(新)中考数学 选择题压轴题(包含答案)
- 格式:docx
- 大小:926.76 KB
- 文档页数:6
2024-2025年安徽省初中学业水平考试数学压轴题集(本卷收录近10年安徽省中考的第10、14、22、23题)一、选择题每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.如图,在矩形ABCD 中,AB =5,AD =3.动点P 满意13PABABCDS S=矩形 .则点P 到A ,B 两点距离之和P A +PB 的最小值为( )A.29B.34C.52D.412.如图,Rt △ABC ,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满意∠P AB =∠PBC ,则线段CP 长的最小值为( ) 32 B.2 C.81313D.121313A.第1题图 第2题图3.如图,一次函数1y x =和二次函数22+y ax bx c =+图象相交于P ,Q 两点,则函数2(1)y ax b x c=+-+的图象可能是( )A. B. C. D.第3题图4.如图,正方形ABCD 的对角线BD 长为22,若直线l 满意: ①点D 到直线l 的距离为3;②A ,C 两点到直线l 距离相等.则符合题意的直线l 的条数是( ) A.1 B.2 C.3 D.45.如图,点P 是等边三角形ABC 外接圆⊙O 上点,在以下推断中,不正确的是( ) A.当弦PB 最长时,△APC 是等腰三角形 B.当△APC 是等腰三角形时,PO ⊥AC C.当PO ⊥AC 时,∠ACP =30°D.当∠ACP =30°时,△BPC 是直角三角形第4题图第5题图6.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.45C.10或45D.10或217第6题图7.如图所示,P是菱形ABCD的对角线AC上一点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形态是A. B.第7题图C. D.8.甲、乙两个打算在一段长为1200米的笔直马路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A. B. C. D.9.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是A.120°B.125°C.135°D.150°10.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于A.65B.95C.125D.125第10题图第11题图二、填空题11. 在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得绽开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________cm.12. 如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③3=2ABG FGH S S △△;④AG +DF =FG .其中正确的是 .(把全部正确结论的序号都选上)第12题图 第14题图13.已知实数a 、b 、c 满意a b ab c +==,有下列结论:①若c ≠0,则111ab+=;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 .(把全部正确结论的序号都选上)14. 如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中肯定成立的是 .(把全部正确结论的序号都填在横线上) ①12DCF BCD ∠=∠;②EF =CF ;③=2BEC CEF S S △△;④∠DFE =3∠AEF .15.已知矩形纸片ABCD 中,AB =1,BC =2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E ,F 是该矩形边界上的点),折叠后点A 落在点A ’处,给出以下推断: ①当四边形A’CDF 为正方形时,EF =2;②当EF =2时,四边形A’CDF 为正方形; ③当EF =5时,四边BA’CD 为等腰梯形;④当四边形BA’CD 为等腰梯形时,EF =5. 其中正确的是 .(把全部正确结论的序号都填在横线上) 16.如图,P 是矩形ABCD 内的随意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4;②S 2+S 4= S 1+S 3;③若S 3=2S 1,则S 4=2S 2 ④若S 1=S 2,则P 点在矩形的对角线上.其中正确的结论的序号是 .(把全部正确结论的序号都填在横线上)第15题图 第16题图 第18题图 17.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的几个结论:①2(2)6⊗-=;②a b b a ⊗=⊗;③若0a b +=,则()()2a a b b ab ⊗+⊗=;④若0a b ⊗=,则a =0.其中正确结论的序号是 .(填上你认为全部正确结论的序号)18.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 ________ _.(把全部正确答案的序号都填写在横线上)①∠BAD =∠ACD ;②∠BAD =∠CAD ;③AB +BD =AC +CD ;④AB -BD =AC -CD .19.已知二次函数的图象经过原点及点11(,)24--,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 .20.如图为二次函数2y ax bx c =++的图象,在下列说法中:①a c <0;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>;④当x >1时,y 随x 的增大而增大.正确的说法有__________.(把正确的答案的序号都填在横线上)第20题图三、解答题21. 某超市销售一种商品,成本每千克40元,规定每千克不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满意一次函数关系,部分数据如下表:售价x (元/千克) 50 60 70 销售量y (千克) 100 80 60(1)求y 与x 之间的函数表达式; (2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本); (3)试说明(2)中总利润W 随售价x 的改变而改变的状况,并指出售价为多少元时获得最大 利润, 最大利润是多少?22.已知正方形ABCD ,点M 为AB 的中点.(1)如图1,点G 为线段CM 上的一点,且∠AGB =90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F .①求证:BE =CF ;②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满意2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan ∠CBF 的值.第22题图 1 第22题图223.如图,二次函数2+y ax bx =的图象经过点(2,4)A 与(6,0)B .(1)求a ,b 的值; (2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.24.如图,A ,B 分别在射线OA ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和ABPQ的值.第24题图1 第24题图2 第24题图325.为了节约材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?第25题图26.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线相互垂直,求ADEF的值.第26题图1 第26题图227.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当0≤x ≤3时,2y 的最大值.28.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N .(1)①∠MPN = ;②求证:PM +PN =3a ;(2)如图2,点O 是AD 的中点,连接OM 、ON ,求证:OM =ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,推断四边形OMGN 是否为特别四边形?并说明理由.第28题图1 第28题图2 第28题图329.某高校生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.销售量p (件)50p x =- 销售单价q (元/件)当1≤x ≤20时,1302q x =+;当21≤x ≤40时,52520q x=+(1)请计算第几天该商品的销售单价为35元/件;(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?30.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”;如图1,四边形ABCD 即为“准等腰梯形”;其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形;(画出一种示意图即可) (2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证:AB BEDC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,状况又将如何?写出你的结论.(不必说明理由)第30题图1 第30题图2 第30题图331.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c . (1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相像,求证:BG ⊥CG .第31题图1 第31题图232.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满意关系式2(6)y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m. (1)当h =2.6时,求y 与x 的关系式;(不要求写出自变量x 的取值范围) (2)当h =2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球肯定能越过球网,又不出边界,求h 的取值范围.第32题图33.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为(0180)θθ︒︒<<,得到△A’B’C’..第33题图1 第33题图2 第33题图3 (1)如图(1),当AB ∥BC 时,设BA 与CD 相交于点D ,证明:△CDA 是等边三角形; (2)如图(2),连接A’A 、B’B ,设△ACA’和△BCB’的面积分别为'ACA S和'BCB S.求证:'':1:3ACA BCB SS=.(3)如图(3),设AC 中点为E ,B’A’中点为P ,AC =a ,连接EP ,当θ= °时,E P 长度最大,最大值为 .34.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3;(2)设正方形ABCD 的面积为S .求证22231()S h h h =++;(3)若12312h h +=,当h 1改变时,说明正方形ABCD 的面积S 随h 1的改变状况.第34题图35.春节期间某水库养殖场为适应市场需求,连续用20天时间,采纳每天降低水位以削减 捕捞成本的方法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模爱好小组依据调查,整理出第x 天(1≤x ≤20且x 为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg ) 20单位捕捞成本(元/kg ) 55x - 捕捞量(kg )950x - (1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何改变的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x 天的收入y (元)与x (天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y 随x 的改变状况,并指出在第几天y 取得最大值,最大值是多少?36.如图,已知△ABC ∽△A 1B 1C 1,相像比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1.(1)若c =a 1,求证:a =kc(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由.第36题图37.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相像三角形,并证明其中的一对;(2)连结FG,假如α=45°,AB=42,AF=3,求FG的长.第37题图38.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.第38题图1 第38题图239.已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.第39题图1 第39题图240.刚回营地的两个抢险分队又接到救灾吩咐:一分队马上动身往30千米的A镇;二分队因疲惫可在营地休息a(0≤a≤3)小时再往A镇参与救灾.一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形困难,必需由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几小时能赶到A镇?(2)若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为全部可能合理的代号,并说明它们的实际意义.(a)(b)(c)(d)第40题图。
2022年中考数学复习之挑战压轴题(选择题):三角形一.选择题(共10小题)1.(2021•深圳模拟)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E、F,连接EM,则下列结论中:①BF=CE;②∠AEM =∠DEM;③CF•DM=BM•DE;④DE2+DF2=2DM2,其中正确结论的个数是()A.1B.2C.3D.42.(2020•黄州区校级模拟)如图,在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC 于点E,AE与CD交于点F,连接BF,DE,下列结论中:①AF=BC;②∠DEB=45°,③AE=CE+2BD,④若∠CAE=30°,则=1,正确的有()A.4个B.3个C.2个D.1个3.(2019•竞秀区二模)如图,在平面直角坐标系中,点O为坐标原点,将含30°角的Rt △ABC放在第一象限,其中30°角的对边BC长为1,斜边AB的端点A、B分别在y轴的正半轴,x轴的正半轴上滑动,连接OC,则线段OC的长的最大值是()A.B.C.2D.4.(2021秋•沙坪坝区校级期末)如图,在平面直角坐标系中,A(0,9),B(﹣3,0),C(6,0),点D在线段BA上,点E在线段BA的延长线上,并且满足BD=AE,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为()A.(,4)B.(3,4)C.(,5)D.(,)5.(2021秋•婺城区校级月考)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC 交BC于E,BD⊥AE于D,DM⊥AC于M,连接CD.下列结论:①∠ADC=45°;②AC+CE=AB;③BD=AE;④AC+AB=AM.正确的个数是()A.1B.2C.3D.46.(2021•滨湖区模拟)如图所示,在等边三角形ABC中,BC=6,E是中线AD上一点,现有一动点P沿着折线A﹣E﹣C运动,在AE上的速度是4单位/秒,在CE上的速度是2单位/秒,则点P从A运动到C所用时间最少时,AE长为()A.3B.C.D.27.(2020•雨花区二模)如图,已知等边△ABC的边长为2,D,E分别为BC,AC上的两个动点,且AE=CD,连接BE,AD交于点P,则CP的最小值为()A.B.2C.2D.8.(2020•葫芦岛一模)如图,等边三角形ABC中,BD是AC边上的中线,点E在线段BD 上,∠ACE=45°,AE的延长线交BC于点F,EG=EF,连接CG交BD于点H.下面结论:①CE=AE;②∠ACG=30°;③EB=(﹣1)DE;④CH+DH=AB.其中正确的有()A.1个B.2个C.3个D.4个9.(2020•岳麓区校级二模)Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③ B.①②④ C.①③④ D.①②③④10.如图:在△ABC中,∠B=45°,D是AB边上一点,连接CD,过A作AF⊥CD交CD 于G,交BC于点F.已知AC=CD,CG=3,DG=1,则下列结论正确的是()①∠ACD=2∠F AB②S△ACD=2③CF=2﹣2④AC=AFA.①②③ B.①②③④ C.②③④ D.①③④2022年中考数学复习之挑战压轴题(选择题):三角形(10题)参考答案与试题解析一.选择题(共10小题)1.(2021•深圳模拟)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E、F,连接EM,则下列结论中:①BF=CE;②∠AEM =∠DEM;③CF•DM=BM•DE;④DE2+DF2=2DM2,其中正确结论的个数是()A.1B.2C.3D.4【考点】三角形综合题.【专题】几何综合题;推理能力.【分析】证明△BCF≌△CAE,得到BF=CE,可判断①;再证明△BFM≌△CEM,从而判断△EMF为等腰直角三角形,得到∠MEF=∠MFE=45°,可判断②;证明△CDM ∽ADE,得到对应边成比例,结合BM=CM,AE=CF,可判断③;证明△DFM≌△NEM,得到△DMN为等腰直角三角形,得到DN=DM,可判断④.【解答】解:∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,又∵∠BFD=90°=∠AEC,AC=BC,∴△BCF≌△CAE(AAS),∴BF=CE,故①正确;由全等可得:AE=CF,BF=CE,∴AE﹣CE=CF﹣CE=EF,如图,连接FM,CM,∵点M是AB中点,∴CM=AB=BM=AM,CM⊥AB,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,又BM=CM,BF=CE,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∵∠BMC=90°,∴∠EMF=90°,即△EMF为等腰直角三角形,∴∠MEF=∠MFE=45°,∵∠AEC=90°,∴∠MEF=∠AEM=45°,故②正确,∵∠CDM=∠ADE,∠CMD=∠AED=90°,∴△CDM∽△ADE,∴==,∵BM=CM,AE=CF,∴=,∴CF•DM=BM•DE,故③正确;如图,设AE与CM交于点N,连接DN,∵∠DMF=∠NME,FM=EM,∠DFM=∠DEM=∠AEM=45°,∴△DFM≌△NEM(ASA),∴DF=EN,DM=MN,∴△DMN为等腰直角三角形,∴DN=DM,而∠DEA=90°,∴DE2+DF2=DN2=2DM2,故④正确;故正确结论为:①②③④.共4个.故选:D.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的判定和性质,等量代换,难度较大,解题的关键是添加辅助线,构造全等三角形.2.(2020•黄州区校级模拟)如图,在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC 于点E,AE与CD交于点F,连接BF,DE,下列结论中:①AF=BC;②∠DEB=45°,③AE=CE+2BD,④若∠CAE=30°,则=1,正确的有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形;正方形的判定与性质;四点共圆.【专题】三角形.【分析】①②只要证明△ADF≌△CDB即可解决问题.③如图1中,作DM⊥AE于M,DN⊥BC于N,易证△DMF≌△DNB,四边形DMEN是正方形,想办法证明AE﹣CE=BC+EF﹣EC=EF+BE=2DN<2BD,即可.④如图2中,延长FE到H,使得FH=FB.连接HC、BH.想办法证明△BFH是等边三角形,AC=AH即可解决问题;【解答】解:∵AE⊥BC,∴∠AEC=∠ADC=∠CDB=90°,∵∠AFD=∠CFE,∴∠DAF=∠DCB,∵AD=DC,∴△ADF≌△CDB,∵AF=BC,DF=DB,故①正确,∴∠DFB=∠DBF=45°,取BF的中点O,连接OD、OE.∵∠BDF=∠BEF=90°,∴OE=OF=OB=OD,∴E、F、D、B四点共圆,∴∠DEB=∠DFB=45°,故②正确,如图1中,作DM⊥AE于M,DN⊥BC于N,易证△DMF≌△DNB,四边形DMEN是正方形,∴MF=BN,EM=EN,∴EF+EB=EM﹣FM+EN+NB=2EM=2DN,∵AE﹣CE=BC+EF﹣EC=EF+BE=2DN<2BD,∴AE﹣CE<2BD,即AE<EC+2BD,故③错误,如图2中,作DM⊥AE于M,DN⊥BC于N.易证△DMF≌△DNB,四边形DMEN是正方形,∴FM=BN,EM=EN=DN,∴EF+EB=EM﹣MF+EN+BN=2EN=2DN≤2BD,∵AE﹣EC=ADF+EF﹣EC=BC_EF﹣EC=EF+BE≤2BD,∴AE≤EC+2BD,故③错误,如图2中,延长FE到H,使得FH=FB.连接HC、BH.∵∠CAE=30°,∠CAD=45°,∠ADF=90°,∴∠DAF=15°,∠AFD=75°,∵∠DFB=45°,∴∠AFB=120°,∴∠BFH=60°,∵FH=BF,∴△BFH是等边三角形,∴BF=BH,∵BC⊥FH,∴FE=EH,∴CF=CH,∴∠CFH=∠CHF=∠AFD=75°,∴∠ACH=75°,∴∠ACH=∠AHC=75°,∴AC=AH,∵AF+FB=AF+FH=AH,∴AF+BF=AC,故④正确,故选:B.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.3.(2019•竞秀区二模)如图,在平面直角坐标系中,点O为坐标原点,将含30°角的Rt △ABC放在第一象限,其中30°角的对边BC长为1,斜边AB的端点A、B分别在y轴的正半轴,x轴的正半轴上滑动,连接OC,则线段OC的长的最大值是()A.B.C.2D.【考点】直角三角形斜边上的中线;坐标与图形性质;三角形三边关系.【专题】平面直角坐标系;三角形.【分析】取AB的中点F,连接CF、OF.首先求出OF=FC=1,根据三角形的三边关系可知:OC≤OF+OC,推出当O、F、C共线时,OC的值最大,最大值为2.【解答】解:取AB的中点F,连接CF、OF.在Rt△ABC中,∵∠ACB=90°,∠BAC=30°,BC=1,∴AB=2BC=2,∵∠AOB=90°,AF=FB,∴OF=FC=AB=1,∵OC≤OF+CF,∴当O、F、C共线时,OC的值最大,最大值为2.故选:C.【点评】本题考查直角三角形斜边中线定理、坐标与图形的性质、三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考选择题中的压轴题.4.(2021秋•沙坪坝区校级期末)如图,在平面直角坐标系中,A(0,9),B(﹣3,0),C (6,0),点D在线段BA上,点E在线段BA的延长线上,并且满足BD=AE,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为()A.(,4)B.(3,4)C.(,5)D.(,)【考点】全等三角形的判定与性质;一次函数的应用.【专题】一次函数及其应用;等腰三角形与直角三角形;推理能力;应用意识.【分析】如图,过点M作MH⊥x轴于点H,根点D作DK⊥MH于点K,过点E作EF ⊥MH于点F.证明△DKM≌△FME(AAS),推出FM=DK,EF=MK,由题意直线AC的解析式为y=﹣x+9,直线AB的解析式为y=3x+9,设M(m,﹣m+9),E(a,9+3a),则D(﹣3+a,3a),构建方程组求出a,m即可.【解答】解:如图,过点M作MH⊥x轴于点H,根点D作DK⊥MH于点K,过点E作EF⊥MH于点F.∵∠DME=∠DKM=∠EFM=90°,∴∠DMK+∠EMF=90°,∠EMF+∠MEF=90°,∴∠DME=∠MEF,∵MD=ME,∴△DKM≌△FME(AAS),∴FM=DK,EF=MK,∵A(0,9),B(﹣3,0),C(6,0),∴直线AC的解析式为y=﹣x+9,直线AB的解析式为y=3x+9,设M(m,﹣m+9),E(a,9+3a),则D(﹣3+a,3a),∴,解得,,∴M(,4),故选:A.【点评】本题考查全等三角形的判定和性质,一次函数的应用,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.5.(2021秋•婺城区校级月考)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC 交BC于E,BD⊥AE于D,DM⊥AC于M,连接CD.下列结论:①∠ADC=45°;②AC+CE=AB;③BD=AE;④AC+AB=AM.正确的个数是()A.1B.2C.3D.4【考点】三角形综合题.【专题】几何综合题;推理能力.【分析】过E作EQ⊥AB于Q,由角平分线的性质和等腰直角三角形的判定知②正确;作∠ACN=∠BCD,交AD于N,利用ASA可证明△ACN≌△BCD,得CN=CD,再证△SND是等腰直角三角形,利用角度之间的转化可说明CN=NE,从而得出点N为AE 的中点,可说明①、③正确;过D作DH⊥AB于H,证明△DCM≌△DBH(AAS),得BH=CM,由勾股定理得AM=AH,从而=,说明④正确.【解答】解:过E作EQ⊥AB于Q,∵∠ACB=90°,AE平分∠CAB,∴CE=EQ,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵EQ⊥AB,∴∠EQA=∠EQB=90°,由勾股定理得AC=AQ,∴∠QEB=45°=∠CBA,∴EQ=BQ,∴AB=AQ+BQ=AC+CE,故②正确;作∠ACN=∠BCD,交AD于N,∵∠CAD=,∴∠ABD=90°﹣22.5°=67.5°,∴∠DBC=67.5﹣45°=22.5°=∠CAD,∴∠DBC=∠CAD,∵AC=BC,∠ACN=∠DCB,∴△ACN≌△BCD(ASA),∴CN=CD,AN=BD,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDA=45°,∴∠ACN=45°﹣22.5°=22.5°=∠CAN,∴AN=CN,∴∠NCE=∠AEC=67.5°,∴CN=NE,∴CD=AN=EN=,∵AN=BD,∴BD=,故①③正确;过D作DH⊥AB于H,∵∠MCD=∠CAD+∠CDA=67.5°,∠DBA=90°﹣∠DAB=67.5°,∴∠MCD=∠DBA,∵AE平分∠CAB,DM⊥AC,DH⊥AB,∴DM=DH,在△DCM与△DBH中,,∴△DCM≌△DBH(AAS),∴BH=CM,由勾股定理得AM=AH,∴=,∴AC+AB=2AM,∴④错误,故选:C.【点评】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理等知识,作辅助线构造全等三角形是解题的关键.6.