气体动理论(附答案)
- 格式:doc
- 大小:161.00 KB
- 文档页数:12
⽓体动理论(附答案)⽓体动理论⼀、填空题1.(本题3分)某⽓体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ = 1.24×10-2 kg/m3,则该⽓体分⼦的⽅均根速率为____________。
(1 atm = 1.013×105 Pa)答案:495m/s2.(本题5分)某容器内分⼦密度为1026m-3,每个分⼦的质量为3×10-27kg,设其中1/6分⼦数以速率v=200m/s垂直向容器的⼀壁运动,⽽其余5/6分⼦或者离开此壁、或者平⾏此壁⽅向运动,且分⼦与容器壁的碰撞为完全弹性的。
则(1)每个分⼦作⽤于器壁的冲量ΔP=_____________;(2)每秒碰在器壁单位⾯积上的分⼦数n0=___________;(3)作⽤在器壁上的压强p=_____________;答案:1.2×10-24kgm/s×1028m-2s-14×103Pa3.(本题4分)储有氢⽓的容器以某速度v作定向运动,假设该容器突然停⽌,⽓体的全部定向运动动能都变为⽓体分⼦热运动的动能,此时容器中⽓体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中⽓体分⼦的平均动能增加了_____________J。
(普适⽓体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢⽓分⼦可视为刚性分⼦。
)答案::1212.4×10-234.(本题3分)体积和压强都相同的氦⽓和氢⽓(均视为刚性分⼦理想⽓体),在某⼀温度T下混合,所有氢分⼦所具有的热运动动能在系统总热运动动能中所占的百分⽐为________。
答案:62.5%5.(本题4分)根据能量按⾃由度均分原理,设⽓体分⼦为刚性分⼦,分⼦⾃由度为i,则当温度为T时,(1)⼀个分⼦的平均动能为_______。
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
一、选择题1.下列对最概然速率p v 的表述中,不正确的是( )(A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大;(C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
答案:A2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同;(D )两种气体的压强相同。
答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为:(A )pV/m (B )pV/(kT)(C )pV/(RT) (D )pV/(mT)答案:B4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫ ⎪⎝⎭和BU V ⎛⎫ ⎪⎝⎭的关系为 ( ) (A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A BU U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。
答案:A5.一摩尔单原子分子理想气体的内能( )。
(A )32mol M RT M (B )2i RT (C )32RT (D )32KT 答案:C二、简答题1.能否说速度快的分子温度高,速度慢者温度低,为什么?答案:不能,因为温度是表征大量分子热运动激烈程度的宏观物理量,也就是说是大量分子热运动的集体表现,所以说温度是一个统计值,对单个分子说温度高低是没有意义的。
2.指出以下各式所表示的物理含义:()()()()()RT i RT i kT i kT kT 252423232211ν 答案: (1)表示理想气体分子每个自由度所具有的平均能量(2)表示分子的平均平动动能(3)表示自由度数为的分子的平均能量(4)表示分子自由度数为i 的1mol 理想气体的内能(5)表示分子自由度数为i 的ν mol 理想气体的内能3. 理想气体分子的自由度有哪几种?答案: 理想气体分子的自由度有平动自由度、转动自由度。
第9章 气体动理论 习题解答(一). 选择题1. 已知某理想气体的压强为p ,体积为V ,温度为T ,气体的摩尔质量为M ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的密度为(A )M/V (B )pM/(RT) (C )pM/(kT) (D )p/(RT) [ ] 【分析与解答】气体的密度V m =ρ,由理想气体状态方程 RT M m pV =得RT pMV m ==ρ 正确答案是B 。
2. 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8.(C) 1∶4∶16. (D) 4∶2∶1. [ ] 【分析与解答】同种理想气体,分子数密度n 相同,由理想气体压强公式)21(322v m n p =()()()16:4:1v :v :v ::222==C B A C B A p p p正确答案是C 。
3. 已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度. (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ] 【分析与解答】(A )温度相同,分子平均平动动能相等,wn p 32=,因无法比较单位体积分子数,故无法比较压强大小;(B)由一1密度公式RT pM V m ==ρ,压强不确定,故密度不能判定;(C)讨论分子速率一定要讨论统计平均值;(D) =,氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. 正确答案是D 。
4. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3). (C) (2)、(3) 、(4).(D) (1)、(3) 、(4). [ ] 【分析与解答】上述表述中(1)、(2) 、(3)是正确的。
第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
第七章气体动理论答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一. 选择题1、(基础训练1)[ C ]温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.【解】:分子的平均动能kT i2=ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气和氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 23=,仅与温度有关,所以温度、压强相同的氦气和氧气,它们分子的平均平动动能w 相等。
2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1.【解】:气体分子的方均根速率:MRTv 32=,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同,则其压强之比等于温度之比,即:1:4:16。
3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C) ⎰21d )(v v v v v f /⎰21d )(v v v v f . (D) ⎰21d )(v v v v v f /0()d f v v ∞⎰ .【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以⎰21d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而21()d v v Nf v v ⎰表示速率分布在v 1~v 2区间内的分子数总和,因此⎰21d )(v v v v v f /⎰21d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。
1质量为 m 摩尔质量为 M 的理想气体,在平衡态下,压强 p、体积 V 和热力学温度 T 的关系 式是 A、pV=(M/m)RT B、pT=(M/m)RV C、pV=(m/M)RT D、VT=(m/M)Rp 正确答案: C 我的答案:C 得分: 9.1 分2一定量某理想气体按 =恒量的规律膨胀,则膨胀后理想气体的温度 A、将降低 B、将升高 C、保持不变 D、升高还是降低,不能确定正确答案: A 我的答案:A 得分: 9.1 分3在标准状态下,任何理想气体每立方米中含有的分子数都等于 A、 B、 C、 D、 正确答案: C 我的答案:A 得分: 0.0 分 4 有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有 0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量 为 A、0.16 kg B、0.8 kg C、1.6 kg D、3.2 kg 正确答案: C 我的答案:C 得分: 9.1 分5若理想气体的体积为 V,压强为 p,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常量, R 为普适气体常量,则该理想气体的分子数为 A、pV / m B、pV / (kT) C、pV / (RT) D、pV / (mT) 正确答案: B 我的答案:C 得分: 0.0 分6一定量的理想气体在平衡态态下,气体压强 p、体积 V 和热力学温度 T 的关系式是 A、 B、 C、 D、 正确答案: C 我的答案:C 得分: 9.1 分 7 某理想气体在温度为 27℃和压强为 1.0×10-2atm 情况下,密度为 11.3g/m3,则这气体的 摩尔质量 Mmol=______g/mol。
正确答案:第一空: 27.8-28我的答案: 得分: 0.0 分第一空: 0.0113批语 8热力学温度 T 和摄氏温度 t 的关系是 T=t+_________(取整数) 正确答案:第一空:273我的答案: 得分: 9.1 分 第一空: 273批语 9质量为 m、摩尔质量为 M 的理想气体,处于平衡态时,状态方程写为这 pV=(m/M)________, 状态方程的另一形式为 p=nkT,其中 n 是理想气体的________,k 称为________常数。
气体动理论练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是( )A. p1>p2;B. p1<p2;C. p1=p2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n,单位体积内的气体分子的总平动动能为E kV⁄,单位体积内的气体质量为ρ,分别有如下关系( )A. n不同,E kV⁄不同,ρ不同;B. n不同,E kV⁄不同,ρ相同;C. n相同,E kV⁄相同,ρ不同;D. n相同,E kV⁄相同,ρ相同。
3. 有容积不同的A、B两个容器,A中装有刚体单原子分子理想气体,B中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A和E B的关系( )A. E A<E B;B. E A>E B;C. E A=E B;D.不能确定。
