传热学课后答案整理
- 格式:doc
- 大小:152.50 KB
- 文档页数:6
传热学(第二版)戴锅生编习题解1-1 解w/m ·︒C1-4 解w由得 ︒C1-9 解热阻网络图:m 2·︒C/m(1)m 2·︒C/w ,减少81.7%(2)m 2·︒C/w ,减少8.2%(3)m 2·︒C/w ,减少0.2% 结论:① 对良导热体,导热热阻在总热阻中所占比例很小,一般可以忽略不计。
② 降低热阻大的那一个分热阻值,才能有效降低总热阻。
1-12 解设热量由内壁流向外壁,结果方程无解。
重设热量由外壁流向内壁,则可以看出太阳辐射热流方向与对流换热的热流方向相反,传给外壁的总热量为根据串联热路可知,整理得δλφ21w w t t A -=6.0)220250(15.002.06.63)(221=-⨯⨯π⨯=-=w w t t A φδλ)(w f t t dLh -=πφ52873)90200(8563.0=-⨯⨯⨯⨯=π)(f f P t t mC '-''=φ52873)15(1018.436004003=-''⨯⨯⨯=f t 8.128151018.44003600528733=+⨯⨯⨯=''f t t f 11102.010015001.01011121=++=++=h h r t λδ0202.010015001.010111211=++=++=h h r t λδ1012.010*******.01012=++=t r 11002.0100150001.01013=++=t r t f 1)5(15480)(6008.02222--=--⨯w f w c t t t h )5(15480212--=-w w w t t t λδ)5(1548049.04.03022--=-w w t t︒Cw/m 2︒C2-1 解法Ⅰ ① 由付立叶定律推导 取厚度为dr 的薄壁微元壳体做为研究对象,根据热平衡(1)又(2)(2)代入(1)得,整理得或② 直接由球坐标导热微分方程式推导球坐标导热微分方程:根据已知条件:,,,,代入上式得微分方程组:微分方程经两次积分得以B .D 代入通解得 ,1.483245.132=w t 47.362=w t 93.749.04.03047.3612=-=-=λδw w t t q qh t t f w =-11119.28793.730111=-=-=h q t t w f drdrd dr r r r r · φφφφ+=+=0=drd r φdrdt r r 24π-=φ048222=+drdt r dr dt rππ0222=+drdt drdt r 0)(22=drrt d Ct r t r r rt r a tρφϕθθθθθτ+⎥⎦⎤⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂=∂∂2222222sin 1sin sin 1)(10=∂∂τt 0=∂∂θt=∂∂ϕt0=φ0)(22=drrt d ⎪⎪⎩⎪⎪⎨⎧=====221122,;,0)(w w t t r r t t r r dr rt d 211C rC t +=21121r r t t C w w -=2121211r r t t C w w --=解法Ⅱ分离变量得(1) B.D :, (2) ,(3)(2)代入(1)得(4)(3)代入(4)得整理得或2-3 解微分方程:rr r t t r r t t t w w w w 1·1121212112--+-=212211·11r r r t t drdt w w --=212121122121212121)(1· 11· · 4· · 41d d t t r r r t t r dr dt r w w w w rr π-π-=--π-=⎪⎭⎫⎝⎛π-==λλλφ212111)(2d d t t w w --π=λdrdt r r λφφ24π-==drr dt λφ24π-=Cr t +π=λφ41r r =1w t t =2r r =2w t t =λφ114r t C w π-=λφλφ1144r t r t w π-+π=λφλφ112244r t r t w w π-+π=2121212111)(2114)(d d t t r r t t w w w w --π=-π-=λλφ24r drdt λφπ-=⎰⎰π-=212124r rt tr dr dt w w λφ⎪⎪⎭⎫⎝⎛-π=⎪⎪⎭⎫ ⎝⎛-π=-121212112114d d r r t t w w λφλφ122111)(2d