(2021•滨湖区模拟)如图所示,在等边三角形ABC中,BC=6,E是中线AD上一点,现有一动点P沿着折线A﹣E﹣C运动,在AE上的速度是4单位/秒,在CE上的速度是2单位/秒,则点P从A运动到C所用时间最少时,AE长为()A.3B.C.D.2【考点】等边三角形的性质;三角形的重心.【专题】三角形;推理能力.【分析】作CM⊥AB于点M,求出点P运动时间为(),则CE+DM最短时满足题意.【解答】解:作CM⊥AB于点M,点P在A﹣E﹣C上运动时间为+,=(),∵∠BAD=30°,∴EM=AE,∴()=(EM+CE),当C,E,M共线时,点P运动时间最短,此时CM为三角形中线,点E为重心,∵∠CAD=30°,CD=BC=3,∴AD=CD=3,AE=AD=2.故选:D.【点评】本题考等边三角形性质,解题关键是掌握三角形重心将中线分成1:2两部分.7.(2020•雨花区二模)如图,已知等边△ABC的边长为2,D,E分别为BC,AC上的两个动点,且AE=CD,连接BE,AD交于点P,则CP的最小值为()A.B.2C.2D.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】图形的全等;推理能力.【分析】易证△ABD≌△BCE,可得∠BAD=∠CBE,根据∠APE=∠ABE+∠BAD,∠APE=∠BPD,∠ABE+∠CBE=60°,即可求得∠APE=∠ABC,推出∠APB=120°,推出点P的运动轨迹是,∠AOB=120°,连接CO,求出OC,OA,再利用三角形的三边关系即可解决问题.【解答】解:∵CD=AE,∴BD=CE,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABE+∠BAD,∠APE=∠BPD,∠ABE+∠CBE=60°,∴∠BPD=∠APE=∠ABC=60°,∴∠APB=120°,∴点P的运动轨迹是,∠AOB=120°,连接CO,在△AOC和△BOC中,,∴△AOC≌△BOC(SSS),∴∠OAC=∠OBC,∠ACO=∠BCO=30°,∵∠AOB+∠ACB=180°,∴∠OAC+∠OBC=180°,∴∠OAC=∠OBC=90°,∵AB=2,∴OB=r==2,∴OC===4,∴OP=2,∴PC的最小值为OC﹣r=4﹣2=2.故选:C.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、勾股定理、圆的性质等知识,解题的关键是发现点P的运动轨迹.8.(2020•葫芦岛一模)如图,等边三角形ABC中,BD是AC边上的中线,点E在线段BD 上,∠ACE=45°,AE的延长线交BC于点F,EG=EF,连接CG交BD于点H.下面结论:①CE=AE;②∠ACG=30°;③EB=(﹣1)DE;④CH+DH=AB.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等边三角形的性质.【专题】等腰三角形与直角三角形;解直角三角形及其应用;应用意识.【分析】①正确.证明ED垂直平分线段AC即可.②正确.想办法证明∠ECF=∠ECG=15°即可解决问题.③正确.设AD=DC=m,则AB=AC=2m,BD=m,用m表示出EB,DE即可解决问题.④错误.求出CH+DH(用m表示)即可判断.【解答】解:∵△ABC是等边三角形,BD是AC边上的中线,∴BD⊥AC,AD=DC,∠CAB=∠ACB=∠ABC=60°,∴EC=EA,故①正确,∵EC=EA,∴∠ECA=∠EAC=45°,∴∠BAF=∠BAC﹣∠EAC=15°,∴∠AFC=∠F AB+∠ABC=75°,∵EG=EF,CE⊥FG,∴CF=CG,∴∠ECF=∠ECG=15°,∴∠ACG=∠GCF=30°,故②正确,设AD=DC=m,则AB=AC=2m,BD=m,∵AD=DE=m,∴BE=m﹣m,∴==﹣1,∴EB=(﹣1)DE,故③正确,在Rt△CDH中,∵∠DCH=30°,CD=m,∴DH=CD=m,CH=m,∴CH+DH=m=AB,故④正确,故选:D.【点评】本题考查等边三角形的性质,解直角三角形,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,学会利用参数解决问题,属于中考常考题型.9.(2020•岳麓区校级二模)Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③ B.①②④ C.①③④ D.①②③④【考点】三角形综合题.【专题】图形的全等;等腰三角形与直角三角形;推理能力.【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF ≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【解答】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.10.如图:在△ABC中,∠B=45°,D是AB边上一点,连接CD,过A作AF⊥CD交CD 于G,交BC于点F.已知AC=CD,CG=3,DG=1,则下列结论正确的是()①∠ACD=2∠F AB②S△ACD=2③CF=2﹣2④AC=AFA.①②③ B.①②③④ C.②③④ D.①③④【考点】三角形综合题.【专题】等腰三角形与直角三角形;图形的相似;推理能力.【分析】由等腰三角形的性质可得∠ACH=∠DCH,由余角的性质可得∠DAG=∠DCH,可证∠ACD=2∠DCH=2∠F AB,故①正确;由勾股定理可求AG的长,由三角形面积公式可求S△ACD=×CD×AG=2,故②正确;由勾股定理可求AD的,CH的长,通过证明△ADG∽△AFM,可得,可求BM=,可求CF=BC﹣BF=2﹣2,故③正确;由勾股定理可求AF=4=AC,故④正确,即可求解.【解答】解:如图,作CH⊥AB于H,∵AF⊥CD,∴∠CGA=∠AGD=90°,∵∠ADG+∠GAD=90°=∠CDH+∠DCH,∴∠DAG=∠DCH,∵AC=CD,∴∠ACH=∠DCH,∴∠ACD=2∠DCH=2∠F AB,故①正确;∵CG=3,DG=1,∴AC=CD=4,∵∠AGC=90°,∴AG===,∴S△ACD=×CD×AG=×4×=2,故②正确;如图,过点F作FM⊥AB,∵AG=,DG=1,∴AD===2,∵AC=CD,CH⊥AD,∴AH=HD=,∴CH===,∵∠B=45°,CH⊥AB,∴CH=BH=,BC=BH=2,∵∠DAG=∠F AM,∠AGD=∠AMF=90°,∴△ADG∽△AFM,∴,设BM=a,∵∠B=45°,∴FM=BM=a,∴AM=AH+HB﹣MB=+﹣a,∴,即=,∴a=,∴FM=BM=,∴BF=2,∴CF=BC﹣BF=2﹣2,故③正确;∵AM=AH+HB﹣MB=+﹣=,在Rt△AFM中,AF===4,∴AF=AC=4,故④正确;故选:B.【点评】本题是三角形综合题,考查了等腰三角形的性质,勾股定理的应用,等腰直角三角形的三边关系,三角形相似的判定和性质,作出辅助线根据相似三角形是解题的关键.考点卡片1.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.2.一次函数的应用1、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键.3.三角形的重心(1)三角形的重心是三角形三边中线的交点.(2)重心的性质:①重心到顶点的距离与重心到对边中点的距离之比为2:1.②重心和三角形3个顶点组成的3个三角形面积相等.③重心到三角形3个顶点距离的和最小.(等边三角形)4.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.5.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.6.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.7.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.8.直角三角形斜边上的中线(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.9.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.10.三角形综合题三角形综合题.11.正方形的判定与性质(1)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质.(2)正方形的判定正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.12.四点共圆1、将四点连成一个四边形,若对角互补,那么这四点共圆.2、连接对角线,若这个四边形的一边同侧的两个顶角相等,那么这四点共圆.(以上2点简记为“同侧相等,异侧互补”)3、基本方法:找一点到已知四点距离相等.4、由“对角互补”可以推出“同侧角相等”;反过来,由“同侧角相等”也可以推出“对角互补”.5、若四边形ABCD中有,OA×OC=OB×OD,那么A、B、C、D四点共圆.。
一、解答题1.综合与探究.如图,抛物线y=ax2+bx+1与x轴交于A,C两点,点A(﹣1,0),C (3,0),与y轴交于点B,抛物线的顶点为D,直线l经过B,C两点.(1)求抛物线的函数解析式;(2)若P为抛物线上一点,横坐标为m,过点P作PM⊥y轴于点M,交线段BC于点N,当N是线段BC的黄金分割点时,求点P到x轴的距离;(3)若将抛物线向上平移个单位长度,点D的对应点为D′,坐标轴上是否存在点Q,使∠BD′Q=30°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2.矩形OABC中,OA=8,OC=10,将矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠.(1)i:如图①,当点O落在AB边上的点D处时,点E的坐标为;ii:如图②,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度.(2)如图③,当点O落在矩形OABC内部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G,设H(t,s),用含s的代数式表示t.3.【基础巩固】(1)如图1,点A ,F ,B 在同一直线上,若∠A =∠B =∠EFC ,求证:△AFE ∼△BCF ;【尝试应用】(2)如图2,AB 是半圆⊙O 的直径,弦长AC =BC =42,E ,F 分别是AC ,AB 上的一点,∠CFE =45°,若设AE =y ,BF =x ,求出y 与x 的函数关系及y 的最大值. 【拓展提高】(3)已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上.如图3,如果AD :BD =1:2,求CE :CF 的值.4.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,求∠B 与∠C 的度数之和;(2)如图2,锐角△ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF .求证:四边形DBCF 是倍对角四边形;(3)如图3,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G .当4DH =3BG 时,求△BGH 与△ABC 的面积之比.5.抛物线212y x mx n =-++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0)A -,(0,2)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当四边形CDBF 的面积最大时,求点E 的坐标.6.如图,抛物线2:C y ax bx c =++的对称轴为直线1x =-,且抛物线经过(1,0),(0,3)M D 两点,与x 轴交于点N .(1)点N 的坐标为_______.(2)已知抛物线1C 与抛物线C 关于y 轴对称,且抛物线1C 与x 轴交于点1,A B (点A 在点1B 的左边).①抛物线1C 的解析式为_________;②当抛物线1C 和抛物线C 上y 都随x 的增大而增大时,请直接写出此时x 的取值范围. (3)若抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=,抛物线n C 的顶点为n P ,与x 轴的交点为,n A B (点A 在点n B 的左边).①求123100AB AB AB AB ++++的值;②判断抛物线的顶点123,,,,n P P P P 是否在一条直线上,若在,请直接写出该直线的解析式;若不在,请说明理由.7.在平面直角坐标系xOy 中,规定:抛物线y =a (x ﹣h )2+k 的“伴随直线”为y =a (x ﹣h )+k .例如:抛物线y =2(x +1)2﹣3的“伴随直线”为y =2(x +1)﹣3,即y =2x ﹣1.(1)在上面规定下,抛物线y =(x +1)2﹣5的顶点坐标为_____,“伴随直线”为_____. (2)如图,顶点在第一象限的抛物线y =a (x ﹣1)2﹣4a (a ≠0)与其“伴随直线”相交于点A ,B (点A 在点B 的左侧),与x 轴交于点C ,D . ①若△ABC 为等腰三角形时,求a 的值;②如果点P (x ,y )是直线BC 上方抛物线上的一个动点,△PBC 的面积记为S ,当S 取得最大值274时,求a 的值.8.如图1,四边形ABCD 和四边形CEFG 都是菱形,其中点E 在BC 的延长线上,点G 在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.9.如图,对称轴x=1的抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B两点,与y轴交于点C(0,2),(1)求抛物线和直线BC的函数表达式;(2)若点Q是直线BC上方的抛物线上的动点,求△BQC的面积的最大值;(3)点P为抛物线上的一个动点,过点P作过点P作PD⊥x轴于点D,交直线BC于点E.若点P在第四象限内,当OD=4PE时,△PBE的面积;(4)在(3)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.10.将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A ,E ,D 第一次在同一直线上,BG 与CE 交于点H ,连接BE . ①求证:BE 平分∠AEC .②取BC 的中点P ,连接PH ,求证:PH ∥CG . ③若BC =2AB =2,求BG 的长.(2)若点A ,E ,D 第二次在同一直线上,BC =2AB =4,直接写出点D 到BG 的距离. 11.在平面直角坐标系中,三角形ABC 为等腰直角三角形,AC BC =,BC 交x 轴于点D .(1)若()4,0A -,()0,2C ,直接写出点B 的坐标 ;(2)如图,三角形OAB 与ACD △均为等腰直角三角形,连OD ,求AOD ∠的度数;(3)如图,若AD 平分BAC ∠,()4,0A -,(),0D m ,B 的纵坐标为n ,求2n m +的值.12.已知抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,点D 是直线BC下方抛物线上的动点.(1)求直线BC的解析式;(2)如图1,过D作DE∥y轴交BC于E,点P是BC下方抛物线上的动点(P在D的右侧),过点P作PQ∥y轴交BC于Q,若四边形EDPQ为平行四边形.且周长最大.求点P的坐标;(3)如图2,当D点横坐标为1时,过A且平行于BD的直线交抛物线于另一点E,若M在x轴上,是否存在这样点的M,使得以M、B、D为顶点的三角形与△AEB相似?若存在,求出所有符合条件的点M的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,四边形AOBC是矩形,OB=4,OA=3,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E.(1)当BF=13BC时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)将△EFC沿EF折叠,得到△EFG,当点G恰好落在矩形AOBC的对角线上时,求k的值.14.在平面直角坐标系中,抛物线:与x轴交于点A,B(点B 在点A的右侧).抛物线顶点为C点,△ABC为等腰直角三角形.(1)求此抛物线解析式.(2)若直线与抛物线有两个交点,且这两个交点与抛物线的顶点所围成的三角形面积等于6,求k的值.(3)若点,且点E,D关于点C对称,过点D作直线2l交抛物线于点M,N,过点E作直线轴,过点N作于点F,求证:点M,C,F三点共线.15.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2,将一张和△ABC一样大的纸片和△ABC重叠放置,点E是边BC上一点(不含点B、C),将△OCE 沿着OE翻折,点C落在点P处.(1)直接写出∠OBC、∠OCB的数量关系是.(2)连接DE,设△OPE的面积为S1,△ODE的面积为S2,在点E取边BC上每一点(除点B、C)的过程中,S1+S2的值是否变化?如果变化,请求出它的取值范围;如果不变,请求出S1+S2的值;(3)分别连接PD、PC,当点P与点B重合时,易知PO•PC=PE•PD,当点P不与点B重合时,PO•PC=PE•PD是否成立?请在图3、图4中选一种情况进行证明.16.如图,ABD△内接于O中,弦BC交AD于点E,连接CD,BG CD⊥交CD的延长线于点G,BG交O于点H,2∠=∠.ABC GBD(1)如图1,求证:DB平分GDE∠;(2)如图2,CN AB⊥于点N,CN=CG,求证:AN=HG;(3)如图3.在(2)的条件下,点F在AE上,连接BF、CF,且BF CF⊥,∠=∠,BC=5.求AE的长.BCN CBF217.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD到点E,使DE=AD,再连结BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.由此得出中线AD的取值范围是__________【应用】如图②,如图,在△ABC中,D为边BC的中点、已知AB=10,AC=6,AD=4,求BC的长.【拓展】如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作D F⊥DE交边AC于点F,连结EF.已知BE=5,CF=6,则EF的长为__________.18.如图,点P是矩形ABCD的边AB的其中一个四等分点(点P靠近点A),8AB ,将直角三角尺的顶点放在P处,直角尺的两边分别交AD、DC于点E,F,(如图1).(1)当点E与点D重合时,点F恰好与点C重合(如图2),求AD的长;(2)探究:将直尺从图2中的位置开始,绕点P逆时针旋转,当点E和点A重合时停止,在这个过程中,请你观察、猜想,并解答:①∠PEF的大小是否发生变化?请说明理由;②求出从点E与D重合开始,到点E与点A重合结束,线段EF的中点经过的路线的长度.19.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF ∽△GDF : (2)求证: BC 是⊙O 的切线: (3)若cos∠CAE =32,DF =102,求线段GF 的长. 20.如图,抛物线y =-212x +32x +2与x 轴负半轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上. ①求点F 的坐标; ②直接写出点P 的坐标.【参考答案】参考答案**科目模拟测试一、解答题 1.(1) 51或(3)存在,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0)【解析】【分析】(1)用待定系数法即可求解;(2)MP∥CO,则,进而求解;(3)当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F (1,0)、E,tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°;当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,求出直线D′Q′的表达式,即可求解.(1)解:将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:;(2)∵MP∥CO,则,∵N是线段BC的黄金分割点,∴或,即或,而OB=1,故MO=512-或,即点P到x轴的距离为:512-或;(3)存在,理由:由抛物线的表达式知,点D(1,43),则将抛物线向上平移个单位长度,点D的对应点为D′的坐标为(1,3+1),①当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F(1,0)、E,则BE3﹣13ED′=1,∴tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°,即点Q的坐标为(1,0);②当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,则∠BD′Q′=30°,故∠Q′Q″O=30°+30°=60°,则∠D′Q′O=90°﹣60°=30°,故设直线Q′D′的表达式为y 3+t,将点D′的坐标代入上式得:3t,解得t=,故直线D′Q′的表达式为y=33x+,对于y=33x+,令y=33x+=0,解得x=﹣2﹣3,令x=0,则y=,故点Q′、Q″的坐标分别为(﹣2﹣3,0)、(0,),综上,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0).【点睛】本题是二次函数综合题,主要考查了一次函数的性质、三角形相似、解直角三角形等,其中(3),要注意分类求解,避免遗漏.2.(1)i:(0,5);ii:AT=52;(2)t=120s2+5.【解析】【分析】(1)i:如图①中,根据翻折变换的性质以及勾股定理得出BD的长,进而得出AE,EO的长即可得出答案.ii:如图②中,连接ET.证明△CET是直角三角形,由勾股定理得2222ED TD TC EC+=-,代入数据计算即可求出AT.(2)根据H点坐标得出各边长度,进而利用勾股定理求出t与s的关系即可.【详解】解:(1)i:如图①中,∵OA=8,OC=10,根据折叠的性质,∴OC=DC=10,∵BC=OA=8,∴BD2222108CD BC--,∴AD=10-6=4,设AE =x ,则EO =8-x ,∴x 2+42=(8-x )2,解得:x =3,∴AE =3,则EO =8-3=5,∴点E 的坐标为:(0,5);故答案为:(0,5); ii :如图②中,连接ET .∵点E 是AO 的中点,∴EA =EO ,∵OE =ED ,EC =EC ,∠EOC =∠EDC =90°,∴Rt △ECD ≌Rt △ECO (HL ),∴∠CEO =∠CED ,同法可证,Rt △ETA ≌Rt △ETD (HL ),∴∠AET =∠DET ,∴∠DET +∠CED =90°,即∠CET =90°,由折叠的性质得:ED =EO =12OA =5,OC =CD =10,AT =TD , 222125EC EO OC =+=, 设AT =x ,则TD =x ,∵2222ED TD TC EC +=-,即()222510125x x +=+-, 解得:52x =∴AT =52; (2)如图③中,过点H 作HW ⊥OC 于点W ,根据折叠的性质得:∠1=∠2,∵EG∥OC,∴∠1=∠3,∴∠2=∠3,∴EH=HC,设H(t,s),∴EH=HC=t,WC=10-t,HW=s,∴HW2+WC2=HC2,∴s2+(10-t)2=t2,∴t与s之间的关系式为:t=120s2+5.【点睛】本题属于四边形综合题,主要考查了翻折变换的性质以及勾股定理和全等三角形的判定与性质等知识,熟练构建直角三角形利用勾股定理得出相关线段长度是解题关键.3.(1)见解析;(2)y2x22(0≤x≤8),23)4:5【解析】【分析】(1)利用已知得出∠E=∠CFB,进而利用相似三角形的判定方法得出即可;(2)利用(1)得出△AFE∽△BCF,由相似三角形的性质:对应边的比值相等即可得到y 和x的数量关系,进而求出y与x的函数关系式;(3)首先证明△ADE∽△BFD,表示出ED,DF,EA,DB,AD,BF,再利用相似三角形的性质解决问题即可.【详解】(1)证明:∵∠A=∠EFC,∴∠E+∠EFA=∠EFA+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB=22AC BC+=8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴AE AFBF BC=,即842y xx-=,∴y=﹣28x2+2x(0≤x≤8),∴当x=4时,y最大=22;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴DE EA AD DF DB BF==,∴323a x a xb x x b-==-,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a =75x , ∴3425a x ab x -==, ∴CE :CF =4:5.【点睛】本题是圆的综合题,考查了相似三角形的判定与性质,圆的有关知识,勾股定理以及二次函数最值等知识,解题的关键是学会利用参数解决问题.4.(1)120°;(2)见解析;(3)215 【解析】【分析】(1)根据四边形内角和为360°,即可得出答案;(2)利用SAS 证明△BED ≌△BEO ,得∠BDE =∠BEO ,连接OC ,设∠EAF =α,则∠AFE =2α,则∠EFC =180°−∠AFE =180°−2α,可证∠EFC =∠AOC =2∠ABC 即可;(3)过点O 作OM ⊥BC 于M ,由(1)知∠BAC =60°,再证明△DBG ∽△CBA ,得2ΔΔ()DBG ABC S BD S BC =,再根据4DH =3BG ,BG =2HG ,得DG =52GH ,则ΔΔBHG BDG S S =HG DG =25,从而解决问题.【详解】(1)解:在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +∠3∠C =360°,∴∠B +∠C =120°,∴∠B 与∠C 的度数之和为120°;(2)证明:在△BED 与△BEO 中,BD BO EBD EBO BE BE =⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△BEO (SAS ),∴∠BDE =∠BEO ,∵∠BOE =2∠BCF ,∴∠BDE =2∠BCF连接OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°﹣∠AFE =180°﹣2α,∵OA =OC ,∴∠OAC =∠OCA =α,∴∠AOC =180°﹣∠OAC ﹣∠OCA =180°﹣2α,∴∠EFC =∠AOC =2∠ABC ,∴四边形DBCF 是倍对角四边形;(3)解:过点O 作OM ⊥BC 于M ,∵四边形DBCF 是倍对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,∴∠OBC =∠OCB =30°,∴BC =2BM 33,∵DG ⊥OB ,∴∠HGB =∠BAC =60°,∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴2ΔΔ()DBG ABC S BD S BC =13, ∵4DH =3BG ,BG =2HG , ∴DG =52GH ,∴ΔΔBHG BDG S S =25HG DG =, ∵ΔΔ15315DBG ABC S S == ∴ΔΔBHG ABC S S =215. 【点睛】本题是新定义题,主要考查了圆的性质,相似三角形的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质等知识,读懂题意,利用前面探索的结论解决新的问题是解题的关键.5.