第6单元 气体动理论 序号 学号 姓名 专业、班级一 选择题[ C ]1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10[ B ]2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT)(C) pV/(RT) (D) pV/(mT)[ D ]3.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 )(21221v Nf mv v v ⎰ d v 的物理意义是 (A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。
(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和。
(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能。
(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和。
[ D ]4.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为 1n ,它产生的压强为 1p ,B 种气体的分子数密度为 12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p(C)51p (D)61p二 填空题1.在定压下加热一定量的理想气体,若使其温度升高1K 时,它的体积增加了0.005倍,则气体原来的温度是_________200k__________。
2.用总分子数N 、气体分子速率v 和速率分布函数f(v),表示下列各量:(1)速率大于0v 的分子数= ⎰∞0)(v dv v Nf ;(2)速率大于0v 的那些分子的平均速率=⎰⎰∞∞00)()(v v dv v f dv v vf ;(3)多次观察某一分子的速率,发现其速率大于0v 的概率=⎰∞0)(v dv v f 。
一、选择题[ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同;② ∵kT n V kTNV E k 2323==,而n ,T 均相同,∴V E k 相同;③ RT M MpV mol=→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。
[ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.(B) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线;②23,3210(/)mol O M kg mol -=⨯, 23,210(/)mol H M kg mol -=⨯,得()()22Ov v p p H14=[ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为(A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /0()d f v v ∞⎰ .【提示】① f (v )d v ——表示速率分布在v 附近d v 区间内的分子数占总分子数的百分比;② ⎰21)(v v dv v Nf ——表示速率分布在v 1~v 2区间内的分子数总和;③21()v v vNf v dv ⎰表示速率分布在v 1~v 2区间内的分子的速率总和,因此速率分布在v 1~v 2区间内的分子的平均速率为22112211()()()()v v v v v v v v vNf v dv vf v dvNf v dvf v dv=⎰⎰⎰⎰[ B ]4、(基础训练9)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B) Z 减小而λ增大. (C) Z 增大而λ减小. (D) Z 不变而λ增大.【提示】①2Z d n =,其中v =不变;N n V =,当V 增大时,n 减小; ∴Z 减小。
大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。
(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。
(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。
[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。
第7章 气体动理论7.1基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
7.2基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强p 、体积V 和温度T 3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母i 表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即2i E R T ν=6 最概然速率速率分布函数取极大值时所对应的速率,用p υ表示,p υ==≈,其物理意义为在一定温度下,分布在速率p υ附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用υ表示,υ==≈8 方均根速率各个分子速率的平方平均值的算术平方根,用rm s υ表示,rm s υ==≈9 平均碰撞频率和平均自由程平均碰撞频率Z 是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程λ是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:Zυλ==或λ=7.3基本规律1 理想气体的物态方程pV RTν=或'm pV R TM=pV NkT=或p nkT =2 理想气体的压强公式23k p n ε=3 理想气体的温度公式21322k m kT ευ==4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT5 麦克斯韦气体分子速率分布律 (1)速率分布函数()dN f N d υυ=表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