d t t w w --π=λφB.D :x =0,,x =a ,;y =0,,y =b ,2-5 解:设q =600 w/m 2=0.2104 m =210.4 mm∵ q ≤600 w/m2∴ δ2≥210.4 mm2-9 解忽略蒸汽管壁的导热热阻mm=0.5519 w/m ·︒C未包材料B 时w/m2222=+∂∂+∂∂λφ y t x t 00=⎪⎭⎫ ⎝⎛∂∂=x x t )(f a x ax t t h x t -=⎪⎭⎫⎝⎛∂∂-==λ0t ty ==by by ht y t ===⎪⎪⎭⎫⎝⎛∂∂-λ221131λδλδ+-=w w t t q ⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛--=3.12.060060130011.0112122λδλδqt t w w t w 143.0065.0201=⨯+=d d 47.002.0212=⨯+=d d 12320121ln 21ln 21d d t t d d t t B w w Aw w l λλφπ-=π-=32211201lnln · w w w w AB t t t t d d d d --=λλ180********· 43.047.0ln3.043.0ln 2.0·lnln21321201--=--=w w w w BA t t t t d d d d λλ34683.043.0ln 5519.02140400ln 210121=⨯π-=π'-=d d t t Aw w l λφt w 12-19 已知:δ1=250 mm ,λ1=0.28+0.000233t m w/m ·︒C ,λ2=0.0466+0.000213t m w/m ·︒C ,δ3=250 mm ,λ3=0.7 w/m ·︒C ,t w 1=1000︒C ,t w 4=50︒C ,q =759.8 w/m 2,t w 2=592.7︒C 。
传热学第七版课后答案第一章:传热的基本概念1. 描述传热的三种方式。
传热可以通过三种方式进行:热传导、对流和辐射。
•热传导是指热量沿物质的内部传播,通常发生在固体和液体中。
它主要由分子之间的相互作用引起,通过分子的碰撞和传递热量。
•对流是指通过流体的传输热量,可以是自然对流或强迫对流。
自然对流是指由密度的差异引起的流动,而强迫对流是通过施加外部力或压力梯度引起的。
•辐射是指以电磁波的形式传播热量。
它可以在真空中传播,例如太阳辐射的热量可以在地球上传播。
2. 什么是传热的单位?传热的单位是热功率(Q)除以温度差(ΔT)。
常用的单位有瓦特/(平方米·开尔文)(W/(m2·K))或卡/(秒·平方米·摄氏度)(cal/(s·cm2·°C))。
3. 热传导的主要影响因素有哪些?热传导的主要影响因素包括:•温度差:温度差越大,热传导的速率越快。
•材料导热性能:不同材料的导热性能不同,例如,金属通常具有较高的导热性能,而绝缘材料则相对较低。
•材料厚度:材料的厚度越大,热传导的阻力越大,传热速率越慢。
•材料接触面积:接触面积越大,热传导的速率越快。
4. 什么是对流换热系数?对流换热系数是指单位面积上在单位温度差下通过对流传递的热量。
换热系数取决于流体的性质、流体的流动状态、流体与固体之间的热传导和流体与固体之间的传热面积等因素。
5. 什么是辐射传热?辐射传热是指以电磁波的形式通过真空或介质传播热量,无需传播介质的参与。
辐射传热的速率取决于辐射源的温度、辐射体的表面特性、辐射的波长和介质的吸收能力等因素。
第二章:传热的基本方程1. 热扩散方程是什么?热扩散方程(Heat Diffusion Equation)是用来描述热量在物体内部传导的方程。
它可以写成以下形式:热扩散方程热扩散方程其中,η是物体的热扩散率,ρ是物体的密度,c是物体的比热容,T是温度。
《传热学》第四版课后习题答案————————————————————————————————作者:————————————————————————————————日期:《传热学》第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
第一章1-8 热水瓶胆剖面的示意图如附图所示。
瓶胆的两层玻璃之间抽成真空,内胆外壁及外胆内壁涂了反射率很低的银。
试分析热水瓶具有保温作用的原因。
如果不小心破坏了瓶胆上抽气口处的密闭性,这会影响保温效果吗?解:保温作用的原因:内胆外壁外胆内壁涂了反射率很低的银,则通过内外胆向外辐射的热量很少,抽真空是为了减少内外胆之间的气体介质,以减少其对流换热的作用。