(1)213222y x x =-++;(2)存在,13(,4)2P ,235(,)22P ,335(,)22P -;(3)点()2,1E【解析】【分析】(1)把()1,0A -,()0,2C 代入抛物线的解析式,利用待定系数法求解即可;(2)先求解抛物线的对称轴3,2x = 再求解CD 的长,由CDP 是以CD 为腰的等腰三角形,可得123CP DP DP CD ===.再作CH ⊥对称轴于点H ,从而可得答案;(3)先求解()4,0B .再求解直线BC 的解析式为122y x =-+.过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,根据BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅列函数关系式,从而可得答案.【详解】解:(1)∵抛物线212y x mx n =-++经过()1,0A -,()0,2C , ∴10,22,m n n ⎧--+=⎪⎨⎪=⎩解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为213222y x x =-++. (2)∵22131325222228y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴抛物线的对称轴是直线32x =.∴32OD =. ∵()0,2C ,∴2OC =.在Rt OCD △中,由勾股定理,得2235222CD ⎛⎫=+= ⎪⎝⎭. ∵CDP 是以CD 为腰的等腰三角形,∴123CP DP DP CD ===.作CH ⊥对称轴于点H ,∴12HP HD ==.∴14DP =.∴13(,4)2P ,235(,)22P ,335(,)22P -. (3)当0y =时,由2132022x x -++=,解得11x =-,24x =, ∴()4,0B .设直线BC 的解析式为y kx b =+,得2,40,b k b =⎧⎨+=⎩解得1,22.k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为122y x =-+. 过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭. ∵BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅ 2215111122(4)2222222a a a a a a ⎛⎫⎛⎫=⨯⨯+-++--+ ⎪ ⎪⎝⎭⎝⎭225134(2)22a a a =-++=--+. ∴根据题意04a ≤≤,∴当2a =时,CDBF S 四边形的最大值为132,此时点()2,1E . 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数与等腰三角形,图形面积的最值问题,灵活运用二次函数的图象与性质解决问题是解题的关键.6.(1)(3,0)-;(2)①2(1)4y x =--+;②1x <-;(3)①5350;②不在,理由见解析【解析】【分析】(1)由题意可得,点N 和点M 关于1x =-轴对称,求解即可;(2)①先求得抛物线C 的解析式,再根据关于y 轴对称,求得抛物线1C 即可;②根据二次函数的性质,求解即可;(3)①由抛物线解析式可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,求得线段1AB 、2AB 、……、100AB 的值,即可求解;②求得顶点1P 、2P 、3P ,求得13P P 的解析式,然后验证2P 是否在直线上.【详解】解:(1)由题意可得,点N 和点M 关于1x =-轴对称∵(1,0)M∴点(3,0)N -故答案为(3,0)-(2)①由(1)得,抛物线C 过点(1,0)M 、(3,0)N -、(0,3)D抛物线C 的解析式为31y a x x =+-()(),将点(0,3)D 代入解析式得:(03)(01)3a +-=解得1a =-∴22(3)(1)(23)(1)4y x x x x x =-+-=-+-=-++,顶点坐标为(1,4)-∵抛物线C 与抛物线1C 关于y 轴对称∴抛物线1C 的顶点为(1,4),开口与抛物线C 相同∴抛物线1C 解析式为2(1)4y x =--+②抛物线C 的解析式为2(1)4y x =-++,由二次函数的性质可得,当1x <-时,y 随x 的增大而增大,抛物线1C 解析式为2(1)4y x =--+,由二次函数的性质可得,当1x <时,y 随x 的增大而增大, ∴当1x <-时,抛物线C 和抛物线1C 上y 都随x 的增大而增大, (3)①抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,即1(3,0)B ,2(4,0)B ,……,100(102,0)B∴14AB =,25AB =,……,100103AB = ∴123100103455350AB AB AB AB =+++++=++②当1n =时,抛物线1C 的解析式为2(1)(3)(1)4y x x x =-+-=--+,1(1,4)P 当2n =时,抛物线2C 的解析式为2325(1)(4)()24y x x x =-+-=--+,2325(,)24P当3n =时,抛物线3C 的解析式为2(1)(5)(2)9y x x x =-+-=--+,3(2,9)P 设直线13P P 的解析式为y kx b =+,将点1(1,4)P ,3(2,9)P 代入得429k b k b +=⎧⎨+=⎩,解得51k b =⎧⎨=-⎩,即51y x =- 当32x =时,3132551224y =⨯-=≠ ∴点2325(,)24P 不在直线13P P 上∴抛物线的顶点123,,,,n P P P P 不在一条直线上【点睛】此题考查了二次函数的图像与性质,涉及了待定系数法求解二次函数和一次函数解析式,解题的关键是熟练掌握二次函数的有关性质.7.(1)(﹣1,﹣5),y =x ﹣4;(2)①a 的值为a =﹣2. 【解析】 【分析】(1)由“伴随直线”的定义即可求解;(2)①先求y =a (x −1)2−4a 的伴随直线为y =ax −5a ,再联立方程组2(1)45y a x ay ax a ⎧=--⎨=-⎩,求出A (1,−4a ),B (2,−3a ),C (−1,0),D (3,0),由于当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,即可求a 的值;②先求直线BC 解析式为y =−ax −a ,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x ,则P [x ,a (x −1)2−4a ],Q (x ,−ax −a ),23127()228PBC S a x a ∆=--,即可求面积的最大值,进而求a 的值. 【详解】(1)∵抛物线y =(x +1)2﹣5,∴顶点坐标为(﹣1,﹣5),“伴随直线”为y =x ﹣4, 故答案为:(﹣1,﹣5),y =x ﹣4;(2)①由“伴随直线”定义可得:y =a (x ﹣1)2﹣4a 的伴随直线为y =ax ﹣5a ,联立2(1)45y a x a y ax a ⎧=--⎨=-⎩,解得14x y a =⎧⎨=-⎩或23x y a=⎧⎨=-⎩,∴A (1,﹣4a ),B (2,﹣3a ),在y =a (x ﹣1)2﹣4a 中,令y =0可解得x =﹣1或x =3, ∴C (﹣1,0),D (3,0), ∴AC 2=4+16a 2,BC 2=9+9a 2,∵当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,∴AC 2=BC 2,即4+16a 2=9+9a 2,解得=a ∵抛物线开口向下,∴a =∴若△ABC 为等腰三角形时,a 的值为 ②设直线BC 的解析式为y =kx +b , ∵B (2,﹣3a ),C (﹣1,0),∴200k b k b +=⎧⎨-+=⎩,解得k a b a =-⎧⎨=-⎩, ∴直线BC 解析式为y =﹣ax ﹣a ,如图,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x , ∴P [x ,a (x ﹣1)2﹣4a ],Q (x ,﹣ax ﹣a ), ∵P 是直线BC 上方抛物线上的一个动点,∴22219(1)4(2)()24PQ a x a ax a a x x a x ⎡⎤=--++=--=--⎢⎥⎣⎦,∴23127()228PBC S a x a ∆=--, ∴当12x =时,△PBC 的面积有最大值278-a , ∴S 取得最大值274时,即272784-=a ,解得a =﹣2.【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,理解新定义,将所求问题转化为直线与抛物线的知识是解题的关键.8.(1)见解析;(2)7;(3)2193.【解析】【分析】(1)根据两个菱形中,点E在BC的延长线上,点G在DC的延长线上这一特殊的位置关系和CE=BH可证明相应的边和角分别相等,从而证明结论;(2)由AB=BC,∠ABC=60 ,可证明△ABC是等边三角形,从而证明∠AHB=90°,再由△ABH≌△HEF,得∠HFE=∠AHB=90°,再得∠DPF=180°﹣∠HFE=90°,在Rt△DPF 中用勾股定理求出DF的长;(3)作FM⊥BG于点M,当EH⊥BC时,可证明CH=CM=12CG=12BH,从而求出BM、FM的长,再由勾股定理求出BF的长.【详解】解:(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E 在BC 的延长线上,点G 在DC 的延长线上, ∴AB ∥DG ∥EF , ∴∠B =∠E , 在△ABH 和△HEF 中, BH EF B E AB HE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△HEF (SAS ).(2)如图2,设FH 交CG 于点P ,连结CF ,∵AB =BC ,∠ABC =60°, ∴△ABC 是等边三角形, ∵BH =CH , ∴AH ⊥BC , ∴∠AHB =90°,由(1)得,△ABH ≌△HEF , ∴∠HFE =∠AHB =90°, ∵DG ∥EF ,∴∠DPF =180°﹣∠HFE =90°, ∴PF ⊥CG ,∵CG =FG ,∠G =∠E =∠B =60°, ∴△GFC 是等边三角形, ∴PC =PG =12CG ;∵BC =AB =2, ∴CG =EF =BH =12BC =1,∴PC =12;∵CD =AB =2, ∴PD =12+2=52, ∵CF =CG =1,∴PF 2=CF 2﹣PC 2=12﹣(12)2=34, ∴22253()724DF PD PF =+=+=.(3)如图3,作FM ⊥BG 于点M ,则∠BMF =90°,∵EH ⊥BC ,即EH ⊥BG , ∴EH ∥FM ,∵∠CEF =∠ACB =60°, ∴EF ∥MH ,∴四边形EHMF 是平行四边形, ∵∠EHM =90°, ∴四边形EHMF 是矩形, ∴EH =FM ;∵EF =EC ,∠CEF =60°, ∴△CEF 是等边三角形, ∴CE =CF ,∵∠EHC =∠FMC =90°, ∴Rt △EHC ≌Rt △FMC (HL ), ∴CH =CM =12CG ;∵CG =CE =BH , ∴CH =12BH ,∴CM =CH =13BC =13×2=23,∴CF =CG =2CM =2×23=43, ∴2FM =(43)2﹣(23)2=43,∵BM =2+23=83,∴2224876219()339BF FM BM =++==. 【点睛】本题主要考查了几何综合,其中涉及到了菱形的性质,全等三角形的判定及性质,等边三角形的判定及性质,勾股定理,矩形的判定及性质等,熟悉掌握几何图形的性质和合理做出辅助线是解题的关键.9.(1)抛物线表达式为211242y x x =-++;直线表达式为122y x =-+;(2)△BQC的面积的最大值为2(3)△PBE 的面积为58(4)点N的坐标为(5(5235,45-)或(92,14). 【解析】 【分析】(1)首先根据二次函数的对称性求出点B 的坐标,然后利用待定系数法把点的坐标代入表达式求解即可;(2)过Q 点作QH 垂直x 轴交BC 于点H ,连接CQ ,BQ ,由二次函数表达式设点Q 的坐标为(x ,211242x x -++),表示出△BQC 的面积,根据二次函数的性质即可求出△BQC的面积的最大值;(3)根据题意设出点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),表示出OD 和PE 的长度,根据OD =4PE 列出方程求出m 的值,即可求出PE 和BD 的长度,然后根据三角形面积公式求解即可;(4)当BD 是菱形的边和对角线时两种情况分别讨论,设出点M 和点N 的坐标,根据菱形的性质列出方程求解即可. 【详解】解:(1)∵抛物线的对称轴为x =1,A (﹣2,0), ∴B 点坐标为(4,0),∴将A (﹣2,0),B (4,0),C (0,2),代入y =ax 2+bx +c 得,42016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得:14122a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的表达式为211242y x x =-++;设直线BC 的函数表达式为y kx b =+,∴将B (4,0),C (0,2),代入y kx b =+得,4002k b b +=⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为122y x =-+. (2)如图所示,过Q 点作QH 垂直x 轴交BC 于点H ,交x 轴于点M ,连接CQ ,BQ ,设点Q 的坐标为(x ,211242x x -++),点H 的坐标为(x ,122x -+),∴HQ =221111224224x x x x x ⎛⎫-++--+=-+ ⎪⎝⎭,∴()221111111422222242QBC QHC QHB S S S QH OM QH BM QH OM BM QH OB x x x x ⎛⎫=+=+=+==⨯-+⨯=-+ ⎪⎝⎭△△△, ∴当221222bx a=-=-=⎛⎫⨯- ⎪⎝⎭时,2122222S =-⨯+⨯=, ∴△BQC 的面积的最大值为2;(3)设点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),∴221111222424PE m m m m m ⎛⎫=-+--++=- ⎪⎝⎭,OD m =,∵OD =4PE ,∴21=44m m m ⎛⎫⨯- ⎪⎝⎭,整理得:250m m -=,解得:10m =(舍去),25m =,∴2211555444PE m m =-=⨯-=,D 点坐标为(5,0), ∴BD =1,∴115512248PBE S PE BD ==⨯⨯=△; (4)如图所示,当BD 是菱形的边时,BM 是菱形的边时,∵四边形BDNM 是菱形, ∴BD =BM =MN ,∴设M 点坐标为(a ,122a -+),N 点坐标为(a +1,122a -+),又∵B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =1,()221422BM a a ⎛⎫=-+-+ ⎪⎝⎭, ∵BD =BM , ∴BD 2=BM 2, ∴()2214212a a ⎛⎫-+-+= ⎪⎝⎭, 整理得:2540760a a -+=, 解得:1225254455a a =+=-,, ∴N 点坐标为(2555+,55-)或(2555-,55), 当BD 是菱形的边时,DM 是菱形的边时,∵四边形BDMN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =MN =DM =1,∴设M 点坐标为(b ,122b -+),N 点坐标为(b -1,122b -+), ∴DM2=()221522b b ⎛⎫-+-+ ⎪⎝⎭, ∵BD =DM , ∴BD 2=DM 2,∴()2215212b b ⎛⎫-+-+= ⎪⎝⎭, 整理得:25481120b b -+=, 解得:122845b b ==,(舍去), ∴N 点坐标为(235,45-);当BD 是菱形的对角线时,∵四边形BMDN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴M 点横坐标为45922+=, 将92x =代入122y x =-+得:y =14-, ∴M 点的坐标为(92,14-),又∵点M 和点N 关于x 轴对称, ∴点N 的坐标为(92,14).综上所述,点N 的坐标为(25552555235,45-)或(92,14). 【点睛】此题考查了一次函数和二次函数表达式的求法,二次函数的性质,二次函数中三角形最大面积问题,菱形存在性问题等知识,解题的关键是根据题意设出点的坐标,表示出三角形面积,根据菱形的性质列出方程求解.10.(1)①见解析;②见解析;③7 (2)57221+77【解析】 【分析】(1)①根据旋转的性质得到CB CE =,求得EBC BEC ∠=∠,根据平行线的性质得到EBC BEA ∠=∠,于是得到结论;②如图1,过点B 作CE 的垂线BQ ,根据角平分线的性质得到AB BQ =,求得=CG BQ ,根据全等三角形的性质得到BH GH =,根据三角形的中位线定理即可得到结论; ③如图2,过点G 作BC 的垂线GM ,解直角三角形即可得到结论.(2)如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,根据旋转的性质得到4==CE BC ,2CD AB ==,解直角三角形得到1NG =,3PG =,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,CB CE ∴=,EBC BEC ∴∠=∠,又//AD BC ,EBC BEA ∴∠=∠, BEA BEC ∴∠=∠,BE ∴平分AEC ∠;②证明:如图1,过点B 作CE 的垂线BQ ,BE 平分AEC ∠,BA AE ⊥,BQ CE ⊥,AB BQ ∴=,CG BQ ∴=,90BQH GCH ∠=∠=︒,BQ AB CG ==,BHQ GHC ∠=∠, ()BHQ GHC AAS ∴∆≅∆,即点H 是BG 中点, 又点P 是BC 中点,//PH CG ∴;③解:如图2,过点G 作BC 的垂线GM ,22BC AB ==,1BQ ∴=,30BCQ ∴∠=︒,90ECG ∠=︒, 60GCM ∴∠=︒, 1CG AB CD ===,32GM ∴=,12CM =, 222253()()722BG BM MG ∴=+=+=;(2)解:如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,24BC AB ==,2AB ∴=,将矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,4CE BC ∴==,2CD AB ==,点A ,E ,D 第二次在同一直线上,90CDE,12CD CE ∴=,60DCE ∴∠=︒,30NCG ∴∠=︒,2CG =, 1NG ∴=,3PG =,523DBG DBC DCG BCG S S S S ∆∆∆∆∴=++=+,2227BG BP PG =+=,25722177DBG S DM BG ∆∴==+. 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.11.(1)(2,2)-;(2)90°;(3)4- 【解析】 【分析】(1)如图1中,作BH y ⊥轴于H .只要证明()ACO CBH AAS △≌△即可解决问题; (2)过C 作CK x ⊥轴交OA 的延长线于K ,求证ACK DCO △≌△即可求出AOD ∠的度数可求;(3)作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,证明()ABE AFE ASA △≌△,由全等三角形的性质得出BE FE =,证明()ACD CBF ASA △≌△,得出BF AD =,则可得出答案. 【详解】解:(1)如图1中,作BH y ⊥轴于H .(4,0)-A ,(0,2)C ,4∴=OA ,2OC =,90AOC ACB BHC ∠=∠=∠=︒,90ACO BCH ∴∠+∠=︒,90CAO ACO ∠+∠=︒,CAO BCH ∴∠=∠,在ACO △与CBH 中,AOC BHCCAO BCH AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ACO CBH AAS ∴△≌△,4CH OA ∴==,2BH OC ==, 2OH CH OC ∴=-=,(2,2)C ∴-,故答案为:(2,2)-;(2)如图所示,过C 作CK x ⊥轴交OA 的延长线于K ,则90OCK ∠=︒,∵AOB 为等腰直角三角形, ∴45AOB ∠=︒, 又∵90OCK ∠=︒,∴9045K AOB AOB ∠=︒-∠=︒=∠, ∴OC CK =,ACD 为等腰直角三角形, 90ACD ∴∠=︒,AC DC =,90ACO OCD ∴∠+∠=︒,又∵90OCK ∠=︒,90ACO ACK ∴∠+∠=︒, ACK OCD ∴∠=∠,在ACK 与DCO 中,CK OC ACK OCD AC DC =⎧⎪∠=∠⎨⎪=⎩()ACK DCO SAS ∴△≌△,45DOC K ∴∠=∠=︒, 90AOD AOB DOC ∴∠=∠+∠=︒;(3)如图2中,作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,(4,0)-A ,(,0)D m ,4AD m ∴=+,AD 平分BAC ∠, BAE FAE ∴∠=∠,∵BE x ⊥轴于点E ,90AEB AEF ∴∠=∠=︒,在ABE △和AFE △中, AEB AEF AE AEBAE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE AFE ASA ∴△≌△,BE FE ∴=,∵B 的纵坐标为n ,且点B 在第四象限,BE FE n ∴==-, 2BF BE FE n ∴=+=-, 90ACB AEB ∠=∠=︒,90CAD CDA CBF BDE ∴∠+∠=∠+∠=︒,又∵CDA BDE ∠=∠,CAD CBF ∴∠=∠,在ACD △和BCF △中,ACD BCF AC BCCAD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACD CBF ASA ∴△≌△,AD BF ∴=,42m n ∴+=-,即:24m n +=-, ∴2n m +的值为4-. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的性质和判定,角平分线的定义,坐标与图形性质,熟练掌握全等三角形的判定与性质是解题的关键.12.(1)y=x﹣4(2)P(4)(3)存在,M(,0)或(﹣17,0)【解析】【分析】(1)先分别求出A、B、C三点的坐标,即可利用待定系数法求出直线BC的解析式;(2)设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),由平行四边形的性质得到ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),从而推出x1+x2=4,再由四边形EDPQ的周长(0<x<4),即可利用二次函数的性质得到答案;(3)分△AEB∽△BDM和△AEB∽△BM′D,利用相似三角形的性质求解即可.(1)解:∵抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,∴令x=0,则y=4,令y=0,则x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∴C(0,﹣4),A(﹣1,0),B(4,0),设直线BC的解析式为:y=kx+b(k≠0),∴把B、C坐标代入上式得:,解得:,∴直线BC的解析式为:y=x﹣4;(2)解:如图1,过D作轴交BC于E,点P是BC下方抛物线上动点(P在D的右∥轴交BC于Q,侧),过点P作PQ y又∵抛物线的解析式为:y=x2﹣3x﹣4,直线BC的解析式为:y=x﹣4,∴设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),若四边形EDPQ为平行四边形,则ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),∴,∴解得:x1=x2(不合题意,应舍去),x1+x2=4,∵,ED=4x1﹣x12,又∵四边形EDPQ的周长把x2=4﹣x1代入上式得:四边形EDPQ的周长(0<x<4),∵﹣2<0,∴当时,四边形EDPQ的周长有最大值12,此时,∴P(,);(3)解:如图2,若DM∥EB,则∠DMB=∠EBM,∵AE∥DB,∴∠EAB=∠DBM,∴△AEB∽△BDM,∴,∵xD=1,∴yD=1﹣3﹣4=﹣6,∴D(1,﹣6),∵B(4,0),D(1,﹣6),∴yBD=2x﹣8,∵AE∥BD,∴设yAE=2x+n并把A(﹣1,0)代入得:yAE=2x+2,联立,解得:(与A重合,应舍去)或,∴,,∴,∴,∴,∴M(,0),②如图3,若∠DM′B=∠BEA且∠EAB=∠DBM′,∴△AEB∽△BM′D,∴,∴,∴BM′=21,∴OM′=BM′﹣BO=21﹣4=17,∴M′(﹣17,0),综上所述,M(,0)或(﹣17,0).【点睛】本题主要考查了二次函数的综合,二次函数与平行四边形,二次函数与相似三角形,一次函数与二次函数综合等等,解题的关键在于能够熟练掌握相关知识.13.(1)E(43,3)(2)4 3(3)k=6【解析】【分析】(1)由OB=4、OA=3,求出点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),由BF=13BC得到点F(4,1),进而求解;(2)F点的横坐标为4,则F(4,),E的纵坐标为3,则E(,3),进而求解;(3)当点G落在对角线AB上时,得到EF∥AB,则MF是△CGB的中位线,则点F是BC 的中点,即可求解;当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故该情况不存在.(1)解:∵OB=4,OA=3,∴点A、B的坐标分别为:(0,3)、(4,0)∵四边形OACB为矩形,则点C(4,3),当BF=13BC时,点F(4,1),将点F的坐标代入y=kx并解得:k=4,故反比例函数的表达式为:y=4x,当y=3时,x=43,故E(43,3);(2)解:∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC-BF=3-=,∵E的纵坐标为3,∴E(,3),∴CE=AC-AE=4-13k=,在Rt△CEF中,tan∠EFC==43;(3)①当点G落在对角线AB上时,在Rt△ABC中,tan∠ABC=ACBC=43=tan∠EFC,故EF∥AB,连接CG交EF于点M,则MG=MC,即点M是CG的中点,而EF∥AB,故MF是CGB的中位线,则点F是BC的中点,故点F的坐标为(4,32),将点F的坐标代入反比例函数表达式得:k=4×32=6;②当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故点G不会落在OC上;综上,k=6.【点睛】。
24湖南中考数学压轴题以下是根据2024年湖南中考数学可能考察的知识点和难度水平,原创设计的8道压轴选择题。
每道题都包含了题目描述、选项、答案以及解析。
一、在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(4,6),若点C在直线AB上,且AC的长度是AB长度的三分之一,则点C的坐标可能为:A. (2,3)B. (3,4)C. (2,5)D. (3,5)(答案)B解析:首先计算AB的长度,使用距离公式得到AB=√[(4-1)²+(6-2)²]=5。
然后,根据题意,AC=AB/3=5/3。
设点C的坐标为(x,y),由于C在AB上,可以根据A、B的坐标求出直线AB 的方程,再联立AC的长度公式,解出x和y的值。
