正响应,但实验表明,在氦载气纯度极高时,H2、Ar、N2、O2 和 CF4 为负响应,但这不影响它的正常应用。
三、性能特征与检测条件选择(一)性能特征HID 最突出的性能特征包括:1.ng 级的灵敏度和通用性的响应。
2.操作中必须小心控制污染。
3.常有异常响应出现。