如果密闭性破坏,空气进入两层夹缝中形成了内外胆之间的对流传热,从而保温瓶的保温效果降低。
1-10 一炉子的炉墙厚13cm ,总面积为202m ,平均导热系数为1.04w/m.k ,内外壁温分别是520℃及50℃。
试计算通过炉墙的热损失。
如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式KW t A Q 2.7513.0)50520(2004.1=-⨯⨯=∆=δλ每天用煤d Kg /9.3101009.22.753600244=⨯⨯⨯1-16为了说明冬天空气的温度以及风速对人体冷暖感觉的影响,欧美国家的天气预报中普遍采用风冷温度的概念(wind-chill temperature )。
风冷温度是一个当量的环境温度,当人处于静止空气的风冷温度下时其散热量与人处于实际气温、实际风速下的散热量相同。
从散热计算的角度可以将人体简化为直径为25cm 、高175cm 、表面温度为30℃的圆柱体,试计算当表面传热系数为()K m W 2/15时人体在温度为20℃的静止空气中的散热量。
如果在一个有风的日子,表面传热系数增加到()K m W 2/50,人体的散热量又是多少?此时风冷温度是多少?1-19 在1-14题目中,如果把芯片及底板置于一个封闭的机壳内,机壳的平均温度为20℃,芯片的表面黑度为0.9,其余条件不变,试确定芯片的最大允许功率。
解:()00014.0])27320()27385[(1067.59.04484241⨯+-+⨯⨯-=Φ-=辐射T T A σε P 辐射对流+ΦΦ=1.657W1-21 有一台气体冷却器,气侧表面传热系数1h =95W/(m2.K),壁面厚δ=2.5mm ,)./(5.46K m W =λ水侧表面传热系数58002=h W/(m 2.K)。
传热学课后习题答案第⼀章1-3 宇宙飞船的外遮光罩是凸出于飞船船体之外的⼀个光学窗⼝,其表⾯的温度状态直接影响到飞船的光学遥感器。
船体表⾯各部分的表明温度与遮光罩的表⾯温度不同。
试分析,飞船在太空中飞⾏时与遮光罩表⾯发⽣热交换的对象可能有哪些?换热⽅式是什么?解:遮光罩与船体的导热遮光罩与宇宙空间的辐射换热1-4 热电偶常⽤来测量⽓流温度。
⽤热电偶来测量管道中⾼温⽓流的温度,管壁温度⼩于⽓流温度,分析热电偶节点的换热⽅式。
解:结点与⽓流间进⾏对流换热与管壁辐射换热与电偶臂导热1-6 ⼀砖墙表⾯积为12m 2,厚度为260mm ,平均导热系数为 1.5 W/(m ·K)。
设⾯向室内的表⾯温度为25℃,⽽外表⾯温度为-5℃,确定此砖墙向外散失的热量。
1-9 在⼀次测量空⽓横向流过单根圆管对的对流换热试验中,得到下列数据:管壁平均温度69℃,空⽓温度20℃,管⼦外径14mm ,加热段长80mm ,输⼊加热段的功率为8.5W 。
如果全部热量通过对流换热传给空⽓,此时的对流换热表⾯积传热系数为?1-17 有⼀台⽓体冷却器,⽓侧表⾯传热系数95 W/(m 2·K),壁⾯厚2.5mm ,导热系数46.5 W/(m ·K),⽔侧表⾯传热系数5800 W/(m 2·K)。
设传热壁可看作平壁,计算各个环节单位⾯积的热阻及从⽓到⽔的总传热系数。
为了强化这⼀传热过程,应从哪个环节着⼿。
1-24 对于穿过平壁的传热过程,分析下列情形下温度曲线的变化趋向:(1)0→λδ;(2)∞→1h ;(3) ∞→2h第⼆章2-1 ⽤平底锅烧⽔,与⽔相接触的锅底温度为111℃,热流密度为42400W/m 2。
使⽤⼀段时间后,锅底结了⼀层平均厚度为3mm 的⽔垢。
假设此时与⽔相接触的⽔垢的表⾯温度及热流密度分别等于原来的值,计算⽔垢与⾦属锅底接触⾯的温度。
⽔垢的导热系数取为 1 W/(m ·K)。
传热学习题集第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:,其中,-热流密度;-导热系数;-沿x方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:,其中,-热流密度;-表面传热系数;-固体表面温度;-流体的温度。
③ 斯忒藩-玻耳兹曼定律:,其中,-热流密度;-斯忒藩-玻耳兹曼常数;-辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
而一旦壶内的水烧干后,水壶很快就烧坏。
试从传热学的观点分析这一现象。
传热学课后习题答案第一章1-3 宇宙飞船的外遮光罩是凸出于飞船船体之外的一个光学窗口,其表面的温度状态直接影响到飞船的光学遥感器。