经过计算,可以得到点C的坐标为(2,3)或(3,4),但考虑到C可能在A和B之间,也可能在B的延长线上,结合题意和选项,只有(3,4)满足条件。
二、若关于x的一元二次方程x²+2(m-1)x+m²-1=0有两个相等的实数根,则m的值为:A. 0B. 1C. 2D. -1(答案)B解析:一元二次方程有两个相等的实数根,即判别式Δ=0。
将方程的系数代入判别式,得到[2(m-1)]²-4(m²-1)=0,化简后得到m=1。
三、如图,在矩形ABCD中,AB=6,BC=8,点E在边AD上,且AE=2,点F在边BC上,连接EF,将△AEF沿EF翻折,使得点A落在点G处,连接GF,若GF⊥BC,则GF的长度为:A. 4B. 5C. 6D. 8(答案)C解析:由于GF⊥BC,且ABCD是矩形,所以GF∥AB。
设GF与EF交于点H,由于△AEF翻折得到△GEF,所以AE=GE=2,且∠AEF=∠GEF。
又因为AD∥BC,所以∠AEF=∠EFC。
由此可以得到∠GEF=∠EFC,所以GF=GE=2。
再根据相似三角形的性质,可以得到GF/AB=FC/ED,设FC=x,则ED=8-x,代入得到GF/6=x/(8-x),解得x=4,所以GF=2+4=6。
中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
选择题在直角坐标系中,点A(3,4)关于x轴对称的点的坐标是:A. (-3, -4)B. (3, -4)(正确答案)C. (-3, 4)D. (4, 3)已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = -2x + 1与y = x2 - 3x的交点个数是:A. 0个B. 1个(正确答案)C. 2个D. 3个下列四边形中,不一定是平行四边形的是:A. 两组对边分别平行的四边形B. 两组对角分别相等的四边形C. 一组对边平行且相等的四边形D. 对角线互相平分的四边形中,仅有一组对边相等的四边形(正确答案)若a、b为实数,且满足a2 + b2 - 2a + 4b + 5 = 0,则(a + b)2024的值为:A. 1(正确答案)B. -1C. 0D. 22024设集合A = {x | x2 - 5x + 6 = 0},B = {x | ax - 1 = 0},若B是A的真子集,则a的值为:A. 0或1/2B. 0或1/3(正确答案)C. 1/2或1/3D. 1/2或-1/3在圆O中,弦AB与弦CD相交于点P,若AP = 2:3,CP = 2cm,DP = 12cm,则弦AB的长为:A. 10cmB. 15cm(正确答案)C. 20cmD. 25cm已知二次函数y = ax2 + bx + c的图象经过点A(1,0),B(3,0),且顶点到x轴的距离为2,则这个二次函数的解析式为:A. y = x2 - 4x + 3B. y = -x2 + 4x - 3(正确答案)C. y = x2 - 4x + 5D. y = -x2 + 4x - 1正n边形的一个外角等于36°,则n的值为:A. 8B. 9C. 10(正确答案)D. 11。
12023年中考数学压轴题专项训练1.几何最值问题一、压轴题速练1一、单选题1(2023·山东烟台·模拟预测)如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD +PE 的最小值为()A.8 B.45 C.10 D.45-2【答案】A【分析】根据∠BEC =90°得到点的运动轨迹,利用“将军饮马”模型将PE 进行转化即可求解.【详解】解:如图,设点O 为BC 的中点,由题意可知,点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆O '),点E 的对称点为E 1,连接O 'E 1,则PE =PE 1,∴当点D 、P 、E 1、O '共线时,PD +PE 的值最小,最小值为DE 1的长,如图所示,在Rt △DCO '中,CD =8,CO '=6,∴DO '=82+62=10,又∵O 'E 1=2,∴DE 1=DO '-O 'E 1=8,即PD +PE 的最小值为8,故选:A .【点睛】本题考查线段和最短问题、轴对称的性质、勾股定理及圆周角定理,利用“将军饮马”模型将PE 进行转化时解题的关键.2(2023·安徽黄山·校考模拟预测)如图,在平面直角坐标系中,二次函数y =32x 2-32x -3的图象与x 轴交于点A ,C 两点,与y 轴交于点B ,对称轴与x 轴交于点D ,若P 为y 轴上的一个动点,连接PD ,则12PB +PD 的最小值为()2A.334B.32C.3D.543【答案】A【分析】作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,可求得∠ABO =30°,从而得出PE =12PB ,进而得出PD +12PB =PD +EP ,进一步得出结果.【详解】解:如图,作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,抛物线的对称轴为直线x =--322×32=12,∴OD =12,当x =0时,y =-3,∴OB =3,当y =0时,32x 2-32x -3=0,∴x 1=-1,x 2=2,∴A (-1,0),∴OA =1,∵tan ∠ABO =OA OB =13=33,∴∠ABO =30°,∴PE =12PB ,∴12PB +PD =PD +PE ≥DF ,当点P 在P 时,PD +PE 最小,最大值等于DF ,在Rt △ADF 中,∠DAF =90°-∠ABO =60°,AD =OD +PA =12+1=32,∴DF =AD ⋅sin ∠DAE =32×32-334,∴12PB +PD 最小=DF =334,故选:A .【点睛】本题以二次函数为背景,考查了二次函数与一元二次方程之间的关系,解直角三角形等知识,解决问题的关键是用三角函数构造12PB .3(2023秋·浙江金华·九年级统考期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且∠EAB =∠EBC .连结AE ,BE ,PD ,PE ,则PD +PE 的最小值为()3A.213-2B.45-2C.43-2D.215-2【答案】A【分析】先证明∠AEB =90°,即可得点E 在以AB 为直径的半圆上移动,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,问题随之得解.【详解】解:∵四边形ABCD 是正方形,∴∠ABC =90°,∴∠ABE +∠EBC =90°,∵∠EAB =∠EBC ,∴∠EAB +∠EBA =90°,∴∠AEB =90°,∴点E 在以AB 为直径的半圆上移动,如图,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,E∵∠G =90°,FG =BG =AB =4,∴OG =6,OA =OB =OE =2,∴OF =FG 2+OG 2=213,∴EF =OF -OE =213-2,故PE +PD 的长度最小值为213-2,故选:A .【点睛】本题考查了轴对称-最短路线问题,正方形的性质,勾股定理,正确的作出辅助线,得出点E 的运动路线是解题的关键.4(2022秋·安徽池州·九年级统考期末)如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为()4 A.154 B.245 C.5 D.203【答案】B【分析】作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,点P 即为所求作的点,此时PB +PD 有最小值,连接AB ,根据对称性的性质,可知:BP =B P ,△ABC ≅△AB C ,根据S △ABB =S △ABC +S △AB C =2S △ABC ,即可求出PB +PD 的最小值.【详解】解:如下图,作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,连接AB ,点P 即为所求作的点,此时PB +PD 有最小值,根据对称性的性质,可知:BP =B P ,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴AB =AC 2+BC 2=5,根据对称性的性质,可知:△ABC ≅△AB C ,∴S △ABB =S △ABC +S △ABC =2S △ABC ,即12×AB ⋅B D =2×12BC ⋅AC ,∴5B D =24,∴B D =245,故选:B .【点睛】本题考查了轴对称一最短路线问题,解题的关键是掌握轴对称的性质.5(2023秋·甘肃定西·八年级校考期末)如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB 的度数是()A.118°B.125°C.136°D.124°【答案】D【分析】先在BC 上截取BE =BQ ,连接PE ,证明△PBQ ≌△PBE SAS ,得出PE =PQ ,说明AP +PQ =AP +PE ,找出当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ 最小,过点A 作AE ⊥BC 于点E ,交BD 于点P ,根据三角形外角的性质可得答案.【详解】解:在BC 上截取BE =BQ ,连接PE ,如图:∵BD 平分∠ABC ,∠ABC =68°,∴∠ABD =∠CBD =12∠ABC =34°,∵BP =BP ,∴△PBQ ≌△PBE SAS ,∴PE =PQ ,∴AP +PQ =AP +PE ,∴当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ最小,过点A作AE ⊥BC 于点E ,交BD 于点P ,如图:∵∠AEB =90°,∠CBD =34°,∴∠APB =∠AEB +∠CBD =124°.故选:D .5【点睛】本题主要考查了角平分线的定义,三角形全等的判定和性质,垂线段最短,三角形内角和定理与三角形的外角的性质,解题的关键是找出使AP +PQ 最小时点P 的位置.6(2022秋·重庆沙坪坝·八年级重庆市凤鸣山中学校联考期末)如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA +PE 的最小值为()A.5B.42C.210D.10【答案】A【分析】连接EC 交BD 于P 点,根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长,求出EC 的长即可.【详解】连接EC ,交BD 于P 点∵四边形ABCD 为正方形∴A 点和C 点关于BD 对称∴PA =PC∴PA +PE =PC +PE =EC根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长.∵AE =1,DE =3∴AD =4∴DC =4∴CE =DE 2+CD 2=32+42=5∴PA +PE 的最小值为5故选:A【点睛】本题主要考查了正方形的性质和两点之间线段最短,这是一个将军饮马模型.熟练掌握正方形的性质并且能够识别出将军饮马模型是解题的关键.7(2023春·湖南张家界·八年级统考期中)如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.5【答案】D【分析】由正方形的对称性可知点B 与D 关于直线AC 对称,连接BM 交AC 于N ′,N ′即为所求在Rt △BCM 中利用勾股定理即可求出BM 的长即可.【详解】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,6连接BD ,BM 交AC 于N ′,连接DN ′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =CM 2+BC 2=32+42=5故DN +MN 的最小值是5.故选:D .【点睛】本题考查的是轴对称-最短路线问题及正方形的性质,先作出D 关于直线AC 的对称点,由轴对称及正方形的性质判断出D 的对称点是点B 是解答此题的关键.8(2022秋·浙江杭州·九年级杭州外国语学校校考开学考试)如图,在平面直角坐标系中,二次函数y =-x 2+bx +3的图像与x 轴交于A 、C 两点,与x 轴交于点C (3,0),若P 是x 轴上一动点,点D 的坐标为(0,-1),连接PD ,则2PD +PC 的最小值是()A.4B.2+22C.22D.32+232【答案】A【分析】过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H ,根据2PD +PC =2PD +22PC =2PD +PJ ,求出DP +PJ 的最小值即可解决问题.【详解】解:连接BC ,过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H .∵二次函数y =-x 2+bx +3的图像与x 轴交于点C (3,0),∴b =2,∴二次函数的解析式为y =-x 2+2x +3,令y =0,-x 2+2x +3=0,解得x =-1或3,∴A (-1,0),令x =0,y =3,∴B (0,3),∴OB =OC =3,∵∠BOC =90°,∴∠OBC =∠OCB =45°,∵D(0,-1),∴OD =1,BD =4,∵DH ⊥BC ,∴∠DHB =90°,设DH =x ,则BH =x ,∵DH 2+BH 2=BD 2,7∴x =22,∴DH =22,∵PJ ⊥CB ,∴∠PJC =90°,∴PJ =22PC ,∴2PD +PC =2PD +22PC =2PD +PJ ,∵DP +PJ ≥DH ,∴DP +PJ ≥22,∴DP +PJ 的最小值为22,∴2PD +PC 的最小值为4.故选:A .【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,得到∠OBC =∠OCB =45°,PJ =22PC 是解题的关键.9(2022·山东泰安·统考中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52 B.125 C.13-32 D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的圆上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的圆上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.810(2022·河南·校联考三模)如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()A.42,35B.22,35C.35,22D.35,42【答案】A【分析】根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,从而确定正方形的边长为6,根据将军饮马河原理,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,利用相似三角形,计算AG 的长即为横坐标.【详解】如图,根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,∵点E 是BC 的中点,∴BC =6,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,∵四边形ABCD 是正方形,AB =6,∴CE ∥AD ,AC =62+62=62,DE =62+32=35,∴△CGE ∽△AGD ,∴CG AG =CE AD =12,∴AC AG=32,∴AG =42,故点M 的坐标为(42,35),故A 正确.故选:A .【点睛】本题考查了正方形的性质,三角形相似的判定和性质,函数图像信息的获取,将军饮马河原理,熟练掌握正方形的性质,灵活运用三角形相似,构造将军饮马河模型求解是解题的关键.2二、填空题11(2023春·江苏宿迁·九年级校联考阶段练习)如图,矩形ABCD ,AB =4,BC =8,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足∠APB =12∠AGB ,则DP 的最小值.【答案】210-22【分析】由题意可知,∠AGB =90°,可得∠APB =12∠AGB =45°,可知点P 在以AB 为弦,圆周角∠APB =45°的9圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧),设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,可知△AOB 为等腰直角三角形,求得OA =22AB =22=OP ,AQ =OQ =22OA =2,QD =AD -AQ =6,OD =OQ 2+QD 2=210,再由三角形三边关系可得:DP ≥OD -OP =210-22,当点P 在线段OD 上时去等号,即可求得DP 的最小值.【详解】解:∵B 、G 关于EF 对称,∴BH =GH ,且EF ⊥BG∵E 为AB 中点,则EH 为△ABG 的中位线,∴EH ∥AG ,∴∠AGB =90°,∵∠APB =12∠AGB ,即∠APB =12∠AGB =45°,∴点P 在以AB 为弦,圆周角∠APB =45°的圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧)设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,则OA =OB =OP ,∵∠APB =45°,∴∠AOB =90°,则△AOB 为等腰直角三角形,∴OA =22AB =22=OP ,又∵E 为AB 中点,∴OE ⊥AB ,OE =12AB =AE =BE ,又∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC =8,∴四边形AEOQ 是正方形,∴AQ =OQ =22OA =2,QD =AD -AQ =6,∴OD =OQ 2+QD 2=210,由三角形三边关系可得:DP ≥OD-OP =210-22,当点P 在线段OD 上时去等号,∴DP 的最小值为210-22,故答案为:210-22.【点睛】本题考查轴对称的性质,矩形的性质,隐形圆,三角形三边关系,正方形的判定及性质,等腰直角三角形的判定及性质,根据∠APB =12∠AGB =45°得知点P 在以AB 为弦,圆周角∠APB =45°的圆上是解决问题的关键.12(2023春·江苏连云港·八年级期中)如图,在边长为8的正方形ABCD 中,点G 是BC 边的中点,E 、F 分别是AD 和CD 边上的点,则四边形BEFG 周长的最小值为.【答案】2410【分析】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G ,根据两点之间线段最短即可解决问题.【详解】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G∵EB =EB ,FG =FG ,∴BE +EF +FG +BG =B E +EF +FG +BG ,∵EB +EF +FG ≥B G ,∴四边形BEFG 的周长的最小值=BG +B G ,∵正方形ABCD 的边长为8∴BG =4,BB =16,BG =12,∴B G =162+122=20,∴四边形BEFG 的周长的最小值为=4+20=24.故答案为:24.【点睛】本题考查轴对称求线段和的最短问题,正方形的性质,勾股定理,解题的关键是学会利用轴对称解决最短问题.13(2022·湖南湘潭·校考模拟预测)如图,菱形草地ABCD 中,沿对角线修建60米和80米两条道路AC <BD ,M 、N 分别是草地边BC 、CD 的中点,在线段BD 上有一个流动饮水点P ,若要使PM +PN 的距离最短,则最短距离是米.【答案】50【分析】作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,根据菱形的性质和勾股定理求出BC 长,即可得出答案.【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,∵四边形ABCD 是菱形,∴AC ⊥BD ,∠QBP =∠MBP ,即Q 在AB 上,∵MQ ⊥BD ,∴AC ∥MQ ,∴M 为BC 中点,∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形,∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形,∴NQ =BC ,设AC 与BD 的交点为点O ,∵四边形ABCD 是菱形,∴AC ⊥BD,OC =12AC =30米,OB =12BD =40米,∴BC =OB 2+OC 2=50米,∴PM +PN 的最小值是50米.故答案为:50.11【点睛】本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P 的位置.14(2023春·江苏·九年级校考阶段练习)如图,正方形ABCD 的边长为4,⊙B 的半径为2,P 为⊙B 上的动点,则2PC -PD 的最大值是.【答案】2【分析】解法1,如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,连接PM 、DM ,推得2PC -PD=2PC -22PD =2PC -PM ,因为PC -PM ≤MC ,求出MC 即可求出答案.解法2:如图:连接BD 、BP 、PC ,在BD 上做点M ,使BM BP =24,连接MP ,证明△BMP ∼△BPD ,在BC 上做点N ,使BN BP=12,连接NP ,证明△BNP ∼△BPC ,接着推导出2PC -PD =22MN ,最后证明△BMN ∼△BCD ,即可求解.【详解】解法1如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,∴∠PDM =45,DM =PM =22PD ,∵四边形ABCD 正方形∴∠BDC =45°,DB DC=2又∵∠PDM =∠PDB +MDB ,∠BDC =∠MDB +MDC∴∠PDB =∠MDC在△BPD 与△MPC 中∠PDB =∠MDC ,DB DC=DP DM =2∴△BPD ∼△MPC∴PB MC=2∵BP =2∴MC =2∵2PC -PD =2PC-22PD =2PC -PM ∵PC -PM ≤MC ∴2PC -PD =2PC -PM ≤2MC =2故答案为:2.解法2如图:连接BD 、BP 、PC根据题意正方形ABCD 的边长为4,⊙B 的半径为2∴BP =2,BD =BC 2+CD 2=42+42=42∵BP BD =242=2412在BD 上做点M ,使BM BP=24,则BM =22,连接MP 在△BMP 与△BPD 中∠MBP =∠PBD ,BP BD =BM BP∴△BMP ∼△BPD∴PM PD =24,则PD =22PM ∵BP BC =24=12在BC 上做点N ,使BN BP=12,则BN =1,连接NP 在△BNP 与△BPC 中∠NBP =∠PBC ,BN BP =BP PC∴△BNP ∼△BPC∴PN PC=12,则PC =2PN ∴如图所示连接NM ∴2PC -PD =2×2PN -22PM =22PN -PM ∵PN -PM ≤NM ∴2PC -PD =22PN -PM ≤22NM在△BMN 与△BCD 中∠NBM=∠DBC ,BM BC =224=28,BN BD =142=28∴BM BC=BN BD ∴△BMN ∼△BCD∴MN CD=28∵CD =4∴MN =22∴22MN =22×22=2∴2PC -PD ≤22NM =2故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.15(2023秋·广东广州·九年级统考期末)如图,四边形ABCD 中,AB ∥CD ,AC ⊥BC ,∠DAB =60°,AD =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则△MBC 面积的最小值为.【答案】63-4【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则OM +ME ≥OF ,通过计算得出当O ,M ,E 三点共线时,ME 有最小值,求出最小值即可.【详解】解:如图,取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则13OM +ME ≥OF ,∵AB ∥CD ,∠DAB =60°,AD =CD =4,∴∠ADC =120°,∵AD =CD ,∴∠DAC =30°,∴∠CAB =30°,∵AC ⊥BC ,∴∠ACB =90°∴∠B =90°-30°=60°,∴∠B =∠DAB ,∴四边形ABCD 为等腰梯形,∴BC =AD =4,∵∠AMD =90°,AD =4,OA =OD ,∴OM =12AD =2,∴点M 在以点O 为圆心,2为半径的圆上,∵AB ∥CD ,∴∠GCF =∠B =60°,∴∠DGO =∠CGF =30°,∵OF ⊥BC ,AC ⊥BC ,∴∠DOG =∠DAC =30°=∠DGO ,∴DG =DO =2,∴OG =2OD ⋅cos30°=23,GF =3,OF =33,∴ME ≥OF -OM =33-2,∴当O ,M ,E 三点共线时,ME 有最小值33-2,∴△MBC 面积的最小值为=12×4×33-2 =63-4.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点M 位置的确定是解题关键.16(2023春·全国·八年级专题练习)如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB,AD 上的两个定点且BP =AQ =1cm ,点M 为线段BD 上一动点,连接PM ,QM ,则PM +QM 的最小值为cm .【答案】5【分析】如图所示,作点P 关于BD 的对称点P ,且点P 在BC 上,则PM +QM =P M+QM ,当P ,M ,Q 在同一条直线上时,有最小值,证明四边形PP QA 是平行四边形,P Q =AP =AB -BP ,由此即可求解.【详解】解:如图所示,作点P 关于BD 的对称点P ,∵△ABC 是等边三角形,BD ⊥AC ,∴∠ABD =∠DBC =12∠ABC =12×60°=30°,14∴点P 在BC 上,∴P M =PM ,则PM +QM =P M +QM ,当P ,M ,Q 在同一条直线上时,有最小值,∵点P 关于BD 的对称点P ,∠ABD =∠DBC =30°,∴PP ⊥BM ,BP =BP =1cm ,∴∠BP P =60°,∴△BPP 是等边三角形,即∠BP P =∠C =60°,∴PP ∥AC ,且PP =AQ =1cm ,∴四边形PP QA 是平行四边形,∴P Q =AP =AB -BP ,在Rt △ABD 中,∠ABD =30°,AD =3,∴AB =2AD =2×3=6,∴AP =P Q =P M +QM =PM +QM =AB -BP =6-1=5,故答案为:5.【点睛】本题主要考查动点与等边三角形,对称-最短路径,平行四边形的判定和性质的综合,理解并掌握等边三角形得性质,对称-最短路径的计算方法,平行四边形的判定和性质是解题的关键.17(2022秋·山东菏泽·九年级校考阶段练习)如图,在周长为12的菱形ABCD 中,DE =1,DF =2,若P 为对角线AC 上一动点,则EP +FP 的最小值为.【答案】3【分析】作F 点关于BD 的对称点F ,连接EF 交BD 于点P ,则PF =PF ,由两点之间线段最短可知当E 、P 、F 在一条直线上时,EP +FP 有最小值,然后求得EF 的长度即可.【详解】解:作F 点关于BD 的对称点F ,则PF =PF ,连接EF '交BD 于点P .∴EP +FP =EP +F P .由两点之间线段最短可知:当E 、P 、F '在一条直线上时,EP +FP 的值最小,此时EP +FP =EP +F P =EF .∵四边形ABCD 为菱形,周长为12,∴AB =BC =CD =DA =3,AB ∥CD ,∵AF =2,AE =1,∴DF =AE =1,∴四边形AEF D 是平行四边形,∴EF =AD =3.∴EP +FP 的最小值为3.故答案为:3.