气体动理论习题与答案一 选择题1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。
A. pV /mB. pV /(kT )C. pV /(RT )D. pV /(mT )解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kTpVN =。
故本题答案为B 。
2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。
A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( )A. 3p 1B. 4p 1C. 5p 1D. 6p 1 解 根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=故本题答案为D 。
3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B.25pV C. 3pV D.27pV解 理想气体的内能RT iU ν2=,物态方程RT pV ν=,刚性三原子分子自由度i =6,因此pV pV RT i U 3262===ν。
因此答案选C 。
4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同解:单位体积内的气体质量即为密度,气体密度RTMpV m ==ρ(式中m 是气体分子质量,M 是气体的摩尔质量),故两种气体的密度不等。
单位体积内的气体分子数即为分子数密度kTpn =,故两种气体的分子数密度相等。
氮气是双原子分子,氦气是单原子分子,故两种气体的单位体积内的原子数不同。
欢迎共阅第12章 气体动理论一、 填空题:1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的压强是 。
(设内胎容积不变)2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -⨯的空气泡升到水面上来,若湖面的温度为17.0℃,则气泡到达湖面的体积8、试说明下列各量的物理物理意义:(1)12kT , (2)32kT , (3)2i kT , (4)2i RT ,(5)32RT , (6)2M i RT Mmol 。
参考答案:1、54.4310pa ⨯2、536.1110m -⨯3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----⨯⋅⨯⨯21211---(D ) (3),(4)3、摩尔数相等的三种理想气体H e 、N 2和CO 2,若从同一初态,经等压加热,且在加热过程中三种气体吸收的热量相等,则体积增量最大的气体是: ( )(A )H e (B )N 2(C )CO 2 (D )三种气体的体积增量相同4、如图所示,一定量理想气体从体积为V 1膨胀到V 2,AB为等压过程,AC 为等温过程AD为绝热过程。
则吸热最多0 V 1的是:()(A)AB过程(B)AC过程(C)AD过程(D)不能确定5、卡诺热机的循环曲线所包围的面积从图中abcda增大为ab’c’da,那么循环abcda与ab’c’da所作的净功和热机效率的变化情况是:()(A)净功增大,效率提高;(B)净功增大,效率降低;(C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.(D) 不行的,这个热机的效率超过理论值.10、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将进行自由膨胀,达到平衡后()(A) 温度不变,熵增加.(B) 温度升高,熵增加.(C) 温度降低,熵增加.(D) 温度不变,熵不变.二、填充题V1、要使一热力学系统的内能变化,可以通过或两种方式,或者两种方式兼用来完成。
《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。
对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。
当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。
由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。
换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。
2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。
3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。
答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。
(2)微观量:描述个别分子运动状态的物理量。
(3)宏观量:表示大量分子集体特征的物理量。
4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。
其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。