船体表面各部分的表明温度与遮光罩的表面温度不同。
试分析,飞船在太空中飞行时与遮光罩表面发生热交换的对象可能有哪些?换热方式是什么?解:遮光罩与船体的导热遮光罩与宇宙空间的辐射换热1-4 热电偶常用来测量气流温度。
用热电偶来测量管道中高温气流的温度,管壁温度小于气流温度,分析热电偶节点的换热方式。
解:结点与气流间进行对流换热与管壁辐射换热与电偶臂导热1-6 一砖墙表面积为12m2,厚度为260mm,平均导热系数为W/(m·K)。
设面向室内的表面温度为25℃,而外表面温度为-5℃,确定此砖墙向外散失的热量。
1-9 在一次测量空气横向流过单根圆管对的对流换热试验中,得到下列数据:管壁平均温度69℃,空气温度20℃,管子外径14mm,加热段长80mm,输入加热段的功率为。
如果全部热量通过对流换热传给空气,此时的对流换热表面积传热系数为?1-17 有一台气体冷却器,气侧表面传热系数95 W/(m2·K),壁面厚,导热系数W/(m·K),水侧表面传热系数5800 W/(m2·K)。
设传热壁可看作平壁,计算各个环节单位面积的热阻及从气到水的总传热系数。
为了强化这一传热过程,应从哪个环节着手。
1-24 对于穿过平壁的传热过程,分析下列情形下温度曲线的变化趋向:(1)???0;(2)h1??;(3) h2?? 第二章2-1 用平底锅烧水,与水相接触的锅底温度为111℃,热流密度为42400W/m2。
使用一段时间后,锅底结了一层平均厚度为3mm的水垢。
假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,计算水垢与金属锅底接触面的温度。
水垢的导热系数取为 1 W/(m·K)。
42400?3?10?3q??t?t??111???21?1解:℃?tq??2-2 一冷藏室的墙钢皮、矿渣棉及石棉板三层叠合构成,各层的厚度依次为、152mm及,导热系数分别为45 W/(m·K)、W/(m·K)及W/(m·K)。
《传热学》第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;ft -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a 、地面向冰雹导热所得热量;b 、冰雹与周围的空气对流换热所得到的热量;c 、冰雹周围的物体对冰雹辐射所得的热量。
2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。
白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。
4.现在冬季室内供暖可以采用多种方法。
就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。
答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。
传热学课后习题答案绪论•传热有哪几种基本形式,其每种基本形式的特点是什么?•试用传热理论来分析热水瓶中的传热过程及其基本形式?•试分析航空发动机五大部件中的传热问题?(五大部件为进气道、压气机、燃烧室、涡轮、尾喷管。
)•目前预测世界环境温度在不断升高,这种气象变化与传热学有什么关系?•试分析家用电器中的传热现象(如冰箱、空调、烘箱等)?如何节省能源,提高效率?第一章•何谓导热系数?影响因素是什么?•试比较有内热源和无内热源时平壁导热的温度分布规律 ( 设= 常数;)•管外包两种不同导热系数材料以减少热损失,若,试问如何布置合理?•等截面伸展体稳态导热时,肋端边界条件的影响为何?•=C 时,在平壁、圆筒壁和球壁中温度分布是何规律?•何谓热阻?平壁、圆筒壁和球壁的热阻如何表达?对流热阻如何表示?•谓接触热阻?影响因素是什么?•已知导热系数为 2.0W/(mK) 的平壁内温度分布为 T(x)=100+150x ,试求单位面积的导热热流量?9* 、由 A 、 B 、 C 、 D 四种材料构成复合平壁(图 1-30 )λ A =75W/(m.K), δ A =20cm;λ B =60W/(m.K), δ B =25cm;λ C =58W/(m.K), δ C =25cm;λ D =20W/(m.K), δ B =40cm;A A =A D =2m 2 ,AB =A C试求: 1) 各项导热热阻及热流图; 2) 通过复合壁的热流量; 3 ) 材料 D 左面的温度。