【点睛】本题主要考查的是菱形的性质、轴对称--路径最短问题,明确当E 、P 、F 在一条直线上时EP +FP 有最小值是解题的关键.18(2023春·上海·八年级专题练习)如图,直线y =x +4与x 轴,y 轴分别交于A和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为.15【答案】(-1,0)【分析】直线y =x +4与x 轴,y 轴分别交于A 和B ,可求出点A ,B 的坐标,点C 、D 分别为线段AB 、OB 的中点,可求出点C 、D 的坐标,作点C 关于x 轴的对称点C ,连接C D 与x 轴的交点就是所求点P 的坐标.【详解】解:直线y =x +4与x 轴,y 轴分别交于A 和B ,∴当y =0,x =-4,即A (-4,0);当x =0,y =4,即B (0,4),∵点C 、D 分别为线段AB 、OB 的中点,∴C (-2,2),D (0,2),如图所示,过点C 关于x 轴的对称点C,∴C (-2,-2),∴直线C D 的解析式为:y =2x +2,当y =0,x =-1,即P (-1,0),故答案为:(-1,0).【点睛】本题主要考查一次函数与最短线段的综合,掌握对称中最短线段的解题方法是解题的关键.19(2023秋·黑龙江鸡西·九年级统考期末)如图,抛物线y =x 2-4x +3与x 轴分别交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则△MAC 周长的最小值是.【答案】32+10【分析】根据“将军饮马”模型,先求出A 1,0 ,B 3,0 ,C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,从而C △MAC =CA +CM +MA =CA +CM +MB ,AC =OA 2+OC 2=10,则△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,从而得到CB =OC 2+OB 2=32,即可得到答案.【详解】解:∵抛物线y =x 2-4x +3与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,16∴当y =0时,0=x 2-4x +3解得x =1或x =3,即A 1,0 ,B 3,0 ;当x =0时,y =3,即C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,即MA =MB ,∴C △MAC =CA +CM +MA =CA +CM +MB ,∵AC =OA 2+OC 2=10,∴△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,∵CB =OC 2+OB 2=32,∴△MAC 周长的最小值为CA +CB =32+10,故答案为:32+10.【点睛】本题考查动点最值问题与二次函数综合,涉及“将军饮马”模型求最值、二次函数图像与性质、解一元二次方程、勾股定理求线段长等知识,熟练掌握动点最值的常见模型是解决问题的关键.20(2023秋·浙江温州·九年级校考期末)如图所示,∠ACB =60°,半径为2的圆O 内切于∠ACB.P 为圆O 上一动点,过点P 作PM 、PN 分别垂直于∠ACB 的两边,垂足为M 、N ,则PM +2PN 的取值范围为.【答案】6-23≤PM +2PN ≤6+23【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示,通过代换,将PM +2PN 转化为PN +12PM =PN +HP =NH ,得到当MP 与⊙O 相切时,MF 取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.【详解】解:作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示:∵PM ⊥AC ,PN ⊥CB ,∴∠PMC =∠PNC =90°,∴∠MPN =360°-∠PMC -∠PNC -∠C =120°,∴∠MPH =180°-∠MPN =60°,∴HP =PM ⋅cos ∠MPH =PM ⋅cos60°=12PM ,∴PN +12PM =PN +HP =NH ,∵MF =NH ,∴当MP 与⊙O 相切时,MF 取得最大和最小,①连接OP ,OG ,OC ,如图1所示:可得:四边形OPMG 是正方形,∴MG =OP =2,在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG +GM =2+23,在Rt △CMF 中,MF =CM ⋅sin60°=3+3,∴HN =MF =3+3,即PM +2PN =212PM +PN =2HN =6+23;②连接OP ,OG ,OC ,如图2所示:可得:四边形OPMG 是正方形,17∴MG =OP =2,由上同理可知:在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG -GM =23-2,在Rt △CMF 中,MF =CM ⋅sin60°=3-3,∴HN =MF =3-3,即PM +2PN =212PM +PN =2HN =6-23,∴6-23≤PM +2PN ≤6+23.故答案为:6-23≤PM +2PN ≤6+23.【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.3三、解答题21(2022春·江苏·九年级专题练习)综合与探究如图,已知抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,交y 轴于点C .(1)求抛物线的解析式,连接BC ,并求出直线BC 的解析式;(2)请在抛物线的对称轴上找一点P ,使AP +PC 的值最小,此时点P 的坐标是;(3)点Q 在第一象限的抛物线上,连接CQ ,BQ ,求出△BCQ 面积的最大值.【答案】(1)y =-x 2+3x +4;y =-x +4(2)32,52(3)8【分析】(1)将A -1,0 ,B 4,0 两点,代入抛物线解析式,可得到抛物线解析式,从而得到C 0,4 ,再设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入,即可求解;(2)连接BC ,PB ,根据题意可得A 、B 关于抛物线的对称轴直线x =32对称,从而得到当P 在直线AB 上三点共线时,AP +CP 的值最小,把x =32代入直线BC 的解析式,即可求解;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,可得QD =-d 2+4d ,从而得到S ΔBCQ =12OB ×QD =-2d -2 2+8,即可求解;【详解】(1)解:(1)∵抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,∴a -b +4=016a +4b +4=0,解得:a =-1b =3 ,18∴抛物线的解析式为y =-x 2+3x +4;∵抛物线与y 轴的交点为C ,∴C 0,4 ,设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入得:4k +b =0b =4 ,解得:k =-1b =4 ,∴直线BC 的解析式为y =-x +4;(2)如图,连接BC ,PB ,∵y =-x 2+3x +4=-x -32 2+74,∴抛物线的对称轴为直线x =32,根据题意得:A 、B 关于抛物线的对称轴直线x =32对称,∴AP =BP ,∴AP +CP =BP +CP ≥BC ,即当P 在直线AB 上时,AP +CP 的值最小,∴当x =32时,y =-32+4=52,∴P 32,52 ,故答案是:32,52 ;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,∴QD =-d 2+3d +4 --d +4 =-d 2+4d ,∵B 4,0 ,∴OB =4,∴S ΔBCQ =12OB ×QD =-2d 2+8d =-2d -2 2+8,当d =2时,S ΔBCQ 取最大值,最大值为8,∴△BCQ 的最大面积为8;【点睛】本题主要考查了二次函数的图像和性质,利用数形结合思想和分类讨论思想是解题的关键.22(2023秋·江苏淮安·八年级统考期末)如图1,直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,过点B 的直线交x 轴负半轴于点C -3,0 .(1)请直接写出直线BC 的关系式:(2)在直线BC 上是否存在点D,使得S △ABD =S △AOD 若存在,求出点D 坐标:若不存请说明理由;(3)如图2,D 11,0 ,P 为x 轴正半轴上的一动点,以P 为直角顶点、BP 为腰在第一象限内作等腰直角三角形△BPQ ,连接QA ,QD .请直接写出QB -QD 的最大值:.19【答案】(1)y =2x +6(2)当D 185,665 或D -185,-65时,S △ABD =S △AOD (3)37【分析】(1)根据直线AB 与y 轴的交点,可求出点B 的坐标,再用待定系数法即可求解;(2)设D (a ,2a +6),分别用含a 的式子表示出出S △AOD ,S △ABD ,由此即可求解;(3)△BPQ 是等腰直角三角形,设P (m ,0)(m >0),可表示出QB ,再证Rt △BOP ≌Rt △PTQ (AAS ),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值,可求得点R 的坐标,根据勾股定理即可求解.【详解】(1)解:∵直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,令x =0,则y =6,∴B (0,6),且C -3,0 ,设直线BC 的解析式为y =kx +b ,∴b =6-3k +b =0,解得,k =2b =6 ,∴直线BC 的解析式为y =2x +6,故答案为:y =2x +6.(2)解:由(1)可知直线BC 的解析式为y =2x +6,直线AB 的解析式为y =-x +6,∴A (6,0),B (0,6),C (-3,0),∴OA =6,BO =6,OC =3,如图所示,点D 在直线BC 上,过点D 作DE ⊥x 轴于E ,∴设D (a ,2a +6),E (a ,0),∴S △ABC =12AC ·OB =12×(6+3)×6=27,S △ADC =12AC ·DE =12×(6+3)×a =92a ,S △AOD =12OA ·DE =12×6×a =3a ,∴S △ABD =S △ABC -S △ADC =27-92a ,若S △ABD =S △AOD ,则27-92a =3a ,当a >0时,27-92a =3a ,解得,a =185,即D 185,665 ;当a <0时,27+92a =-3a ,解得,a =-185,即D -185,-65 ;综上所述,当D 185,665 或D -185,-65时,S △ABD =S △AOD .(3)解:已知A (6,0),B (0,6),D (11,0),设P (m ,0)(m >0),∴在Rt △BOP 中,OB =6,OP =m ,∵△BPQ 是等腰直角三角形,∠BPQ =90°,∴BP =QP ;如图所示,过点Q 作QT ⊥x 轴于T ,20在Rt △BOP ,Rt △PTQ 中,∠BOP =∠PTQ =90°,∠BPO +∠QPA =∠QPA +∠PQT =90°,∴∠BPO =∠PQT ,∴∠BPO =∠PQT∠BOP =∠PTQ BP =QP,∴Rt △BOP ≌Rt △PTQ (AAS ),∴OP =TQ =m ,OB =PT =6,∴AT =OP +PT -OA =m +6-6=m ,∴AT =QT ,且QT ⊥x 轴,∴△ATQ 是等腰直角三角形,∠QAT =45°,则点Q 的轨迹在射线AQ 上,如图所示,作点D 关于直线AQ 的对称点R,连接QR ,BR ,AR ,A (6,0),B (0,6),D (11,0),∵△ATQ 是等腰直角三角形,即∠QAT =45°,根据对称性质,∴∠QAR =45°,∴RA ⊥x 轴,且△DQA ≌△RQA ,∴AR =AD =11-6=5,则R (6,5),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值;∴由勾股定理得:BR =62+(6-5)2=37,故答案为:37.【点睛】本题主要考查一次函数,几何的综合,掌握待定系数法求解析式,将军饮马问题,等腰直角三角形的性质,勾股定理是解题的关键.23(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)△ABC 中,∠B =60°.(1)如图1,若AC >BC ,CD 平分∠ACB 交AB 于点D ,且AD =3BD .证明:∠A =30°;(2)如图2,若AC <BC ,取AC 中点E ,将CE 绕点C 逆时针旋转60°至CF ,连接BF 并延长至G ,使BF =FG ,猜想线段AB 、BC 、CG 之间存在的数量关系,并证明你的猜想;(3)如图3,若AC =BC ,P 为平面内一点,将△ABP 沿直线AB 翻折至△ABQ ,当3AQ +2BQ +13CQ 取得最小值时,直接写出BPCQ的值.【答案】(1)见解析(2)BC =AB +CG ,理由见解析(3)213+33913【分析】(1)过点D 分别作BC ,AC 的垂线,垂足为E ,F ,易得DE =DF ,由∠B =60°,可得DE =DF =32BD ,由AD =3BD ,求得sin A =DE AD=12,可证得∠A =30°;(2)延长BA ,使得BH =BC ,连接EH ,CH ,易证△BCH 为等边三角形,进而可证△BCF ≌△HCE SAS ,可得BF =HE ,∠BFC =∠HEC ,可知∠AEH =∠CFG ,易证得△AEH ≌△CFG SAS ,可得AH =CG ,由BC =BH =AB +AH =AB +CG 可得结论;(3)由题意可知△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,可得CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,可知△ACQ ∽△MCN ,可得MN =32AQ ,由3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM 可知点Q ,N 都在线段BM 上时,3AQ +2BQ+13CQ 有最小值,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,可得CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,可证△CBR ∽△MBT ,得BR CR =BT MT ,设BC =a 由等边三角形的性质,可得CM =32a ,进而可得CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,结合BR CR=BTMT 可得:BQ +213CQ 313CQ =a +334a 34a ,可得BQ CQ =213+33913,由翻折可知,BP =BQ ,可求得BP CQ的值.【详解】(1)证明:过点D 分别作BC ,AC 的垂线,垂足为E ,F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,∴DE =DF ,又∵∠B =60°,∴DE =BD ⋅sin60°=32BD ,则DE =DF =32BD ,又∵AD =3BD ,∴sin A =DE AD =32BD3BD=12,∴∠A =30°;(2)BC =AB +CG ,理由如下:延长BA ,使得BH =BC ,连接EH ,CH ,∵∠ABC =60°,BH =BC ,∴△BCH 为等边三角形,∴CB =CH ,∠BCH =60°,∵CE 绕点C 逆时针旋转60°至CF ,∴CE =CF ,∠ECF =60°,则∠BCH -∠ACB =∠ECF -∠ACB ,∴∠ECH =∠FCB ,∴△BCF ≌△HCE SAS ,∴BF =HE ,∠BFC =∠HEC ,则∠AEH =∠CFG ,∵BF =FG ,∴BF =HE =FG ,又∵E 为AC 中点,∴AE =CE =CF ,∴△AEH ≌△CFG SAS ,∴AH =CG ,∴BC =BH =AB +AH =AB +CG ;(3)∵∠ABC =60°,AC =BC ,∴△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,则CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,∴sin ∠CQN =CN QN =313,cos ∠CQN =CQ QN =213,则∠ACM =∠QCN =90°,∴∠ACM -∠ACN =∠QCN -∠ACN ,则∠ACQ =∠MCN∴△ACQ ∽△MCN ,∴MN AQ =CM CA=32,即:MN =32AQ ,∴3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM即:点Q ,N 都在线段BM 上时,3AQ +2BQ +13CQ 有最小值,如下图,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,则∠BRC =∠BTM =90°,CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,又∵∠CBR =∠MBT ,∴△CBR ∽△MBT ,∴BR CR=BT MT ,∵△ABC 是等边三角形,设BC =a ∴∠ACB =60°,AC =BC =a ,则CM =32a ,∵∠ACM =90°,∴∠MCT =30°,则CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,则由BR CR=BT MT 可得:BQ +213CQ 313CQ =a +334a34a ,整理得:133BQ CQ +23=4+333,得BQ CQ=213+33913,由翻折可知,BP =BQ ,∴BP CQ =BQ CQ=213+33913.【点睛】本题属于几何综合,考查了解直角三角形,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,旋转的性质以及费马点问题,掌握费马点问题的解决方法,添加辅助线构造全等三角形和相似三角形是解决问题的关键.24(2023春·江苏·八年级专题练习)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN 填(“是”或“不是”)“等垂线段”.(2)△ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若DE =2,BC =4,请直接写出PM 与PN 的积的最大值.。
2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。
选择压轴题(函数篇)1压轴题速练1一.选择题(共40小题)1(2023•方城县一模)如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是()A.(7,2)B.(7,5)C.(5,6)D.(6,5)【答案】D【分析】过点D作DE⊥y轴于点E,利用点A,B的坐标表示出线段OA,OB的长,利用平移的性质和矩形的判定定理得到四边形ABCD是矩形;利用相似三角形的判定与性质求得线段DE,AE的长,进而得到OE的长,则结论可得.【详解】解:过点D作DE⊥y轴于点E,如图,∵点A(0,3)、B(1,0),∴OA=3,OB=1.∵线段AB平移得到线段DC,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形.∴∠BAD=90°,BC=AD.∵BC=2AB,∴AD=2AB.∵∠BAO+∠DAE=90°,∠BAO+∠ABO=90°,∴∠ABO=∠EAD.∵∠AOB=∠AED=90°,∴△ABO∽△DAE.∴AO DE=OBAE=ABAD=12.∴DE=2OA=6,AE=2OB=2,∴OE=OA+AE=5,∴D(6,5).故选:D.【点睛】本题主要考查了图形的变化与坐标的关系,平移的性质,矩形的判定与性质,相似三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.2(2023•东莞市校级二模)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2023个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C -D-A⋯⋯的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(-1,0)B.(0,2)C.(-1,-2)D.(0,1)【答案】A【分析】由点A、B、C的坐标可得出AB、BC的长度,从而可得四边形ABCD的周长,再根据12=1×10+2即可得出细线另一端所在位置的点的坐标.【详解】解:∵A点坐标为(1,1),B点坐标为(-1,1),C点坐标为(-1,-2),∴AB=1-(-1)=2,BC=2-(-1)=3,∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.2023÷10=202⋯3,∴细线另一端在绕四边形第202圈的第3个单位长度的位置,即细线另一端所在位置的点的坐标是(-1,0).故选:A.【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2023个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.3(2023•越秀区二模)抛物线G:y=-13x2+3与x轴负半轴交于点A,与y轴交于点B,将抛物线G沿直线AB平移得到抛物线H,若抛物线H与y轴交于点D,则点D的纵坐标的最大值是()A.415B.154C.32D.23【答案】B【分析】先求出A(-3,0),B(0,3),进而求出直线AB的解析式为y=x+3,再推出抛物线G沿直线AB平移得到抛物线H,则抛物线H的顶点坐标一定在直线AB上,设抛物线H的顶点坐标为(m,m +3),则抛物线H的解析式为y=-13(x-m)2+m+3,进而求出y D=-13m-322+154,则y D的最大值为15 4.【详解】解:在y=-13x2+3中,当x=0时,y=3;当y=0时,y=-13x2+3=0,解得x=±3,A(-3,0),B(0,3),设直线AB的解析式为y=kx+b,则-3k+b=0 b=3,解得k=1 b=3 .∴直线AB的解析式为y=x+3,∵抛物线y=-13x2+3的顶点坐标为(0,3),即抛物线y=-13x2+3的顶点在直线AB上,∴抛物线G沿直线AB平移得到抛物线H,则抛物线H的顶点坐标一定在直线AB上,设抛物线H的顶点坐标为(m,m+3),∴抛物线H的解析式为y=-13(x-m)2+m+3,在y=-13(x-m)2+m+3中,令x=0,则yD=-13m2+m+3=-13m-322+154,∵-13<0,∴y D的最大值为154,故选:B.【点睛】本题主要考查了一次函数与二次函数综合,二次函数图象的平移,推出抛物线H的顶点坐标一定在直线AB上是解题的关键.4(2023•上城区一模)二次函数y=ax2+bx+c与自变量x的部分对应值表如下,已知有且仅有一组值错误(其中a,b,c,m均为常数).x⋯-2023⋯y⋯-m22-m2-m2⋯甲同学发现当a>0时,x=5是方程ax2+bx+c=2的一个根;乙同学发现当a<0时,则a+b=0.下列说法正确的是()A.甲对乙错B.甲错乙对C.甲乙都错D.甲乙都对【答案】A【分析】由已知二次函数y=ax2+bx+c与自变量x的部分对应值表和抛物线的对称性可得:m≠0、函数图象的对称轴是直线x=52即有-b2a=52,又因为-m2<0<2,可知自变量x<52,y随x的增大而减小,由函数图象对称性可知x>52时,y随x的增大而增大,故函数图象开口向上,进而得到a>0,a+b≠0,由抛物线的对称性可知x=5是方程ax2+bx+c=2的一个根,从而得出结论.【详解】解:由二次函数y=ax2+bx+c与自变量x的部分对应值表可知:当x=2与3时,都是y=-m2,当x=-2时,y=-m,当x=0时,y=2,∴m≠0,由抛物线的对称性可知:函数图象的对称轴是直线x=52,即--b2a=52.由于-m2<0<2,故自变量x<52时,y随x的增大而减小,由抛物线的对称性可知x>52时,y随x的增大而增大,故函数图象开口向上.∴a>0,a=-15b,a+b=45b≠0;由抛物线的对称性可知:当x=5时,y=2,即方程ax2+bx+c=2的一个根是x=5.∴甲对乙错.故选A.【点睛】本题重点考查二次函数的图象和性质,能数形结合从而推出结论是解决此类题型的关键.5(2023•温州二模)已知函数y=-x2+mx+n(-1≤x≤1),且x=-1时,y取到最大值1,则m的值可能为()A.3B.1C.-1D.-3【答案】D【分析】根据二次函的性质分析求解即可.【详解】解:因二次函数y=-x2+mx+n中a=-1,所以开口向下.由二次函数的性质得当a<0时,当x<m2时,y随x增大而增大;当x>m2时,y随x增大而减小;若当x=-1时,y取到最大值1,必有m2≤-1.即m≤-2.故答案为:D.【点睛】本题考查二次函数的基本性质.6(2023•越秀区一模)抛物线G:y=-13x2+3与x轴负半轴交于点A,与y轴交于点B,将抛物线G沿直线AB平移得到抛物线H,若抛物线H与y轴交于点D,则点D的纵坐标的最大值是()A.415B.154C.32D.23【答案】B【分析】先求出A(-3.0),B(0.3),进而求出直线AB的解析式为y=x+3,再推出抛物线G沿直线AB 平移得到抛物线H,则抛物线H的顶点坐标一定在直线AB上,设抛物线H的顶点坐标为(m,m+ 3),则抛物线H的解析式为y=-13(x-m)2+m+3,进而求出y D=-13m-322+154,则y D的最大值为15 4.【详解】解:在y=-13x2+3中,当x=0时,y=3;当y=0时,y=-13x2+3=0,解得x=±3,A(-3.0),B(0,3),设直线AB的解析式为y=kx+b,则-3k+b=0 b=3,解得k=1 b=3∴直线AB的解析式为y=x+3,∵抛物线y=-13x2+3的顶点坐标为(03),即抛物线y=-13x2+3的顶点在直线AB上,∴抛物线G沿直线AB平移得到抛物线H,则抛物线H的顶点坐标一定在直线AB上,设抛物线H的顶点坐标为(m,m+3),∴抛物线H的解析式为y=-13(x-m)2+m+3,在y=-13(x-m)2+m+3中,令x=0,则yD=-13m2+m+3=-13m-322+154,∵-13<0,∴y D的最大值为154,故选:B.【点睛】本题主要考查了一次函数与二次函数综合,二次函数图象的平移,推出抛物线H的顶点坐标一定在直线AB上是解题的关键.7(2023•定海区模拟)如图,C是线段AB上一动点,分别以AC、BC为边向上作正方形ACDE、BCFG,连结EG交DC于K.已知AB=10,设AC=x(5<x<10),记△EDK的面积为S1,记△EAC的面积为S2.则S1S2与x的函数关系为()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系【答案】B【分析】根据四边形ABCD,BCFG为正方形,得出AC=AE=ED=CD=x,BC=CF=FG=10-x,再根据△EDK∽△GFK求出KF和DF,再根据直角三角形的面积公式求出S1和S2,再作比值即可.【详解】解:∵四边形ABCD,BCFG为正方形,∴AC=AE=ED=CD=x,BC=CF=FG=10-x,S1=S△EDK=12DE•DK,S2=S△EAC=12AC•AK,∵∠EDC=∠DFG=90°,∴ED∥FG,∴△EDK∽△GFK,∴KF KD=FGED=10-xx,∴KD=x10-x•KF,∵DK+KF+CF=CD,∴KF+x10-x•KF+10-x=x,∴KF=(2x-10)(10-x)10,∴DK=x(2x-10)10,∴S1=12x•x(2x-10)10=12x2•2x-1010,S2=12x2,∴S1S2=2x-110=15x-1,∴S1S2与x的函数关系为一次函数,故选:B.