可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。
气体动理论一、填空题1.(本题3分)某气体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ= 1.24×10-2 kg/m3,则该气体分子的方均根速率为____________。
(1 atm = 1.013×105 Pa)答案:495m/s2.(本题5分)某容器内分子密度为1026m-3,每个分子的质量为3×10-27kg,设其中1/6分子数以速率v=200m/s垂直向容器的一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性的。
则(1)每个分子作用于器壁的冲量ΔP=_____________;(2)每秒碰在器壁单位面积上的分子数n0=___________;(3)作用在器壁上的压强p=_____________;答案:1.2×10-24kgm/s×1028m-2s-14×103Pa3.(本题4分)储有氢气的容器以某速度v作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中气体分子的平均动能增加了_____________J。
(普适气体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢气分子可视为刚性分子。
)答案::1212.4×10-234.(本题3分)体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为________。
答案:62.5%5.(本题4分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i,则当温度为T时,(1)一个分子的平均动能为_______。
(2)一个摩尔氧气分子的转动动能总和为________。
答案:ikTRT6.(本题5分)图示的两条曲线分别表示氦、氢两种气体在相同温度T时分子按速率的分布,其中(1)曲线I 表示________气分子的速率分布曲线;曲线II 表示________气分子的速率分布曲线。
(2)画有阴影的小长条面积表示____________。
(3)分布曲线下所包围的面积表示__________。
答案:氧,氢速率在v →v +Δv 范围内的分子数占分子数的百分率。
速率在0→∞整个速率区间内的分子数的百分率的总和。
7.(本题3分)图中d A 为器壁上一面元,x 轴与d A 垂直。
已知分子数密度为n ,速率分布函数为()f v r ,则速度分量在v x ~v x +d v x ,v y ~v y +d v y ,v z ~v z +d v z 区间中的分子在d t 时间内与面元d A 相碰的分子数为__________。
答案:Nv x d t d A ()f v r d v x d v y d v z8.(本题5分)用总分子数N 、气体分子速率v 和速度分布函数f (v )表示下列各量:(1)速率大于v 0的分子数=_________;(2)速率大于v0的那些分子的平均速率=_________;(3)多次观察某一分子的速率,发现其速率大于v0的概率=__________。
答案:9.(本题5分)图示的曲线分别表示了氢气和氦气在同一温度下的分子速率的分布情况。
由图可知,氦气分子的最概然速率为______________,氢气分子的最概然速率为_______________。
答案:1000m/s×1000m/s10.(本题4分)氮气在标准状态下的分子平均碰撞频率为5.42×108s-1,分子平均自由程为6×10-6 cm,若温度不变,气压降为0.1atm,则分子的平均碰撞频率变为_____________;平均自由程变为_________________。
答案:5.42×107s -16×10-5 cm11.(本题3分)质量为6.2×10-14g 的某种粒子是浮于27℃的气体中,观察到它们的方均根速率为1.4cm/s ,则该种粒子的平均速率为__________。
(设粒子遵守麦克斯韦速度分布律)答案:1.29×10-2m/s12. 氮气罐容积为50L ,由于用掉部分氮气,压强由71.01310Pa ⨯减为64.05210Pa ⨯,同时罐内氮气温度由30℃降为20℃.求:(1)罐中原有氮气的质量;(2)用掉氮气的质量;(3)用掉的氮气在51.01310Pa ⨯和20℃时应占有的体积.参考解答解题分析由理想气体的状态方程可以计算出气体的质量.在第三问中,同样由理想气体的状态方程反过来从气体的质量求出气体所占的体积.解题过程(1)已知2350L 5.010m V -==⨯,71.01310Pa p =⨯,300.15K T =,22.810kg/mol M -=⨯,得罐中原有氮气的质量为2722.810 1.01310 5.010kg 5.63kg 8.31303.15MpV m RT --⨯⨯⨯⨯⨯===⨯(2)用掉部分氮气之后,64.05210Pa p '=⨯,293.15K T '=.得罐中剩余氮气的质量为2622.810 4.05210 5.010kg 2.31kg 8.31293.15Mp V m RT --'⨯⨯⨯⨯⨯'===⨯ 用掉氮气的质量为(5.63 2.31)kg 3.32kg m m m '∆=-=-=.(3)用掉的氮气在51.01310Pa ⨯和20℃时所占的体积33523.328.31293.15m 2.85m 1.01310 2.810mRT V pM -∆⨯⨯===⨯⨯⨯13.二八自行车车轮的直径为71.12cm ,内胎截面的直径为3.0cm.在-3℃的天气里向空胎内打气.打气筒长为30cm ,截面半径为1.5cm.打了20下,气打足了,这时车胎内气体的温度为7℃,试估算车胎内气体的压强.参考解答解题分析将已知条件代入理想气体状态方程计算即可.解题过程打气筒,V 1=20×30.0cm ×π(1.5cm)2,T 1=-3℃,p 1=1.013×105Pa ,车胎内,V 2=71.12cm ×π(1.5cm)2,T 2=7℃.51221212.810Pa V T p p V T ==⨯ 14.已知大气压强随高度变化的规律为:/0e Mgh RT p p -=.其中M 是分子质量.证明:分子数密度随高度按指数规律减小.设大气的温度不随高度改变.大气的主要成分是氮气和氧气.那么大气氮气分子数密度与氧气分子数密度的比值随高度如何变化?参考解答解题分析压强随高度变化服从玻尔兹曼分布,将理想气体的压强公式代入压强随高度变化的表达式即可.解题过程将理想气体的状态方程写成这样的形式:B p nk T =其中n 是分子数密度。