10* 、试考虑如图 1—31 所示图形中的一维稳定热传导。
假定无内热生成,试推导出导热系数的表达公式。
已知,, A 、 T 、 x 的单位分别为K 和 m 。
11 、一则著名绝热材料制造厂所作的电视广告声称,对绝热材料来说,重要的不是材料的厚度,而是热阻 R 。
欲使 R 值等于 19 ,需 4Ocm 的岩石, 38cm 的木头或 15cm 的玻璃纤维。
绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;wt -固体表面温度;ft -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
第一章 导热理论基础1. 按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。
答:铜>铝>黄铜>碳钢;隔热保温材料导热系数最大值为0.12W/(m •K )膨胀珍珠岩散料:25℃ 60-300Kg/m 3 0.021-0.062 W/(m •K ) 矿渣棉: 30℃ 207 Kg/m 3 0.058 W/(m •K )软泡沫塑料: 30℃ 41-162 Kg/m 3 0.043-0.056 W/(m •K ) 2. 推导导热微分方程式的已知前提条件是什么? 答:导热物体为各向同性材料。
3.(1)m k xt /2000=∂∂ , q=-2×105(w/m 2). (2)m k xt /2000-=∂∂, q=2×105(w/m 2). 4. (1),00==x q 3109⨯==δx q w/m 2 (2) 5108.1⨯=νq w/m 35. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导圆柱坐标系的导热微分方程式。
答:2222211[()]t t t t a r r r r r zτφ∂∂∂∂∂=++∂∂∂∂∂ 6. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导球坐标系的导热微分方程式。
答:2222222111[()(sin )]sin sin t t t ta r r r r r r θτθθθθϕ∂∂∂∂∂∂=++∂∂∂∂∂∂ 7. 一半径为R的实心球,初始温度均匀并等于t 0,突然将其放入一温度恒定并等于t f 的液体槽内冷却。
已知球的热物性参数是λ、ρ和c ,球壁表面的表面传热系数为h ,试写出描写球体冷却过程的完整数学描述。
答:2201[()],0,00,0,0,,()f r R r Rt t r r R c r r r r R t t tr R h t t rλττρττλ==∂∂∂=><<∂∂∂=≤≤=∂>=-=-∂0,0dtr dr== 8. 从宇宙飞船伸出一根细长散热棒,以辐射换热将热量散发到外部空间去,已知棒的发射率(黑度)为ε,导热系数为λ,棒的长度为l ,横截面面积为f ,截面周长为U,棒根部温度为T0。
传热学智慧树知到课后章节答案2023年下山东科技大学山东科技大学第一章测试1.炉墙由内壁到外壁的热传递过程为()。
A:热辐射 B:热对流 C:导热 D:对流传热答案:导热2.棉被经过晾晒、拍打,晚上盖着感觉暖和了,是因为()。
A:棉被中存储了热量 B:棉被经拍打蓬松后,导热系数变小了 C:棉被的导温系数变小了 D:棉被内表面的表面传热系数变小了答案:棉被经拍打蓬松后,导热系数变小了3.冬天,雪融化所需的热量可通过以下途径得到()。
A:空气的对流传热量 B:地面的导热量 C:与环境中固体表面间的辐射换热量 D:来自太阳的辐射热量答案:空气的对流传热量;地面的导热量;与环境中固体表面间的辐射换热量;来自太阳的辐射热量4.稳态传热过程中,传热温差一定,可采取下列哪些措施增大传热量?()A:增大传热系数 B:增大传热热阻 C:增大传热面积 D:增大表面传热系数答案:增大传热系数;增大传热面积;增大表面传热系数5.冬季室内暖气片的散热过程包括哪些热量传递方式?以暖气片内走热水为例。
()A:暖气片外壁到室内环境和空气,热量传递方式有辐射传热和对流传热 B:暖气片内壁到外壁热量传递方式是导热 C:热水和暖气片管道内壁热量传递方式是对流传热答案:暖气片外壁到室内环境和空气,热量传递方式有辐射传热和对流传热;暖气片内壁到外壁热量传递方式是导热;热水和暖气片管道内壁热量传递方式是对流传热第二章测试1.一般而言,金属的导热系数值高于非金属的导热系数值。
()A:对 B:错答案:对2.在相同条件下,下列哪种物质的导热能力最差?()。