【点睛】本题考查二次函数的应用,关键是写出S1,S2的与x的关系式.8(2023•雁塔区模拟)抛物线y=ax2+bx+c(a,b,c为常数)开口向上,且过点A(1,0),B(m,0)(-1 <m<0),下列结论:①abc>0;②若点P1(-1,y1),P2(1,y2)都在抛物线上,则y1<y2;③2a+c<0;④若方程a(x-m)(x-1)+2=0没有实数根,则b2-4ac<8a,其中正确结论的序号为()A.①③B.②③④C.①④D.①③④【答案】C【分析】根据题意得出x=-1时函数值的符号和x=1时函数的值,以及顶点的纵坐标即可得出答案.【详解】解:∵抛物线开口向上,∴a>0,∵过点A(1,0),B(m,0)(-1<m<0),∴-b2a>0,c<0,∴b<0,∴abc>0,故①正确;∵抛物线过点A(1,0),B(m,0)(-1<m<0),∴y1>0,y2=0,∴y1>y2,故②错误•;根据题意得a+b+c=0,∴b=-a-c,当x=-2时,有4a-2b+c>0,∴4a-2(-a-c)+c>0,∴2a+c>0,故③错误;若方程a(x-m)(x-1)+2=0没有实数根,即抛物线与直线y=-2没有交点,∴顶点的纵坐标4ac-b24a>-2,∵a>0,∴4ac-b2>-8a,∴b2-4ac<8a,故④正确,故选:C.【点睛】本题主要考查二次函数的图象与性质,关键在理解系数对图象的影响,a决定抛物线的开口方向和大小,b联同a决定对称轴的位置,c决定图象与y轴的交点位置,还有x轴上方的点对应的y> 0,下方的点对应的y<0.9(2023•碑林区校级模拟)已知二次函数y=a(x-1)2-a(a≠0),当-1≤x≤4时,y的最小值为-4,则a的值为()A.12或4B.4或-12C.-43或4D.-12或43【答案】B【分析】分两种情况讨论:当a>0时,-a=-4,解得a=4;当a<0时,在-1≤x≤4,9a-a=-4,解得a=-1 2.【详解】解:y=a(x-1)2-a的对称轴为直线x=1,顶点坐标为(1,-a),当a>0时,在-1≤x≤4,函数有最小值-a,∵y的最小值为-4,∴-a=-4,∴a=4;当a<0时,在-1≤x≤4,当x=4时,函数有最小值,∴9a-a=-4,解得a=-1 2;综上所述:a的值为4或-1 2,故选:B.【点睛】本题考查二次函数的性质、二次函数的最值,熟练掌握二次函数的图象及性质,根据二次函数的性质,在指定的范围内准确求出函数的最小值是解题的关键.10(2023•海安市一模)二次函数y=ax2+bx+c(a>0)的图象与x轴相交于A,B两点,点C在二次函数图象上,且到x轴距离为4,∠ACB=90°,则a的值为()A.4B.2C.12D.14【答案】D【分析】设出抛物线与x轴交点及点C坐标,利用勾股定理整理出相关等式,利用韦达定理解答即可.【详解】解:如图,作CD⊥x轴,设A、B两点横坐标为x1和x2,设点C(m,-4),∵CD⊥x轴,∵∠ACB=90°,∴AC2+BC2=AB2,∴AD2+CD2+BD2+CD2=AB2,∴(m-x1)2+42+(x2-m)2+42=(x1-x2)2,整理得,m2-m(x1+x2)+16+x1x2=0,∴m2+b a m+16+c a=0,∴am2+bm+c=-16a,∵点C(m,-4)在抛物线上,∴-16a=-4,∴a=14.故选:D.【点睛】本题考查了二次函数的关系式与系数的关系,结合题意绘图解答是解题关键.11(2023•和平区二模)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0),9a-3b+c=m,有下列结论:①若m=0,则抛物线经过点(-3,0);②若4a-2b+c=n且m>n,当-3<x<-2,y随x的增大而减小;③若m>0,抛物线经过点A(-1,0),B(5,m)和P(t,k),且点P到y轴的距离小于2时,则k的取值范围为-3a<k<5a.其中,正确结论的个数是()A.0B.1C.2D.3【答案】B【分析】由题意可得抛物线过点(-3,m),以此可判断①;由4a-2b+c=n可知抛物线过点(-2,n),m>n,因无法判断a的大小,则不能判断该区间函数的增减性,以此判断②;抛物线经过点B(5,m),9a-3b+c=m可求出抛物线的对称轴x=1,再根据抛物线经过点A(-1,0),可得出抛物线经过点(3,0),从而得出c=-3a,且a>0,再根据P到y轴的距离小于2,则-2<t<2,由函数的图象和性质判断③.【详解】解:抛物线y=ax2+bx+c(a,b,c是常数),9a-3b+c=m,当x=-3时,y=9a-3b+c,∵9a-3b+c=m,m=0,∴抛物线经过点(-3,0),故①正确;当x=-3时,y=9a-3b+c,9a-3b+c=m,当x=-2时,y=4a-2b+c,4a-2b+c=n,当m>n时,因无法判断a的大小,则不能判断该区间函数的增减性,故②错误;∵抛物线过点(-3,m),(5,m),∴-b2a=-3+52=1,∴b=-2a,又∵抛物线过点A(-1,0),∴a-b+c=0,∴c=-3a,∴y=ax2-2ax-3a,∵对称轴为x=1,∴抛物线也过点(3,0),∵抛物线过点(-3,m),(5,m),m>0,∴抛物线开口向上,即a>0,P到y轴的距离小于2,则-2<t<2,此时,x=-2y=5a,x=1,y=-4a,∴-4a≤k<5a,故③错误,故选:B.【点睛】本题主要考查二次函数图象上点的坐标特征、二次函数的性质,熟练掌握二次函数的性质是解题关键.12(2023•杭州一模)设二次函数y=ax2+c(a,c是常数,a<0),已知函数的图象经过点(-2,p),(10,0),(4,q),设方程ax2+c+2=0的正实数根为m,()A.若p>1,q<-1,则2<m<10B.若p>1,q<-1,则10<m<4C.若p>3,q<-3,则2<m<10D.若p>3,q<-3,则10<m<4【答案】D【分析】根据二次函数的性质可得点(10,0)关于对称轴的对称点为(-10,0),点(-2,p)关于对称轴的对称点为(2,p),再由二次函数图象与方程的关系可得二次函数y=ax2+c的图象与直线y=-2的右侧的交点的横坐标为m,再结合图象即可求解.【详解】解:∵二次函数y=ax2+c关于y轴对称,∴点(10,0)关于对称轴的对称点为(-10,0),点(-2,p)关于对称轴的对称点为(2,p),∵方程ax2+c+2=0的正实数根为m,∴二次函数y=ax2+c的图象与直线y=-2的右侧的交点的横坐标为m,如图,当-2<q<-1时,m>4,故A、B选项错误,不符合题意;当p>3,q<-3时,10<m<4,故C选项错误,不符合题意;D选项正确,符合题意;故选:D.【点睛】本题主要考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,熟练掌握二次函数的图象和性质是解题的关键.13(2023•衡水模拟)某水利工程公司开挖的沟渠,蓄水之后截面呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).某学习小组探究之后得出如下结论,其中正确的为()A.AB =24mB.池底所在抛物线的解析式为y =125x 2-5C.池塘最深处到水面CD 的距离为3.2m D.若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离减少为原来的13【答案】C【分析】利用建立的坐标系得到抛物线上点的坐标,然后通过待定系数法求出抛物线解析式,对照选项即可.【详解】解:设解析式为y =ax 2+bx +c ,抛物线上点A (-15,0),B (15,0),P (0,-5),代入抛物线解析式中得:0=(-15)2a +(-15)b +c 0=152a +15b +c-5=c,解得:a =145b =0c =-5,解析式为y =145x 2-5.选项A 中,AB =15-(-15)=30,故选项A 错误,该选项不符合题意;选项B 中,解析式为y =145x 2-5,故选项B 错误,该选项不符合题意;选项C 中,池塘水深最深处为点P (0,-5),水面CD :y C =145×122-5=-1.8,-1.8-(-5)=3.2(米),所以水深最深处为点P 到水面CD 的距离为3.2米,故选项C 正确,该选项符合题意;选项D 中,若池塘中水面的宽度减少为原来的一半,由抛物线关于y 轴对称可知,抛物线上点横坐标±6,代入解析式算得y =145×(6)2-5=45-5=-215,即到水面CD 距离为-1.8--215=2.4米,而最深处到水面的距离为3.2米,减少为原来的34.故选项D 错误,该选项不符合题意.故选:C .【点睛】本题考查二次函数的实际应用问题,计算较为复杂,在计算时需要理清楚实际数据在坐标系中对应的位置.能够正确计算和分析实际情况是解题的关键.14(2023•宝安区二模)已知点(x 1,y 1),(x 2,y 2)(x 1<x 2)在y =-x 2+2x +m 的图象上,下列说法错误的是()A.当m >0时,二次函数y =-x 2+2x +m 与x 轴总有两个交点B.若x2=2,且y1>y2,则0<x1<2C.若x1+x2>2,则y1>y2D.当-1≤x≤2时,y的取值范围为m-3≤y≤m【答案】D【分析】当m>0时,判别式Δ>0,从而判断A;由抛物线对称轴为直线x=1,根据抛物线的对称性可判断B;由x1+x2>2,可得x1+x22>1,从而得出点(x1,y1)离对称轴的距离小于点(x2,y2)离对称轴的距离,可判断C;根据函数的性质求出当-1≤x≤2时,y的最大值和最小值可判断D.【详解】解:令y=0,则-x2+2x+m=0,Δ=b2-4ac=22-4×(-1)•m=4+4m,当m>0时,4+4m>0,∴二次函数y=-x2+2x+m与x轴总有两个交点,故A正确,不合题意;若x2=2,且y1>y2,∵对称轴为直线x=1,∴0<x1<2,故B正确,不符合题意;∵x1+x2>2,∴x1+x22>1,∵二次函数y=-x2+2x+m的对称轴为直线x=1,∴点(x1,y1)离对称轴的距离小于点(x2,y2)离对称轴的距离,∵x1<x2,∴y1>y2,故C正确,不符合题意;∵对称轴为直线x=1,抛物线开口向下,∴当x=1时y有最大值,最大值为1+m,当x=-1时,y有最小值,最小值为-3+m,∴当-1≤x≤2时,y的取值范围为-3+m≤x≤1+m,故D错误,符合题意.故选:D.【点睛】本题主要考查了抛物线与x轴的交点,二次函数图象和性质,是一道综合性比较强的题目,需要利用数形结合思想解决本题.15(2023•四川模拟)已知二次函数y=ax2+bx+c(a<0),跟x轴正半轴交于A、B两点,直线y=kx +b与y轴正半轴交于点D,交x轴于点C(C在A的右侧不与B重合),抛物线的对称轴为x=2,连接AD,则△AOD是等腰直角三角形,有以下四个命题:①-4ac<0;②4a+b+c>0;③k≠-1;④b=-4a.以上命题正确的是()A.①②③④B.②③C.①③④D.①②④【答案】C【分析】由抛物线的开口方向,并且根据与x轴正半轴交于A、B两点,判断出c的大小,据此判断①;再根据抛物线的对称轴判断出②④;最后根据△AOD是等腰直角三角形确定k的值.【详解】解:①∵a<0,抛物线的开口向下,跟x轴正半轴交于A、B两点,∴跟y轴交点在x轴的下方,∴c<0,∴-4ac<0,该命题正确;②∵抛物线的对称轴为x=-b2a=2,b=-4a,∴4a+b+c=c,∴4a+b+c<0,故该命题错误;③∵直线y=kx+b与y轴正半轴交于点D,△AOD是等腰直角三角形,∴D点的坐标为(0,b),A点坐标为(b,0),∴过AD的直线为y=-x+b,k=-1,又∵C在A的右侧不与B重合,所以与y轴正半轴交于点D,交x轴于点C的直线y=kx+b中,k≠-1,该命题正确;④由②可知,b=-4a,该命题正确.综上,命题正确的是①③④.故选:C.【点睛】本题主要考查了一次函数图象上点的坐标特征、二次函数图象与系数的关系、抛物线与x轴的交点以及等腰直角三角形,解答本题的关键是掌握二次函数图象与系数的关系.16(2023•东莞市校级模拟)已知抛物线y=ax2+bx+c(a>0)经过两点(m,n),(4-m,n),则关于函数y=ax2+bx+c(a>0),下列说法“①4a-b=0;②当x>2时,y随着x的增大而增大;③若b2-4ac =0,则ax2+bx+c=a(x-2)2;④若实数t<2,则(t+2)a+b<0”中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题意可判断抛物线的对称轴为直线x=-b2a=m+4-m2=2,以此得到b=-4a,即可判断①;根据抛物线的开口方向和二次函数的性质即可判断②;由b2-4ac=0得抛物线与x轴只有一个交点,且该交点为抛物线的顶点,其坐标为(2,0),根据抛物线的顶点式即可判断③;由t<2得(t+2) a<4a,则(t+2)a+b<4a+b=0,以此可判断④.【详解】解:∵抛物线y=ax2+bx+c(a>0)经过两点(m,n),(4-m,n),∴抛物线的对称轴为直线x=-b2a=m+4-m2=2,∴b=-4a,即4a+b=0,故①错误;∵a>0,∴抛物线开口朝上,∵抛物线的对称轴为直线x=2,∴当x>2时,y随着x的增大而增大,故②正确;∵b2-4ac=0,∴抛物线与x轴只有一个交点,且交点坐标为(2,0),∴抛物线的顶点式为y=a(x-2)2,∴ax2+bx+c=a(x-2)2,故③正确;由上述可知,4a+b=0,a>0,∵t<2,∴(t+2)a<4a,∴(t+2)a+b<4a+b=0,即(t+2)a+b<0,故④正确.综上,正确的有②③④,共3个.故选:C.【点睛】本题主要考查二次函数图象与系数之间的关系、二次函数的性质、二次函数与抛物线的交点坐标,熟知二次函数图象与系数之间的关系是解题关键.17(2023•商河县一模)已知二次函数的表达式为y=-x2-2x+3,将其图象向右平移k(k>0)个单位,得到二次函数y1=mx2+nx+q的图象,使得当-1<x<3时,y1随x增大而增大;当4<x<5时,y1随x增大而减小.则实数k的取值范围是()A.1≤k≤3B.2≤k≤3C.3≤k≤4D.4≤k≤5【答案】D【分析】将二次函数y=-x2-2x+3的图象向右平移k(k>0)个单位得y=-(x-k+1)2+4的图象,新图象的对称轴为直线x=k-1,根据当-1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,知3≤k-1≤4,得4≤k≤5,即可得到答案.【详解】解:∵y=-x2-2x+3=-(x+1)2+4,∴将二次函数y=-x2-2x+3的图象向右平移k(k>0)个单位得y=-(x-k+1)2+4的图象,∴新图象的对称轴为直线x=k-1,∵当-1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,∴3≤k-1≤4,解得4≤k≤5,∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=-(x-3)2+4=-x2+6x-5,故答案可以为:y=-x2+6x-5(答案不唯一),4≤k≤5;故选:D.【点睛】此题主要考查了二次函数综合应用,涉及待定系数法,抛物线的平移变换,等腰直角三角形的判定等知识,解题的关键是数形结合思想的应用.18(2023•佳木斯一模)如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=a x的图象上,顶点B在反比例函数y=bx的图象上,点C在x轴的正半轴上,平行四边形OABC的面积是3,则a-b的值是()A.3B.-3C.5D.-5【答案】B【分析】利用△BOD 和△AOD 的面积差等于平行四边形面积的一半,求出b 与a 的差.【详解】解:如图,延长BA 交y 轴于点D ,连接OB ,∵四边形OABC 为平行四边形,∴AB ∥x 轴,即AD ⊥y 轴由反比例的几何意义得,S △AOD =a 2,S △BOD =b2,∵平行四边形OABC 的面积是3,∴△AOB 的面积为32,∴b 2-a 2=32,∴b -a =3,∴a -b =-3,故选:B .【点睛】本题考查了反比例函数的几何意义,平行四边形的面积的求法,三角形的面积与底和高的关系等知识点.19(2023•雨山区校级一模)如图,在平面直角坐标系中,将一块直角三角形纸板如图放置,直角顶点与原点O 重合,顶点A 、B 恰好分别落在函数y =-1x (x <0),y =4x(x >0)的图象上,则sin ∠ABO 的值为()A.13B.64C.25D.55【答案】D【分析】点A ,B 落在函数y =-1x (x <0),y =4x(x >0)的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形AOB 的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.【详解】解:过点A 、B 分别作AD ⊥x 轴,BE ⊥x 轴,垂足为D 、E ,∵点A 在反比例函数y =-1x (x <0)上,点B 在y =4x(x >0)上,∴S △AOD =12,S △BOE =2,又∵∠AOB =90°∴∠AOD =∠OBE ,∴△AOD ∽△OBE ,∴OA OB 2=S △AOD S △BOE =14,∴OA OB=12,设OA =m ,则OB =2m ,AB =m 2+(2m )2=5m ,在Rt △AOB 中,sin ∠ABO =OA AB =m 5m=55.故选:D .【点睛】考查反比例函数的几何意义、相似三角形的性质,将面积比转化为相似比,利用勾股定理可得直角边与斜边的比,求出sin ∠ABO 的值.20(2023•驻马店模拟)某商家设计了一个水箱水位自动报警仪,其电路图如图1所示,其中定值电阻R 1=10Ω,R 2是一个压敏电阻,用绝缘薄膜包好后放在一个硬质凹形绝缘盒中,放入水箱底部,受力面水平,承受水压的面积S 为0.01m 2,压敏电阻R 2的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深,压力F 越大),电源电压保持6V 不变,当电路中的电流为0.3A 时,报警器(电阻不计)开始报警,水的压强随深度变化的关系图象如图3所示(参考公式:I =UR,F =pS ,1000Pa =1kPa ),则下列说法中不正确的是()A.当水箱未装水(h =0m )时,压强p 为0kPaB.当报警器刚好开始报警时,水箱受到的压力F 为40NC.当报警器刚好开始报警时,水箱中水的深度h 是0.8mD.若想使水深1m 时报警,应使定值电阻R 1的阻值为12Ω【答案】B【分析】由图3可以直接判断A ;根据欧姆定律计算当报警器刚好开始报警时通过电路的电阻,根据串联电路电阻规律计算此时压敏电阻的阻值,根据F =pS 计算压敏电阻受到的压力即可判断B ,根据液体压公式计算水箱中水的深度即可判断C ;根据液体压强公式计算水深为1m 时压敏电阻受到的压强,根据F =pS 计算此时压敏电阻受到的压力,由乙图可知此时压敏电阻的阻值,由B 知当报警器刚好开始报警时电路总电阻,根据串联电路电阻规律计算选用的定值电阻的阻值.【详解】解:A 、由图3可知,水箱未装水(h =0m )时,压强p 为0kPa ,故A 正确,不符合题意;B 、当报警器刚好开始报警时,根据欧姆定律可知此时电路的电阻:R =U I=60.3=20(Ω),比时压敏电阻的阻值:R 2=R -R 1=20Q -10Q =10Ω,由乙图可知此时压敏电阻受到压力为80N ,故B 不正确,符合题意;C 、当报警器刚好开始报警时,则水箱受到的压强为P =F S=800.01=8000(Pa ),则水箱的深度为h =P ρg =80001×103×10=0.8(m ),故C 正确,不符合题意;D 、水深为lm 时,压敏电阻受到的压强:P =ρgh =1.0×103×10×l =10000(Pa ),此时压敏电阻受到的压力:F =PS =10000×0.01=100(N ),由图2可知此时压敏电阻的阻值为8Ω,由B 知当报警器刚好开始报警时,电路总电阻为20Q ,根据串联电路电阻规律可知选用的定值电阻的阻值:R 1=R -R 2=20-8=12.故D 正确,不符合题意.故选:B .【点睛】本题考查了反比例函数,关键串联电路特点、欧姆定律、液体压强公式、压强定义公式的灵活运用.21(2023•长春一模)如图,在平面直角坐标系中,点A 在反比例函数y =2x(x >0)的图象上,点B 在反比例函数y =k x (x >0)的图象上,AB ∥x 轴,BD ⊥x 轴与反比例函数y =2x的图象交于点C ,与x 轴交于点D ,若BC =2CD ,则k 的值为()A.4B.5C.6D.7【答案】C【分析】设点C 的坐标为a ,2a ,则CD =2a ,BC =4a ,BD =6a ,进而得到B a ,6a,将其代入反比例函数y =kx中即可求解.【详解】解:设点C 的坐标为a ,2a,∵BD ⊥x 轴,∴CD =2a,∵BC =2CD ,∴BC=4a,∴BD=CD+BC=6a,∴B a,6a,∵点B在反比例函数y=k x(x>0)的图象上,∴6a=k a,∴k=6.故选:C.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标一定满足该函数解析式.22(2023•翼城县一模)如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点F在AB上,点B,E均在反比例函数y=kx(x<0)的图象上,若点B的坐标为(-1,6),则正方形ADEF的周长为()A.4B.6C.8D.10【答案】C【分析】设正方形的边长是a(a>0),表示出E的坐标是(-1-a,a),把B的坐标代入y=kx(x<0)得到y=-6x,把E的坐标(-1-a,a)代入y=-6x得到关于a的方程,求出a的值即可.【详解】解:设正方形的边长是a(a>0),∵B在反比例函数y=k x(x<0)的图象上,点B的坐标为(-1,6),∴6=k-1,∴k=-6,∵OD=OA+AD=a+1,∴E的坐标是(-1-a,a),把E(-1-a,a)代入y=-6 x,∴a=-6-1-a,∴a=2或a=-3(舍),∴正方形的周长是4a=8.故选:C.【点睛】本题考查反比例函数图象上点的坐标特征,正方形的性质,关键是把E (-1-a ,a )代入y =-6x,列出关于a 的方程.23(2023•萧县一模)如图,在Rt △OAB 中,OC 平分∠BOA 交AB 于点C ,BD 平分∠OBA 交OA 于点D ,交OC 于点E ,反比例函数y =k x 经过点E ,若OB =2,CE OE=12,则k 的值为()A.49B.89C.43D.83【答案】B【分析】过点E 作EG ⊥x 轴交于点G ,过点E 作EH ⊥OB 交于点H ,过点C 作CF ⊥x 轴交于点F ,根据角平分线的性质可得HE =EG ,BC =CF ,再由平行线的性质可得OH OB =OE OC =HE BC=23,EG CF =OE OC=23,分别求出EG 、BC 、CF ,再由勾股定理求出CO 、OG ,从而得到E 点坐标为43,23 ,由此可求k 的值.【详解】解:过点E 作EG ⊥x 轴交于点G ,过点E 作EH ⊥OB 交于点H ,过点C 作CF ⊥x 轴交于点F ,∵OC 平分∠BOA ,BC ⊥OB ,∴BC =CF ,HE =EG ,∵BD 平分∠OBA ,∠OBA =90°,∴∠OBE =45°,∴HB =HE ,∵OB ⊥AB ,HE ⊥OB ,∴HE ∥AB ,∵CE OE=12,∴OHOB =OE OC =HE BC=23,∵OB =2,∴OH =43,∴BH =HE =23,∴BC =1,∴CF =1,∵EG ⊥OA ,CF ⊥OA ,∴GE∥CF,∴EG CF=OEOC=23,∴EG=23,在Rt△OBC中,BC=1,OB=2,∴OC=5,在Rt△EOG中,EG=23,OE=235,∴OG=43,∴E43,23,∵E点在反比例函数y=k x上,∴k=89,故选:B.【点睛】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,角平分线的性质,平行线的性质,勾股定理是解题的关键.24(2023•仙桃校级一模)如图,菱形ABCD的对角线AC,BD交于点P,且AC过原点O,AB∥x轴,点C的坐标为(6,3),反比例函数y=kx的图象经过A,P两点,则k的值是()A.4B.3C.2D.1【答案】C【分析】根据菱形的性质可得对角线BD与AC互相垂直且平分,再根据反比例函数的对称性可得点P 坐标,进而求得k的值,再利用一次函数性质即可求解.【详解】解:∵在菱形ABCD中,对角线BD与AC互相垂直且平分,∴PA=PC,∵AC经过原点O,且反比例函数y=k x的图象恰好经过A,P两点,∴由反比例函数y=k x图象的对称性知:OA=OP=12AP=12CP,∴OP=13OC.过点P和点C作x轴的垂线,垂足为E和F,∴△OPE∽△OCF,∴OP :OC =OE :OF =PE :CF =1:3,∵点C 的坐标为(6,3),∴OF =6,CF =3,∴OE =2,PE =1,∴点P 的坐标为(2,1),∴k =2×1=2.故选:C .【点睛】本题考查了反比例函数与几何综合,解决本题的关键是综合利用相似三角形的判定和性质、反比例函数的图象和性质、菱形的性质等.25(2022•吴兴区校级二模)已知在平面直角坐标系xOy 中,过点O 的直线交反比例函数y =1x的图象于A ,B 两点(点A 在第一象限),过点A 作AC ⊥x 轴于点C ,连结BC 并延长,交反比例函数图象于点D ,连结AD ,将△ACB 沿线段AC 所在的直线翻折,得到△ACB 1,AB 1与CD 交于点E .若点D 的横坐标为2,则AE的长是()A.23B.223C.22D.1【答案】B【分析】首先根据题意设出点A 和点B 的坐标,即可得出点C 的坐标,求出直线BC 的解析式为:y =x 2m2-12m ,把点D 的坐标代入可得m 的值,即可得出点A 、B 、C 的坐标以及直线BC 的解析式,根据△ACB 1是通过△ACB 沿线段AC 翻折得到的,即可得出点B 1的坐标,即可求出直线AB 1的解析式y =-x +2,联立y =-x +2y =12x -12,即可得出点E 的坐标,利用两点间的距离公式得出AE 的长.【详解】解:根据题意可设点A 的坐标为m ,1m ,则点B 的坐标为-m ,-1m,∵AC ⊥x 轴,∴C (m ,0),设直线BC 的解析式为y =kx +b ,把B -m ,-1m,C (m ,0)代入得:-km +b =-1m mk +b =0,解得:k =12m 2b =-12m ,∴y =x 2m 2-12m ,。