代入压强随高度变化的表达式,/0B B e Mgh RT p p k T k T-= 有/0e Mgh RT n n -=(1)因此如果大气的温度不随高度改变,则分子数密度随高度按指数规律减小.质量越小的分子数密度随高度下降得越慢。
氮气分子的分子量比氧气分子的分子量小,所以氮气分子比氧气分子质量小,氮气分子数密度随高度下降比氧气分子慢,所以随着高度的增加,氮气分子数密度与氧气分子数密度的比值也增大. 下面用数学表达式来表示,由(1)式,写出氮气分子数密度n N 与氧气分子数密度n O 随高度的变化N /N N0e M gh RT n n -=,O /O O0e M gh RT n n -=(2)它们的比值O N ()/N N0O O0e M M gh RT n n n n -=(3) 由于氧气分子的分子量M N 比氧气分子的分子量M O 小,这一比值随高度的增加而上升.15. N 个假想气体分子,其速率分布如图(当02v v >时分子数为0),求:(1)a ;(2)分子平均速率及方均根速率.参考解答 解题分析分布函数曲线下的总面积就是总分子数N ,由此可定出a 的数值.然后就可以根据图的曲线分段写出分布函数.最后由分布函数求出与速率有关的统计平均值.解题过程(1)曲线OABC 下的面积为总分子数N .由归一化条件1OA BC AB N N N N N N++=,0000321,2225av av av N a N N N v ++==.f2(2)先写出)(x f 函数形式00000003102513()222322a vv v v a f v a v v v v v a v v v ⎧≤≤⎪⎪⎪=-≤≤⎨⎪⎪≤≤⎪⎩ 平均速率00000/23/222000/23/2004559()d d ()d d 2120v v v v v a v v vf v v v v a v v a v v v v ∞==+-+=⎰⎰⎰⎰ 方均根速率00000/23/22222222000/23/2004549()d d ()d d 240v v v v v a a av v v f v v v v v v v v a v v v v ∞==+-+=⎰⎰⎰⎰=16.求在标准状况下1.03cm 氮气中气体分子速率处于500~501m/s 之间的数目.参考解答解题分析利用麦克斯韦速率分布函数.求一段速率区间的总分子数是要用到积分的.但本题的速率区间相对于速率来说非常小,所以可以直接用速率区间相乘,而免于积分.解题过程解:已知273.15K T =,51.01310Pa p =⨯,23N 2810kg/mol M -=⨯故得223N 26N 23A 2810kg 4.6510kg 6.0210M m N --⨯===⨯⨯5325323B 1.01310m 2.710m 1.3810273.15p n k T ---⨯===⨯⨯⨯ 由麦克斯韦速率分布律可知2B 3222B ()4πe 2πmv k T n v m v v n k T -⎛⎫∆=∆ ⎪⎝⎭其中 500m/s v =,1m/s v ∆=将有关的数据代入上式得:31631.8510, 5.010cm n n n--∆=⨯∆=⨯ 17. 质量为10kg 的氮气,当压强为51.01310Pa,p =⨯,体积为7700cm 2,其分子的平均平动动能是多少?参考解答解题分析利用理想气体平均动能的表达式.不过现在温度未直接给出.所以要利用理想气体状态方程.解题过程解:已知23N 2810kg/mol M -=⨯,51.01310Pa p =⨯,337.710m V -=⨯,10kg m =故分子的平均平动动能为2353N 24B 23A 3332810 1.013107.710J 5.4410J 22210 6.02210M pV E k T mN ---⨯⨯⨯⨯⨯===⨯=⨯⨯⨯ 18. 一摩尔双原子理想气体(,m 52V C R =, 1.4γ=)的体积,绝热地膨胀到原来的2倍,122V V =.问:(1)前后平均自由程之比21?λλ=(2)碰撞频率为Z ,前后碰撞频率之比21?Z Z =参考解答解题分析既然是绝热膨胀,就可以利用绝热过程方程.求出终态的压强后,再利用平均自由程式的表达式λ=和碰撞频率的表达式λv Z =,即可求出所需的量.解题过程(1)理想气体进行绝热过程,有1122p V p V γγ=,121121()()2V p p p V γγ== 由理想气物态方程112212p V p V T T =,122212111211()()()2T p V V V T p V V V γγ-==⋅=和平均自由程式λ=, 得到122111211()()222T p T p γγλλ--==⋅= (2)碰撞频率λv Z =,其中v =221 1120.435Z V Z V λλ====19. 测定气体分子速率分布实验要求在高度真空的容器内进行.如果真空度较差,那么容器内允许的气体压强受到什么限制?参考解答解题分析要求气体分子在容器内的运动不受杂质影响,也就是气体分子的平均自由程要大于容器的线度.解题过程如果不是高度真空,容器内有杂质粒子,分子与杂质粒子碰撞会改变速率分布,使得测到的分布不准。