A:油 B:水 C:空气 D:氢气答案:氢气3.一般情况下,对于材料的导热系数,下列描述中哪种是错误的?()。
A:合金小于纯金属 B:气体小于固体 C:导电体小于非导电体 D:液体小于固体答案:导电体小于非导电体4.已知某一导热平壁的两侧壁面温差是30℃,材料的导热系数是22W/(m ∙K),通过的热流量是300W,传热面积为1000cm2,则该壁面的厚度是()。
绪 论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。
) 13.已知:360mm σ=、0.61()Wm K λ=• 118f t =℃ 2187()Wh m K =•210f t =-℃ 22124()Wh m K =• 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K • 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W •3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =•、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒i w f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =•、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()Wm K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
1-9 一砖墙的表面积为122m ,厚为260mm ,平均导热系数为1.5W/(m.K )。
设面向室内的表面温度为25℃,而外表面温度为-5℃,试确定次砖墙向外界散失的热量。
解:根据傅立叶定律有:WtA9.207626.05)(25125.1=--⨯⨯=∆=Φδλ1-10 一炉子的炉墙厚13cm ,总面积为202m ,平均导热系数为1.04w/m.k ,内外壁温分别是520℃及50℃。
试计算通过炉墙的热损失。
如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式KW t A Q 2.7513.0)50520(2004.1=-⨯⨯=∆=δλ每天用煤d Kg /9.3101009.22.753600244=⨯⨯⨯1-11 夏天,阳光照耀在一厚度为40mm 的用层压板制成的木门外表面上,用热流计测得木门内表面热流密度为15W/m 2。
外变面温度为40℃,内表面温度为30℃。
试估算此木门在厚度方向上的导热系数。
解:δλtq ∆=,)./(06.0304004.015K m W t q =-⨯=∆=δλ1-12 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径 d=14mm ,加热段长 80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式()f w t t rlh q -=π2所以()f w t t d qh -=π=49.33W/(m 2.k)1-17 有两块无限靠近的黑体平行平板,温度分别为21,T T 。
试按黑体的性质及斯藩-玻尔兹曼定律导出单位面积上辐射换热量的计算式。
(提示:无限靠近意味着每一块板发出的辐射能全部落到另一块板上。
)解:由题意 411T q fσ=; 422T q f σ=; 两板的换热量为 )(4241T T q -=σ1-18 宇宙空间可近似地看成为0K 的真空空间。
3-15 一种火焰报警器采用低熔点的金属丝作为传热元件,当该导线受火焰或高温烟气的作用而熔断时报警系统即被触发,一报警系统的熔点为5000C ,)/(210K m W ⋅=λ,3/7200m kg =ρ,)/(420K kg J c ⋅=,初始温度为250C 。
问当它突然受到6500C 烟气加热后,为在1min 内发生报警讯号,导线的直径应限在多少以下?设复合换热器的表面换热系数为)/(122K m W ⋅。
解:采用集总参数法得:)exp(0τρθθcv hA-=,要使元件报警则C 0500≥τ )ex p(65025650500τρcv hA -=--,代入数据得D =0.669mm验证Bi 数:05.0100095.04)/(3<⨯===-λλhDA V h Bi ,故可采用集总参数法。
