低通无源滤波器设计-详细(精品范文).doc
- 格式:doc
- 大小:691.00 KB
- 文档页数:13
【最新整理,下载后即可编辑】
低通无源滤波器仿真与分析
一、滤波器定义
所谓滤波器(filter),是一种用来消除干扰杂讯的器件,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。
二、滤波器的分类
常用的滤波器按以下类型进行分类。
1)按所处理的信号:
按所处理的信号分为模拟滤波器和数字滤波器两种。
2)按所通过信号的频段
按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。
低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。
高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。
带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。
带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。
3)按所采用的元器件
按所采用的元器件分为无源和有源滤波器两种。
无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。
有源滤波器:由无源元件(一般用R 和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。
4) 按照阶数来分
通过传递函数的阶数来确定滤波器的分类。
三、网络的频率响应
在时域中,设输入为)(t x ,输出为)(t y ,滤波器的脉冲响应函数为)(t h 。转换到频域,激励信号为)(ωj X ,经过一个线性网络得到的响应信号为)(ωj Y 。 则传递函数)(1)()()(jw F j X j Y j H =≡ωωω
其中,传递函数的极点是网络的固有频率。而一个传递函数所有极点的实部均为负的网络是稳定的。
一个网络的传递函数蕴含了网络的全部属性。
幅频特性和相频特性
幅度增益 与ω 构成幅频特性曲线。
相位变化 与ω 构成相频特性曲线。
四、低通滤波器的一些概念
1、单位
分贝:是用对数的方式描述相对值,无量纲。
B 贝尔 (A/B )(贝尔)=lg (A/B )=lg(A)-lg(B)
dB 分贝 (A/B )(分贝)=10 1g (A/B )
对于幅频响应,
)(|)(|)()()(ωφφφωωωωj j x j y e j H j H e A e A j X j Y x
y ===|)(|ωj H A A x y =)(ωφφφ=-x y |)(|ωj H A y =
其中3dB :功率为2倍(10*1g2=3.01),电压或电流为1.414倍。
2、低通滤波器英文名称:low-pass filter 简称为LPF 。
低通滤波器是让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。 理想低通滤波器能够让直流一直到截止频率为c f 的所有信号都
没有任何损失的通过。让高于截止频率c f 的所有信号全部丧失.
3、描述滤波器性能的基本参数:
1.截止频率
若滤波器在通频带内的增益为K ,则当其增益下降到
(即下降了3dB)时所对应的频率被称为截止频率。
2.带宽B
对于低通或带通滤波器,带宽是指其通频带宽度,对于高通或带阻滤波器,带宽是指其阻带宽度。带宽决定着滤波器分离信号中相邻频率成分的能力。
3.品质因数Q
Q 定义为带通或带阻滤波器的中心频率fc 与带宽B 之比,即
品质因数Q 的大小反映了滤波器频率选择能力的高低。
4.倍频程选择性
是指在f02与2f02之间,或在f01与f01/2之间,幅频特性的衰减值,即频率变化一个倍频程时幅频特性的衰减量,用dB 表示,它反映了滤波器对通频带以外的频率成分的衰减能力。
4、低通滤波器的幅频特性
c ω被称为截止频率,是功率为最大值一半的点,也是带宽下
降3dB 的点。
|)
)(lg(|20)(|)(|ωωj H dB j H =
5、滤波器作用:
下图是对滤波器作用的说明。由0.7KHz和17KHz的两个正弦波所合成的信号,经过只允许频率低于1KHz的信号通过的RC滤波器之后,输出端只能检测到0.7KHz的正弦波信号。
通过Multisim对滤波器作用的仿真如下
如图所示,红色波形为输入信号的波形,它是两个信号的叠加。经过滤波后得到的蓝色波形是低频的波形,因为电阻分压的关系,得到的信号波形不是十分理想,放大以后可以看到波形不是很光滑,是因为受到前端电阻的影响,得到的幅度也比输入波形小很多,但却是一个0.7kHz的正弦信号。因此通过模拟仍反
映出了此滤波器的低通特性。
五、低通滤波器设计
电容的阻抗以及频率响应特征
ω→0,|)(|ωj Z →∞ 低频下相当于断路
ω→∞,|)(|ωj Z →0 高频下相当于短路
电感的阻抗以及频率相应特征
ω→0,|)(|ωj Z →0 低频下相当于短路
ω→∞,|)(|ωj Z →∞ 高频下相当于断路 极点RC j 1-=ω,当RC>0时电路稳定。
5.1一阶RC 低通滤波器
频率响应
幅频特性:2)(11
|)(|RC j H ωω+=;
相频特性:)arctan()(RC ωωφ-=;
截止角频率 RC c 1=
ω时,振幅21||=H =-3dB 式中为ω输入信号的角频率,令τ=RC 为回路的时间常数,则
有 C
j j Z ωω1
)(=L j j Z ωω=)(C j C j R C j j H ωωωω+=+=11)/1(1
)(