2022年中考数学复习之挑战压轴题(选择题):图像的平移、折叠、旋转一.选择题(共10小题)1.(2021•绵阳模拟)如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD 翻折,得到△BDC′,DC'与AB交于点E,连接AC′,若AD=AC′=2,BD=3,则点D到BC的距离为()A.B.C.D.2.(2021•佳木斯二模)如图,在正方形ABCD中,M是AB上一动点,E是CM的中点,AE绕点E顺时针旋转90°得EF,连接DE,DF,CF.下列结论:①DE=EF;②∠CDF=45°;③∠AEM=∠FEC;④∠BCM+∠DCF=45°.其中结论正确的序号是()A.①②③ B.①③④ C.②③④ D.①②④3.(2018•乐清市模拟)如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C 与C′分别对应),点D从点B运动运动至点C,△B′C′D面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小4.(2020•卧龙区一模)如图,已知点A1(1,1),将点A1向上平移1个单位长度,再向右平移2个单位长度得到点A2;将点A2向上平移2个单位长度,再向右平移4个单位长度得到点A3;将点A3向上平移4个单位长度,再向右平移8个单位长度得到点A4,…按这个规律平移下去得到点A n(n为正整数),则点A n的坐标是()A.(2n,2n﹣1)B.(2n﹣1,2n)C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)5.(2021•宜兴市校级二模)如图,四边形ABCD为矩形,点E为边AB一点,将△ADE沿DE折叠,点A落在矩形ABCD内的点F处,连接BF,且BE=EF,∠BEF的正弦值为,则的值为()A.B.C.D.6.(2021•雷州市模拟)如图,菱形ABCD的边长为4,∠A=60°,M是AD的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则当A′C取得最小值时,tan∠DCA′的值为()A.B.C.D.7.(2021•滨城区二模)如图,四边形ABCD是矩形纸片,AB=2,对折矩形片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N 处,折痕BM与EF交于点Q;再次展平,连接BN,MN,延长MN交BC于点G;P为线段BM上一动点,有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④QN=BG;⑤若H是BN的中点,则PN+PH的最小值是,其中正确结论的序号是()A.①②③④⑤ B.①②③ C.②③④ D.①③④⑤8.(2012•十堰)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤ B.①②③④ C.①②③④⑤ D.①②③9.(2020秋•乌兰察布期末)如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.12B.6C.3D.110.(2021•伊金霍洛旗一模)如图,菱形ABCD的形状和大小保持不变,将菱形ABCD绕点B旋转适当角度得到菱形A'BC'D',边A'D'与AD,DC交于E,F(D,E,F不重合),连接EB,FB.在旋转过程中,下列判断错误的是()A.EB平分∠AED'B.FB平分∠A'FCC.△DEF的周长是一个定值D.S△DEF+2S△BEF=S菱形ABCD2022年中考数学复习之挑战压轴题(选择题):图像的平移、折叠、旋转(10题)参考答案与试题解析一.选择题(共10小题)1.(2021•绵阳模拟)如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD 翻折,得到△BDC′,DC'与AB交于点E,连接AC′,若AD=AC′=2,BD=3,则点D到BC的距离为()A.B.C.D.【考点】翻折变换(折叠问题);点到直线的距离.【专题】平移、旋转与对称;推理能力.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M =DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长,则可得出答案.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,∵∠DCB=∠DBC',∴点D到BC的距离为,故选:C.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.2.(2021•佳木斯二模)如图,在正方形ABCD中,M是AB上一动点,E是CM的中点,AE绕点E顺时针旋转90°得EF,连接DE,DF,CF.下列结论:①DE=EF;②∠CDF=45°;③∠AEM=∠FEC;④∠BCM+∠DCF=45°.其中结论正确的序号是()A.①②③ B.①③④ C.②③④ D.①②④【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;图形的相似;推理能力;应用意识.【分析】延长AE交DC的延长线于点H,由“AAS”可证△AME≌△HCE,可得AE=EH,由直角三角形的性质可得AE=EF=EH,可判断①;由四边形内角和定理可求2∠ADE+2∠EDF=270°,可得∠ADF=135°,可判断②;由连接AC,过点E作EP⊥AD 于点P,过点F作FN⊥EP于N,交CD于G,由梯形中位线定理可求PE=(AM+CD),由“AAS”可证△APE≌△ENF,可得AP=NE=AD,即可求AM=2DG=2×=DF,从而证明△MAC∽△FDC,得∠MCA=∠DCF,即可得∠BCM+∠DCF=45°,故可判定④;由条件不能证明△AEM与△FEC全等,可判断③,即可得到答案.【解答】解:如图,延长AE交DC的延长线于点H,如图:∵点E是CM的中点,∴ME=EC,∵AB∥CD,∴∠MAE=∠H,∠AME=∠HCE,∴△AME≌△HCE(AAS),∴AE=EH,又∵∠ADH=90°,∴DE=AE=EH,∵AE绕点E顺时针旋转90°得到EF,∴AE=EF,∠AEF=90°,∴AE=DE=EF,故①正确;∵AE=DE=EF,∴∠DAE=∠ADE,∠EDF=∠EFD,∵∠AEF+∠DAE+∠ADE+∠EDF+∠EFD=360°,∴2∠ADE+2∠EDF=270°,∴∠ADF=135°,∴∠CDF=∠ADF﹣∠ADC=135°﹣90°=45°,故②正确;连接AC,过点E作EP⊥AD于点P,过点F作FN⊥EP于N,交CD于G,如图:∵EP⊥AD,FN⊥EP,∠ADC=90°,∴四边形PDGN是矩形,∴PN=DG,∠DGN=90°,∵EP⊥AD,AM⊥AD,CD⊥AD,∴AM∥PE∥CD,∴==1,∴AP=PD,∴PE是梯形AMCD的中位线,∴PE=(AM+CD),∵∠FDC=45°,FN⊥CD,∴∠DFG=∠FDC=45°,∴DG=GF,DF=DG,∵∠AEP+∠FEN=90°,∠AEP+∠EAP=90°,∴∠FEN=∠EAP,又∵AE=EF,∠APE=∠ENF=90°,∴△APE≌△ENF(AAS),∴AP=NE=AD,∵PE=(AM+CD)=NE+NP=AD+NP,∴AM=NP=DG,∴AM=2DG=2×=DF,又∵AC=CD,∴==,∵∠MAC=∠FDC=45°,∴△MAC∽△FDC,∴∠MCA=∠DCF,∵∠BCM+∠MCA=45°,∴∠BCM+∠DCF=45°,故④正确;由条件不能证明△AEM与△FEC全等,故不能证明∠AEM=∠FEC,故③错误,∴正确的有①②④,故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定和性质,旋转的性质,平行线分线段成比例,梯形中位线的定理等知识,灵活运用这些性质解决问题是本题的关键.3.(2018•乐清市模拟)如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C 与C′分别对应),点D从点B运动运动至点C,△B′C′D面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小【考点】翻折变换(折叠问题).【专题】三角形.【分析】如图,作B′H⊥DC′于H.设BD=DB′=x,则CD=DC′=6﹣x.构建二次函数,利用二次函数的性质即可判断.【解答】解:如图,作B′H⊥DC′于H.设BD=DB′=x,则CD=DC′=6﹣x.∵∠A=60°,∴∠B+∠C=120°,由翻折不变性可知:∠B=∠DB′B,∠C=∠DC′C,∴∠BDB′+∠CDC′=120°,∴∠B′DC′=60°,∴B′H=x,∴S△DB′C′=(6﹣x)=﹣(x﹣3)2+,∴S△DB′C′的值先增大后减小,故选:D.【点评】本题考查翻折变换、二次函数的性质等知识,解题的关键是学会构建二次函数,利用二次函数的性质解决问题,属于中考选择题中的压轴题.4.(2020•卧龙区一模)如图,已知点A1(1,1),将点A1向上平移1个单位长度,再向右平移2个单位长度得到点A2;将点A2向上平移2个单位长度,再向右平移4个单位长度得到点A3;将点A3向上平移4个单位长度,再向右平移8个单位长度得到点A4,…按这个规律平移下去得到点A n(n为正整数),则点A n的坐标是()A.(2n,2n﹣1)B.(2n﹣1,2n)C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)【考点】坐标与图形变化﹣平移;规律型:点的坐标.【专题】作图题;应用意识.【分析】探究规律,利用根据解决问题即可.【解答】解:由题意知,A1(1,1),A2(3,2),A3(7,4),A4(15,8),…A n(2n﹣1,2n﹣1).故选:D.【点评】本题考查坐标与图形变化﹣平移,解题的关键是学会探究规律的方法,属于中考常考题型.5.(2021•宜兴市校级二模)如图,四边形ABCD为矩形,点E为边AB一点,将△ADE沿DE折叠,点A落在矩形ABCD内的点F处,连接BF,且BE=EF,∠BEF的正弦值为,则的值为()A.B.C.D.【考点】翻折变换(折叠问题);解直角三角形;矩形的性质.【专题】平移、旋转与对称;几何直观.【分析】过点E作EM⊥BF于点M,作点F作FN⊥AB于点N.设NF=24k,EF=25k,则NE=7k,则BE=EF=25k,NB=BE﹣NE=25k﹣7k=18k,所以BF=,根据∠AED+∠FED+∠BEF=∠EBF+∠EFB+∠BEF=180°,推出∠AED=∠FED=∠EBF=∠EFB,所以tan∠AED=tan∠NBF===,则=,因此AD=AE=×25k=k,即可解决问题.【解答】解:如图.过点E作EM⊥BF于点M,作点F作FN⊥AB于点N.∵∠BEF的正弦值为,∴设NF=24k,EF=25k,则NE=7k,∴BE=EF=25k,NB=BE﹣NE=25k﹣7k=18k,∴BF==,由折叠可知,∠AED=∠FED,AE=25k,∴AB=AE+EB=25k+25k=50k,∵BE=EF,∴∠EBF=∠EFB,∵∠AED+∠FED+∠BEF=∠EBF+∠EFB+∠BEF=180°,∴∠AED=∠FED=∠EBF=∠EFB,∴tan∠AED=tan∠NBF===,∴=,∴AD=AE=×25k=k,∴==.故选:A.【点评】本题属于四边形综合题,考查了矩形的性质,翻折变换,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考压轴题.6.(2021•雷州市模拟)如图,菱形ABCD的边长为4,∠A=60°,M是AD的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则当A′C取得最小值时,tan∠DCA′的值为()A.B.C.D.【考点】翻折变换(折叠问题);解直角三角形;等边三角形的判定与性质;菱形的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】根据题意得出A′的位置,过点M作MH⊥DC于点H,进而利用锐角三角函数关系即可解决问题.【解答】解:如图所示:∵MA′是定值,当A′C长度取最小值时,即A′在MC上时,过点M作MH⊥DC于点H,在边长为4的菱形ABCD中,∠A=60°,∵M为AD中点,∴2MD=AD=CD=4,∠HDM=60°,∴∠HMD=30°,∴HD=MD=1,∴HM=DM×cos30°=,∴CH=HD+CD=5,∴tan∠DCA′==,∴tan∠DCA′的值为.故选:B.【点评】本题考查翻折变换、菱形的性质、勾股定理、两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,本题的突破点是正确寻找点A′的位置.7.(2021•滨城区二模)如图,四边形ABCD是矩形纸片,AB=2,对折矩形片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N 处,折痕BM与EF交于点Q;再次展平,连接BN,MN,延长MN交BC于点G;P为线段BM上一动点,有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④QN=BG;⑤若H是BN的中点,则PN+PH的最小值是,其中正确结论的序号是()A.①②③④⑤ B.①②③ C.②③④ D.①③④⑤【考点】翻折变换(折叠问题);解直角三角形;等边三角形的性质;矩形的性质;轴对称﹣最短路线问题.【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】先证明BN=2BE,推出∠ENB=30°,再利用翻折不变性以及直角三角形、等边三角形的性质一一判断即可.【解答】解:在Rt△BEN中,∵BN=AB=2BE,∴∠ENB=30°,∴∠ABN=60°,故①正确,∴∠ABM=∠NBM=∠NBG=30°,∴AM=AB•tan30°=,故②错误,∵∠AMB=∠BMN=60°,∵AD∥BC,∴∠GBM=∠AMB=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG为等边三角形,故③正确.∴BG=BM=2AM=,∵EF∥BC∥AD,AE=BE,∴BQ=QM,MN=NG,∴QN是△BMG的中位线,∴QN=BG,故④正确.连接PE.∵BH=BE=1,∠MBH=∠MBE,∴E、H关于BM对称,∴PE=PH,∴PH+PN=PE+PN,∴E、P、N共线时,PH+PN的值最小,最小值=EN=,故⑤正确,故选:D.【点评】本题考查翻折变换、等边三角形的判定和性质、矩形的性质、三角形中位线定理、直角三角形的性质、轴对称最短问题等知识,熟练掌握翻折变换得性质是解题的关键.8.(2012•十堰)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤ B.①②③④ C.①②③④⑤ D.①②③【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理.【专题】压轴题.【分析】证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=6+4,故结论④错误;如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.【点评】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.9.(2020秋•乌兰察布期末)如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.12B.6C.3D.1【考点】旋转的性质;全等三角形的判定与性质;等边三角形的性质.【专题】等腰三角形与直角三角形.【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN =∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,CG=AB=×24=12,∴MG=CG=×12=6,∴HN=6,故选:B.【点评】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.10.(2021•伊金霍洛旗一模)如图,菱形ABCD的形状和大小保持不变,将菱形ABCD绕点B旋转适当角度得到菱形A'BC'D',边A'D'与AD,DC交于E,F(D,E,F不重合),连接EB,FB.在旋转过程中,下列判断错误的是()A.EB平分∠AED'B.FB平分∠A'FCC.△DEF的周长是一个定值D.S△DEF+2S△BEF=S菱形ABCD【考点】旋转的性质;三角形的面积;菱形的性质.【专题】矩形菱形正方形;应用意识.【分析】如图,过点B作BH⊥A′D′于H,BM⊥AD于M,BN⊥CD于N.利用角平分线的判定定理证明选项A,B正确,再利用全等三角形的性质证明△DEF的周长=2DM =定值,即可判断.【解答】解:如图,过点B作BH⊥A′D′于H,BM⊥AD于M,BN⊥CD于N.∵菱形BA′D′C′是由菱形ABCD旋转得到,菱形的每条边上的高相等,∴BM=BH=BN,∵BH⊥A′D′于H,BM⊥AD于M,BN⊥CD于N,∴BE平分∠AED′,BF平分∠A′FC,故选项A,B不符合题意,∵∠BME=∠NHE=90°,BE=BE,BM=BH,∴Rt△BEM≌Rt△BEH(HL),∴EH=EM,同法可证,FH=FN,∴△DEF的周长=DE+EF+DF=DE+EM+DF+FN=DM+DN,∵∠BMA=∠BNC=90°,BM=BN,BA=BC,∴Rt△BMA≌Rt△BNC(HL),∴AM=CN,∵DA=DC,∴DM=DN,∴△DEF的周长=2DM=定值,故选项C不符合题意,故选:D.【点评】本题考查旋转变换的性质,菱形的性质,角平分线的判定定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.考点卡片1.规律型:点的坐标规律型:点的坐标.2.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.3.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.4.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.5.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.6.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.7.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.8.菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度)9.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.10.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.13.坐标与图形变化-平移(1)平移变换与坐标变化①向右平移a个单位,坐标P(x,y)⇒P(x+a,y)①向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y)①向上平移b个单位,坐标P(x,y)⇒P(x,y+b)①向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)14.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.15.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)。
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(1)求抛物线的解析式;(2)抛物线上是否存在点,使P存在,请说明理由.(1)求该抛物线的函数表达式;(2)在直线上是否存在点,使说明理由.(3)为第一象限内抛物线上的一个动点,且在直线,垂足为,以点为圆心,,且不经过点l C P PM l ⊥M M 2PAB PT S =V M e (4.如图,已知顶点为的抛物线与x 轴交于A ,B 两点,且.(1)求点B 的坐标;(2)求二次函数的解析式;(3)作直线,问抛物线上是否存在点M ,使得,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图,抛物线与x 轴交于A 、B 两点,,,与y 轴交于点C ,连接.()0,6C -()20y ax b a =+≠OC OB =()20y ax b a =+≠CB ()20y ax b a =+≠15MCB ∠=︒24y ax bx =+-()2,0A -()8,0B AC BC 、(1)求抛物线的解析式;(2)求证:;(3)点P 在抛物线上,且,求点P的坐标.6.如图,在平面直角坐标系中,已知抛物线与x 轴交于、两点,与y 轴交于点C ,连接.(1)求抛物线的解析式;(2)在对称轴上是否存在一点M ,使,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)若点P 是直线下方的抛物线上的一个动点,作于点D ,当的值最大时,求此时点P 的坐标及的最大值.∠=∠ACO ABC PCB ACO ∠=∠()230y ax bx a =+-≠()3,0A ()1,0B -AC MCA MAC ∠=∠AC PD AC ⊥PD PD(1)试求抛物线的解析式;(2)点P 是直线下方抛物线上一动点,当的面积最大时,求点P 的坐标;(3)若M 是抛物线上一点,且,请直接写出点M 的坐标.BC BCP V MCB ABC ∠=∠(1)求此抛物线的解析式;(2)点E 是AC 延长线上一点,的平分线CD 交⊙于点D ,连接BD ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使得?如果存在,请求出点P 的坐标;如果不存在,请说明理由.9.综合与实践:如图,抛物线与x 轴交于点和点,与y 轴交于点C ,连接,点D 在抛物线上.(1)求抛物线的解析式;(2)小明探究点D 位置时发现:如图1,点D 在第一象限内的抛物线上,连接,,面积存在最大值,请帮助小明求出面积的最大值;(3)小明进一步探究点D 位置时发现:点D 在抛物线上移动,连接,存在BCE ∠O 'PDB CBD ∠=∠22y ax bx =++()1,0A -()4,0B BC BD CD BCD △BCD △CD(1)求抛物线的解析式.(2)如图1,过点D 作轴,垂足为M ,点P 在直线P 作,,求的最大值,以及此时点(3)将原抛物线沿射线方向平移个单位长度,在平移后的抛物线上存在点得,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过DM x ⊥PE AD ⊥PF DM ⊥2PE PF +CA 5245CAG ∠=︒(1)填空:___________,___________;(2)点为直线上方抛物线上一动点.①连接、,设直线交线段于点,求的最大值;②过点作于点,连接,是否存在点,使得中的,若存在,求出点的坐标;若不存在,请说明理由.(1)求抛物线的解析式;b =c =D AC BC CD BD AC E DE EBD DF AC ⊥F CD D CDF V 2DCF BAC ∠=∠D(1)求抛物线的解析式;(2)抛物线上是否存在点D ,使得?若存在,求出所有点不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 动点,EF 与直线OB 交于点G .设和的面积分别为值.DOB OBC ∠=∠BFG V BEG V S14.如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于、两点且点,,与轴的负半轴交于点,.(1)求此抛物线的解析式;(2)在(1)的条件下,连接,点为直线下方的抛物线上的一点,过点作交于点,交直线于点,若,求点的坐标.(3)在(1)的条件下,点为该抛物线的顶点,过点作轴的平行线交抛物线于另一点,过点作于点,该抛物线对称轴右侧的抛物线上有一点,连接交于点,当时,求的度数.15.已知抛物线与轴相交于点,,与轴相交于点.O 2y x bx c =++x A B (3B 0)y C OB OC =AC P BC P PQ AC ∥AB Q BC D PD DQ =P D C x R R RH AB ⊥H M DM RH Q 2MQ RQ =MQH ∠24y ax bx =++x ()1,0A ()4,0B y C参考答案:的值最大时,此时,。
中考数学压轴题含答案一、选择题1、下列图形中,既是轴对称图形,又是中心对称图形的是()A.菱形B.平行四边形C.矩形(答案:C)2、如果一个三角形的三条边的平方相等,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形(答案:A)3、下列说法正确的是()A.所有的质数都是奇数B.所有的偶数都是合数C.一个数的因数一定比它的倍数小D.自然数一定是正数(答案:A)二、填空题1、若a-b=2,a+b=7,则a²-b²=(答案:14)2、我们学过的数有整数和分数,整数的运算律在分数运算中(答案:同样适用)。
3、一个长方形的周长是20cm,长和宽的比是3:2,则长方形的面积是(答案:60平方厘米)。
三、解答题1、一个圆柱体底面半径为r,高为h,它的体积是多少?(答案:πr²h)2、有一块三角形的土地,底边长为120米,高为90米,这块土地的面积是多少?(答案:5400平方米)3、对于一个给定的整数n,如果它是3的倍数,那么我们就称它为“三的倍数”,否则我们就称它为“非三的倍数”。
现在有一个整数n,它是“三的倍数”,我们可以得出哪些结论?(答案:n+1、n+2、n+3、...、2n都是“三的倍数”,因为它们都可以被3整除。
)中考数学压轴题100题及答案在中考数学考试中,压轴题往往是最具挑战性和最能检验考生数学能力的题目。
为了帮助同学们更好地理解和掌握中考数学的压轴题,本文将分享100道经典的中考数学压轴题及其答案。
一、选择题1、在一个等边三角形中,边长为6,下列哪个选项的面积最接近这个等边三角形的面积?A. 20B. 25C. 30D. 35答案:B解析:等边三角形的面积可以通过计算得出,边长为6的等边三角形的面积为:436293约为28.2,因此选项B最接近。
2、如果一个多边形的内角和是外角和的2倍,那么这个多边形的边数是多少?A. 4B. 6C. 8D. 10答案:C解析:根据多边形的内角和公式和外角和为360度,可列出方程求解。
做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线的解析式及点D 的坐标.(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标.(3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,已知直线112y x=-+与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;(2个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.(1)求抛物线的解析式;(2)点K为线段AB上一动点,过点K作x轴的垂线,交直线CD于点H,交抛物线于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.②连接PA ,以PA 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图1,点A 为抛物线C 1:2122y x =-的顶点,点B 的坐标为(1,0),直线AB 交抛物线C 1于另一点C .(1)求点C 的坐标;(2)如图1,平行于y 轴的直线x =3交直线AB 于点D ,交抛物线C 1于点E ,平行于y 轴的直线x =a 交直线AB 于点F ,交抛物线C 1于点G ,若FG :DE =4:3,求a 的值;(3)如图2,将抛物线C 1向下平移m (m >0)个单位得到抛物线C 2,且抛物线C 2的顶点为P ,交x 轴负半轴于点M ,交射线AB 于点N ,NQ ⊥x 轴于点Q ,当NP 平分∠MNQ 时,求m 的值.图1 图2做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图1,在平面直角坐标系中,已知点A(0,,点B在x轴正半轴上,且∠ABO=30°.动点P在线段AB上,从点A向点B个单位长度的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边三角形PMN.(1)求直线AB的解析式;(2)求等边三角形PMN的边长(用含有t的代数式表示),并求出当等边三角形PMN的顶点M运动到与原点O重合时t的值;(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边三角形PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2时S与t的函数关系式,并求出S的最大值.图2图1做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,平面直角坐标系xOy中,点A的坐标为( 2,2),点B的坐标为(6,6),抛物线经过A,O,B三点.连接OA,OB,AB,线段AB交y 轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O,B重合),直线EF与抛物线交于M,N两点(点N在y轴右侧),连接ON,BN,当点F在线段OB 上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN 相似(点B,O,P分别与点O,A,N对应)的点P的坐标.做题时间:_______至_______ 家长签字:_____________共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,已知点A,B,C的坐标分别为( 1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式.(2)点P从点A出发,沿x轴正方向以每秒1个单位长度的速度向点B移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.设点P运动的时间为t(0≤t≤6)秒,△PBF的面积为S.①求S与t的函数关系式;②当t为何值时,△PBF的面积最大?最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC ⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(-1,m),求m的值.(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值.(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.23.(1)21433y x x =-+; (2)22102412311143422tt S t t t t t ⎧<⎪⎪=-<⎨⎪⎪-+-<<⎩≤≤()()(); (3)存在,t =1或2.中考数学压轴题专项训练(二)参考答案23.(1)213222y x x =-++,(3 2),D ; (2)123(0 2) 2) 2),,,P P P --; (3)存在,点P的坐标为 (或.中考数学压轴题专项训练(三)参考答案中考数学压轴题专项训练(四)参考答案中考数学压轴题专项训练(六)参考答案中考数学压轴题专项训练(七)参考答案中考数学压轴题专项训练(八)参考答案中考数学压轴题专项训练(十)参考答案。