3-31 一火箭发动机喷管,壁厚为9mm ,出世温度为300C 。
在进行静推力试验时,温度为17500C 的高温燃气送于该喷管,燃气与壁面间的表面传热系数为)/(95012K m W ⋅。
喷管材料的密度3/4008m kg =ρ,导热系数为)/(6.24k m W ⋅=λ,)/(560K kg J c ⋅=。
假设喷管因直径与厚度之比较大而可视为平壁,且外侧可作绝热处理,试确定: (1) 为使喷管的最高温度不超过材料允许的温度而能允许的运行时间; (2) 在所允许的时间的终了时刻,壁面中的最大温差; (3) 在上述时刻壁面中的平均温度梯度与最大温度梯度。
9993.0cos sin 2cos sin ln 43605.017503017501000)1(76921.07134.0211111101=-⎥⎦⎤⎢⎣⎡+⨯==--=⇒==μμμμμμθθθθμλδδδFo h Bi m =解:m C x x dx x x t m C hx t x t CsFo c Fo m m x m m /65532)176921.0(cos 009.017509.2931000)1(cos )cos()(11/45159)3(9.293)76921.0cos 11)(17501000()cos 11()2(5.150101000max 01max 22=-⨯--=-===∂∂=∂∂=-=∂∂=∂∂=--=-=-=-=∆===⎰=μδθδμδθθδθδθδμθθθτττλδραδτδδδδδδδδ无限长圆管6-1 、在一台缩小成为实物1/8的模型中,用200C 的空气来模拟实物中平均温度为2000C 空气的加热过程。
实物中空气的平均流速为6.03m/s ,问模型中的流速应为若干?若模型中的平均表面传热系数为195W/(m 2K),求相应实物中的值。
在这一实物中,模型与实物中流体的Pr 数并不严格相等,你认为这样的模化试验有无实用价值?用价值的。
这样的模化试验是有实分相近数并不严格相等,但十型与流体的上述模化试验,虽然模得:又由::时的物性参数为:和空气在应相等实物中的根据相似理论,模型与解:Pr )/(99.3659.293.381195))((/85.2003.6885.3406.15))((680.0Pr ,/1093.3,/1085.34200703.0Pr ,/1059.2,/1006.15C 2020020Re 212212212221122211222262121261K m W l l h h Nu Nu sm u l l u l u l u K m W s m C K m W s m C C l l l⋅=⨯⨯====⨯⨯==⇒==⋅⨯=⨯=︒=⋅⨯=⨯=︒︒︒----λλννννλνλν6-8、已知:一常物性的流体同时流过温度与之不同的两根直管1与2,且212d d =,流动与换热已处于湍流充分发展区域。
求:下列两种情形下两管内平均表面传热系数的相对大小:(1)流体以同样流速流过两管:(2)流体以同样的质量流量流过两管。
解:设流体是被加热的,则以式(5-54)为基础来分析时,有:()2.04.04.06.04.0~h u c h p μρλ,对一种情形,21212,d d u u ==,故:%7.28218.18.1128.02221112.0218.0212.022.018.028.0121=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛==d d u f u f d d u u d d u u h h ρρ。
若流体被冷却,因Pr 数不进入h 之比的表达式,上述分析仍有效。
6-19、已知:水以1.2m/s 平均速度流入内径为20mm 的长直管。
(1)管子壁温为75℃,水从20℃加热到70℃;(2)管子壁温为15℃,水从70℃冷却到20℃。
求:两种情形下的表面传热系数,并讨论造成差别的原因。
解:s m w /2.1= m d 020.0=(1)45)7020(21=+⨯=f t ℃ 17.3950610675.002.02.1Re 6=⨯⨯==-v ud f0.80.40.80.40.023Re Pr 0.02339506.17 3.952189.05f f f Nu ==⨯⨯=)/(77.606302.01015.6405.1922k m W d N h u m ⋅=⨯⨯=⨯=-λ(2)896.164925.317.39506023.0023.03.08.03.08.0=⨯⨯==r e uP R N)/(05.528902.01015.64896.16422k m W h m ⋅=⨯⨯=-因为加热,近壁处温度高,流体粘度减小,对传热有强化作用,冷却时,近壁处温度低,流体粘度增加,对传热有减弱作用。
6-70、已知:对燃气轮机叶片冷却的模拟实验表明,当温度35t 1=℃的气流以s m u /601=的速度吹过特征长度m l 15.01=、壁温3001=w t ℃的叶片时,换热量为1500W 。
现在有第二种工况:35t 2=℃、s m u /402=、m l 225.02=、3402=w t ℃。
两种情况下叶片均可作为二维问题处理,计算可对单位长度叶片进行。
求:第二种工况下叶片与气流间所交换的热量。
解:21221112121212,225.040Re ,15.060Re ,h νννν=⨯=⨯=∆∆==ΦΦt t A A h ,6667.0225.015.0,,Re Re 1221122121=====∴λλl l h h Nu Nu 即。
对二维问题换热面积正比于线形尺度(即以单位长度叶片作比较),因而有:W 17261500151.1,151.1353003534015.0225.06667.0212=⨯=Φ=--⨯⨯=ΦΦ。
8-1、一电炉的电功率为1KW ,炉丝温度为847℃,直径为1mm 。
电炉的效率为0.96。
试确定所需炉丝的最短长度。
解:5.67×341096.0100847273⨯=⎪⎭⎫ ⎝⎛+dL π得L=3.61m9-6、 试用简捷方法确定本题附图中的角系数X 1,2。
2,121,212,1221,2211,21,2(1)1223/40.4244(2)10.52(3)20.5/40.125(4)0.5X A RX A R X A R X A RX X πππ===⨯======解:因为因为参考(),具有对称性,=假设在球得顶面有另一块无限大平板存在,由对称性知=9-35设有如附图所示的几何体,半球表面是绝热的,底面被一直径(D =0.2m )分为1、2两部分。
表面1为灰体,11550K 0.35T ε=,=;表面2为黑体,T2=330K 。
试计算表面1的净辐射损失 及表面3的温度。
解:网络图如下:212,33,1212,323,13,21,32,32212342142210.520.5/20.2511113.140.20.015724820.06285505.67()5188.4W /m 1007305.67()6272W /m 100b b R X X X RX X X X A D A R E E ππππ+++=⇒==⇒======⨯=⨯⨯====⨯==⨯=2111233,133,212213334333110.35118.3m 0.350.01571163.7m 15188.4672.418.38W118.363.725188.41843.24W /m 118.363.7()424.6K 100b b b b b b b A A X A X E E R E E E E R TE T εεϕϕσ----==⨯==--===∑-⨯--==⇒='∑-=⇒=Q 表面的净辐射损失:由又。
1,2表面间的辐射换热量是由于绝热表面3的存在而引起的。
10-9、已知C t C t C t C t ︒="︒='︒="︒='2001002103002211,,,,试计算下列流动布置时换热器的对数平均温差: (1)逆流布置;(2) 一次交叉,两种流体均不混合; (3) 1-2型壳管式,热流体在壳侧; (4) 2-4型壳管式,热流体在壳侧; (5)顺流布置。
[][]Ct Ct t t t t R t t t t P Ct t t t t t t t t t t m m r rm r ︒=⨯=∆︒=⨯=∆=--='-""-'==--='-''-"=︒=-=-=∆=-="-==-='-"=2.8985.09.10485.01591)3(5.9692.09.10492.017919.01002002103005.010*******200)2(9.104)100/110ln(100110)/ln(1002003001101002101221121221121211=查得-,图由参考文献=查得-,图由参考文献)解:(ϕϕ[]Ct t t t t t t t t t t Ct r r m r m ︒=-=-=∆=-="-"==-='-'=︒=⨯=∆4.63)10/200ln(10200)/ln(10200210200100300)5(8.10197.09.10497.01691)4(1121211=查得-,图由参考文献ϕ。