2020年中考数学压轴题一、选择题1.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)2.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣二、填空题3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC =PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是.三、解答题5.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.6.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接PA,点P在运动过程中,PA﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.【答案与解析】一、选择题1.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.2.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF =2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.二、填空题3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD =5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则PA+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO 的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三、解答题5.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=PA′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.6.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=PA﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=PA﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,PA﹣有最大值为,2020年中考数学压轴题一、选择题1.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°2.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题3.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第3题第4题4.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.2.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP=3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题3.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.4.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x 即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.2020年中考数学压轴题一、选择题1.已知函数y =ax 2+bx +c 的图象的一部分如图所示,则a +b +c 取值范围是( )A .﹣2<a +b +c <0B .﹣2<a +b +c <2C .0<a +b +c <2D .a +b +c <22.如图所示,矩形OABC 中,OA =2OC ,D 是对角线OB 上的一点,OD =OB ,E 是边AB 上的一点.AE =AB ,反比例函数y =(x >0)的图象经过D ,E 两点,交BC 于点F ,AC 与OB 交于点M .EF与OB 交于点G ,且四边形BFDE 的面积为.下列结论:①EF ∥AC ;②k =2;③矩形OABC 的面积为;④点F 的坐标为(,)正确结论的个数为( )A .1个B .2个C .3个D .4个 二、填空题 3.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (﹣1,0),点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .4.如图,AE=4,以AE 为直径作⊙O ,点B 是直径AE 上的一动点,以AB 为边在AE 的上方作正方形ABCD ,取CD 的中点M ,将△ADM 沿直线AM 对折,当点D 的对应点D ´落在⊙O 上时,BE 的长为 .三、解答题5.在平面直角坐标系xOy 中,有不重合的两个点Q (x 1,y 1)与P (x 2,y 2).若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“折距”,记做D PQ .特别地,当PQ 与某条坐标轴平EA OB D CM D´行(或重合)时,线段PQ的长即点Q与点P之间的“折距”.例如,在图1中,点P(1,﹣1),点Q(3,﹣2),此时点Q与点P之间的“折距”D PQ=3.(1)①已知O为坐标原点,点A(3,﹣2),B(﹣1,0),则D AO=,D BO=.②点C在直线y=﹣x+4上,请你求出D CO的最小值.(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线y=3x+6上以动点.请你直接写出点E与点F之间“折距”D EF的最小值.6.如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3.动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)用含t的代数式分别表示线段BF和PF的长度,则有BF=,PF=.(2)如图2,作点D关于CE的对称点D′,当FG恰好过点D′时,求t的值.(3)如图3,作△FGP的外接圆⊙O,当点P在运动过程中.①当外接圆⊙O与四边形ABCE的边BC或CE相切时,请求出符合要求的t的值;②当外接圆⊙O的圆心O落在△FGP的内部(不包括边上)时,直接写出t的取值范围.【答案与解析】一、选择题1.【分析】函数y=ax2+bx+c的图象开口向下可知a小于0,由于抛物线顶点在第一象限即抛物线对称轴在y轴右侧,当x=1时,抛物线的值必大于0由此可求出a的取值范围,将a+b+c用a表示出即可得出答案.【解答】解:由图象可知:a<0,图象过点(0,1),所以c=1,图象过点(﹣1,0),则a﹣b+1=0,当x=1时,应有y>0,则a+b+1>0,将a﹣b+1=0代入,可得a+(a+1)+1>0,解得a>﹣1,所以,实数a的取值范围为﹣1<a<0.又a+b+c=2a+2,∴0<a+b+c<2.故选:C.2.【分析】设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,证明=即可判断①;表示出D和E的坐标,根据系数k的几何意义求得k的值即可判断②;求得B的坐标,求得矩形OABC的面积即可判断③;求得F的坐标即可判断④.【解答】解:设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,∴B(a,n),∵E,F在反比例函数y=上,∴ab=mn,∴BC•AE=CF•AB,∴=,∴EF∥AC,故①正确;∵OD=OB,AE=AB,∴D(a,n),E(a,n),∵OA=2OC,∴a=2n,∴B(2n,n),D(n,n),E(2n,n),∵反比例函数y=经过点F,E,∴k=mn=2n•n,∴m=n,∴F(n,n),∴BF=2n﹣n=n,BE=n,∵四边形BFDE的面积=S△BDF+S△BDE=,∴×n×(n﹣n)+×n×(2n﹣n)=,解得n=,∴E(3,),F(,)∴k=3×=2,故②④正确;∵B(3,),∴矩形OABC的面积为,故③正确;故选:A.二、填空题3.【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.4.三、解答题5.【分析】(1)①D AO=|3﹣0|+|﹣2﹣0|=5,即可求解;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,即可求解;(2)EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,即可求解.【解答】解:(1)①D AO=|3﹣0|+|﹣2﹣0|=5,同理D BO=1,故答案为:5,1;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,最小值为4;(2)如图2,过点E分别作x、y轴的平行线交直线y=﹣x+4于F1、F2,则EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,如图3,将直线y=﹣x+4向右平移与圆相切于点E,平移后的直线与x轴交于点G,连接OE,设原直线与x、y轴交于点M、N,则点M、N的坐标分别为(﹣2,0)、点N(0,6),则MN=2,则△MON∽△GEO,则,即,则GO=,EF1=MG=2﹣=.6.【分析】(1)由△PFB∽△ECD,得==,由此即可解决问题.(2)如图2中,由△D′MG∽△CDE,得=,求出MG,根据PF=CG=CM﹣MG,列出方程即可解决问题.(3)①存在.如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG,由PB=MF=MG=FG=PC,得到3t=(5﹣3t),即可解决问题.如图5中,当⊙O与BC相切时,连接GO,延长GO交PF于M,连接OF、OP,由△FGM∽△PFB,得=,列出方程即可解决问题.②求出两种特殊位置t的值即可判断.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠D=90°,AD∥BC,在Rt△ECD中,∵∠D=90°,ED=3.CD=4,∴EC==5,∵PF∥CE,FG∥BC,∴四边形PFGC是平行四边形,∴∠FPB=∠ECB=∠DEC,∴△PFB∽△ECD,∴==,∴==,∴BF=4t,PF=5t,故答案为4t,5t.(2)如图2中,∴D、D′关于CE对称,∴DD′⊥CE,DM=MD′,∵•DE•DC=•EC•DM,∴DM=D′M=,CM==,由△D′MG∽△CDE,得=,∴=,∴MG=,∴PF=CG=CM﹣MG,∴5t=﹣,∴t=.∴t=时,D′落在FG上.(3)存在.①如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG.∵OP⊥BC,BC∥FG,∴PO⊥FG,∴FM=MG由PB=MF=MG=FG=PC,得到3t=(5﹣3t),解得t=.如图5中,当⊙O与EC相切时,连接GO,延长GO交PF于M,连接OF、OP.∵OG⊥EC,BF∥EC,∴GO⊥PF,∴MF=MP=t,∵△FGM∽△PFB,∴=,∴=,解得t=.综上所述t=或时,⊙O与四边形ABCE的一边(AE边除外)相切.②如图6中,当∠FPG=90°时,由cos∠PCG=cos∠CED,∴=,∴t=,如图7中,当∠FGP=90°时,∴=,∴t=,观察图象可知:当<t<时,外接圆⊙O的圆心O落在△FGP的内部.2020年中考数学压轴题一、选择题1.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣82.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值二、填空题3.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF 最大时,S△ADE=.第3题第4题4.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.三、解答题5.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.6.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B 左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【答案与解析】一、选择题1.【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.2.【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.二、填空题3.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH ≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.4.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.三、解答题5.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.6.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.2020年中考数学压轴题一、选择题1.如图,在等腰△ABC中,AB=AC,把△ABC沿EF折叠,点C的对应点为O,连接AO,使AO平分∠BAC,若∠BAC=∠CFE=50°,则点O是()A.△ABC的内心B.△ABC的外心C.△ABF的内心D.△ABF的外心2.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.二、填空题3.如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是.4.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是.三、解答题5.如图,把矩形ABCD沿AC折叠,使点D与点E重合,AE交BC于点F,过点E作EG∥CD交AC于点G,交CF于点H,连接DG.(1)求证:四边形ECDG是菱形;(2)若DG=6,AG=,求EH的值.6.如图,已知△BAC为圆O内接三角形,AB=AC,D为⊙O上一点,连接CD、BD,BD与AC交于点E,且BC2=AC•CE①求证:∠CDB=∠CBD;②若∠D=30°,且⊙O的半径为3+,I为△BCD内心,求OI的长.【答案与解析】一、选择题1.【分析】连接OB、OC,根据AB=AC,AO平分∠BAC,∠BAC=50°,可得AO是BC的垂直平分线,∠BAO=∠CAO=25°,得OB=OC,根据折叠可证明∠OAC=∠OCA=25°,得OA=OC,进而OA=OB=OC,可得点O是三角形ABC的外心.【解答】解:如图,连接OB、OC,∵AB=AC,AO平分∠BAC,∴AO是BC的垂直平分线,∴OB=OC,∵∠BAC=50°,AO平分∠BAC,∴∠BAO=∠CAO=25°,根据折叠可知:CF=OF,∠OFE=∠CFE=50°,∴∠OFC=100°,∴∠FCO=(180°﹣100°)=40°,∵AB=AC,∠BAC=50°,∴∠ACB=(180°﹣50°)=65°,∴∠OCA=∠ACB﹣∠FCO=65°﹣40°=25°,∴∠OAC=∠OCA=25°,∴OA=OC,∴OA=OB=OC,∴O是△ABC的外心.故选:B.2.【分析】过F作FN⊥BC,交BC延长线于N点,连接AC,构造直角△EFN,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,根据相似三角形的对应边成比例,求得NE=CD=,运用正方形性质,可得出△CNF是等腰直角三角形,从而求出CE.【解答】解:如图,过F作FN⊥BC,交BC延长线于N点,连接AC.∵DE的中点为G,EG绕E顺时针旋转90°得EF,∴DE:EF=2:1.∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∴CE:FN=DE:EF=DC:NE=2:1,∴CE=2NF,NE=CD=.∵∠ACB=45°,∴当∠NCF=45°时,A、C、F在一条直线上.则△CNF是等腰直角三角形,∴CN=NF,∴CE=NE=×=,∴CE=时,A、C、F在一条直线上.故选:D.二、填空题3.【分析】作A'F⊥BC于F,则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,A'F=AB=2,得出∠D'=∠A'BC=30°,得出BF=A'F=2,由矩形和平行四边形的性质得出BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,得出CD⊥A'D',得出A'F∥CD,证出四边形A'ECF 是矩形,得出CE=A'F=2,A'E=CF,证出DE=BF=2,即可得出答案.【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;4.【分析】首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.【解答】解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为B i,连接AP,AB i,BB i,∵AO⊥AB1,AP⊥AB i,∴∠OAP=∠B1AB i,又∵AB1=AO•tan30°,AB i=AP•tan30°,∴AB1:AO=AB i:AP,∴△AB1B i∽△AOP,∴∠B1B i=∠AOP.同理得△AB1B2∽△AON,∴∠AB1B2=∠AOP,∴∠AB1B i=∠AB1B2,∴点B i在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).由图形2可知:Rt△APB1中,∠APB1=30°,∴,Rt△AB2N中,∠ANB2=30°,∴=,∴,∵∠PAB1=∠NAB2=90°,∴∠PAN=∠B1AB2,∴△APN∽△AB1B2,∴==,∵ON:y=﹣x,∴△OMN是等腰直角三角形,∴OM=MN=,∴PN=,∴B1B2=,综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.故答案为:.。
中考数学压轴题100题精选及答案全第一篇:数与代数1.下列各组数中,哪一组数最大?A. \frac{1}{2} ,\frac{2}{3},\frac{3}{4},\frac{4}{5}B. 0.99,0.999,0.9999,0.99999C. \sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7}D. 1,10^2,10^3,10^42. 一个整数,十位数与各位数的和为9,再去掉该整数中的各位数,十位数与剩下的数字的和为40,该整数为__________。
A. 45B. 54C. 63D. 723. 已知 a+b=2, ab=-1,求a^2+b^2的值。
A. 3B. 5C. 7D. 94. 解方程 2x-5=3x+1。
A. x=-3.5B. x=-2C. x=2D. x=3.55. 有两个数,各位数字相同,但顺序颠倒,若它们的和为110,这两个数分别是多少?A. 47,74B. 49,94C. 56,65D. 59,956. 若x-3y=-7,x+4y=1,则y的值为__________。
A. -2B. -1C. 0D. 17. 16÷(a-2)=4,则 a 的值为__________。
A. 6B. 8C. 10D. 128. 若a:b=5:3,b:c=7:4,则a∶b∶c=__________。
A. 35:21:12B. 25:15:12C. 25:21:16D. 35:15:169. 若a+3b=5,3a-5b=7,则 a 的值为__________。
A. -2B. -1C. 0D. 110. 已知x+y=3,xy=2,则y的值为__________。
A. 1B. 2C. 3D. 4第二篇:几何图形11. 已知正方形 ABCD 的边长为6,以 BC 为边,画一个正三角形 BCE,连接 AE,AD,请问△ADE 和正方形 ABCD 的面积之比是多少?A. \frac{2}{9}B. \frac{1}{2}C. \frac{4}{9}D.\frac{5}{6}12. 把一张纸平整地放在桌上,在纸的中央画一个圆形,请问可以用多少个直径为5 厘米的圆去覆盖这个圆形(圆覆盖圆)?A. 1B. 2C. 3D. 413. 已知△ABC 是等腰三角形,AB=AC,E是BC中点,DE∥AC,AE=CD=2,求△ABC 的面积。
题型一选择题压轴题
类型一选择几何压轴题
1.如图,四边形ABCD是平行四边形,∠BCD=120°,AB=2,BC=4,点E是直线BC上的点,点F是直线CD上的点,连接AF,AE,EF,点M,N分别是AF,EF 的中点,连接MN,则MN的最小值为()
A.1
B.
C.
D.2-
(第1题)(第2题)
2.如图,四边形ABCD是菱形,对角线AC与BD交于点O,AB=4,AC=2,若
直线l满足:①点A到直线l的距离为2;②直线l与一条对角线平行;③直线l与菱形ABCD的边有交点,则符合题意的直线l的条数为()
A.1
B.2
C.3
D.4
3.如图,在四边形ABCD中,AD∥BC,AB=CD,AD=2,BC=6,BD=5.若点P在四边形ABCD的边上,则使得△PBD的面积为3的点P的个数为()
A.1
B.2
C.3
D.4
(第3题)(第4题)
4.如图,点M是矩形ABCD的边BC,CD上的动点,过点B作BN⊥AM于点P,交矩形ABCD的边于点N,连接DP.若AB=4,AD=3,则DP的长的最小值为()
A. B. C. D.1
5.如图,等腰直角三角形ABC的一个锐角顶点A是⊙O上的一个动点,∠ACB=90°,腰AC、斜边AB分别交⊙O于点E,D,分别过点D,E作⊙O的切线,两线交于点F,且点F恰好是腰BC上的点,连接OC,OD,OE.若⊙O的半径为2,则
OC的长的最大值为()
A.2+1
B.4
C.+1
D.3
(第5题)(第6题)
6.如图,在矩形ABCD中,点E是AB的中点,点F在AD边上,点M,N分别是CD,BC边上的动点.若AB=AF=2,AD=3,则四边形EFMN周长的最小值是()
A.2+
B.2+2
C.5+
D.8
7.如图,⊙P的半径为1,且点P的坐标为(3,2),点C是⊙P上的一个动点,点A,B是x轴上的两点,且OA=OB,AC⊥BC,则AB的最小值为()
A.2
B.4
C.2-1
D.2-2
(第7题)(第8题)
8.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC,CD上的点,当△AEF的周长最小时,∠EAF的度数为()
A.50°
B.60°
C.70°
D.80°
9.如图,菱形ABCD的边AB=8,∠B=60°,点P是AB边上一点,BP=3,点Q是CD边上的一动点.将四边形APQD沿直线PQ折叠,点A的对应点为点A′.当C A′的长度最小时,CQ的长为()
A.5
B.7
C.8
D.
(第9题)(第10题)
10.如图,四边形ABCD是边长为1的正方形,动点E,F分别从点C,D出发,以相同的速度分别沿CB,DC运动(点F到达点C时,两点同时停止运动).连接AE,BF 交于点P.过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()
A. B. C. D.1
类型2 分析判断函数图象题
①分析函数图象判断函数图象
1.一次函数y=ax+b与反比例函数图象y=的图象如图所示,则二次函数
y=a+bx+c的大致图象是()
2.如图,一次函数=-x与二次函数=a+bx+c的图象相交于P,Q两点,则函数y=a+(b+1)x+c的图象可能为()
②分析实际问题判断函数图象
1.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)之间的函数关系式的图象,其中曲线段AB是以B为顶点得抛物线的一部分.下列说法不正确的是()
A.25-50min,王阿姨步行的路程为800m
B.线段CD的函数解析式为s=32t+400(25≤t≤50)
C.5-20min,王阿姨步行速度由慢到快
D.曲线段AB的函数解析式为s=-3 ()+1200(5≤t≤20)
2.甲、乙两位同学同时从400m环形跑道上的同一起跑线出发,同向而行,甲的速度为6m/s,乙的速度为4m/s,设经过x s后,跑道上两人的距离(较短部分)为y(单位:m),则y与x(0≤t≤300)之间的函数关系图象是()
A B C D
③分析动点问题判断函数图象
1.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从B开始向点D运动(不与点D重合).设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()
A B C D
2.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中,AB=2cm,BC=10cm,点C和点M重合,点B,C(M),N在同一直线上.Rt△PMN不动,矩形ABCD沿MN所在直线以1cm/s的速度向右移动,点C与点N重合时停止运动.设移动x s后,矩形ABCD与△PMN重叠部分的面积为y,则y与x之间的函数关系的图象大致是()
1.二次函数y=a+bx+c的图象如图所示,有下列结论:①abc<0;②-4ac<0;
③2a>b;④()<.其中正确的有()
A.1个
B.2个
C.3个
D.4个
2.如图(1),已知ABCD中,点E是AB边上的一动点(与点A不重合),设
AE=x,DE的延长线交CB的延长线于点F,设BF=y(当点B,F重合时,不妨设y=0),且y与x之间的函数关系的图象如图(2)所示,则下面结论中不正确的是()
图(1)图(2)
A.AD=2
B.当x=1时,y=6
C.若BF=2BC,则AE=
D.当AD=DE时,BF=EF=8
答案
类型1 选择几何压轴题
1—5 C C C A C
6—10 C D D B B
类型2 分析判断函数图象题
①分析函数图像判断函数图象
1.A
2.B
②分析实际问题判断函数图象
1.C
2.C
③分析动点问题判断函数图象
1.D
2.A
1.A
2.D。