复习表面积和体积(2)
- 格式:doc
- 大小:48.00 KB
- 文档页数:3
2020年小升初数学专题复习训练—空间与图形周长、面积与体积(2)知识点复习一.平行四边形的面积【知识点归纳】平行四边形面积=底×高,用字母表示:S=ah.(a表示底,h表示高)【命题方向】例1:一个平行四边形相邻两条边分别是6厘米、4厘米,量得一条边上的高为5厘米,这个平行四边形的面积是()平方厘米.A、24B、30C、20D、120分析:根据平行四边形的特点可知,底边上的高一定小于另一条斜边,所以高为5厘米对应的底为4厘米,利用面积公式计算即可.解:4×5=20(平方厘米);答:这个平行四边形的面积是20平方厘米.故选:C.点评:此题主要考查平行四边形的特点,分析出相对应的底和高,据公式解答即可.例2:一个平行四边形的底扩大3倍,高扩大2倍,面积就扩大()A、5倍B、6倍C、不变分析:平行四边形面积=底×高底扩大3倍,高扩大2倍,则面积扩大了3×2=6倍.解:因为平行四边形面积=底×高,底扩大3倍,高扩大2倍,则面积扩大了3×2=6(倍),故选:B.点评:本题考查了平行四边形的面积公式.二.三角形的周长和面积【知识点归纳】三角形的周长等于三边长度之和.三角形面积=底×高÷2.【命题方向】例1:4个完全相同的正方形拼成一个长方形.(如图)图中阴影三角形的面积的大小是A、甲>乙>丙B、乙>甲>丙C、丙>甲>乙D、甲=乙=丙分析:因为三角形的面积=底×高÷2,且图中三个阴影三角形等底等高,所以图中阴影三角形的面积都相等.解:因为三角形的面积=底×高÷2,且图中三个阴影三角形等底等高,所以图中阴影三角形的面积都相等.故选:D.点评:此题主要考查等底等高的三角形面积相等.例2:在如图的梯形中,阴影部分的面积是24平方分米,求梯形的面积.分析:由图形可知,阴影部分三角形的高与梯形的高相等,已知三角形的面积和底求出三角形的高,再根据梯形的面积公式s=(a+b)h÷2,计算梯形的面积即可.解:24×2÷8=48÷8=6(分米);(8+10)×6÷2=18×6÷2=54(平方分米);答:梯形的面积是54平方分米.点评:此题解答根据是求出三角形的高(梯形的高),再根据梯形的面积公式解答即可.三.组合图形的面积【知识点归纳】方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减.③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形.【命题方向】例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个圆,阴影部分的面积等于梯形的面积减去圆的面积再加上圆的面积减去三角形面积的差,列式解答即可得到答案.解:[(5+8+5)×5÷2-×3.14×52]+(×3.14×52-5×5÷2),=[18×5÷2-0.785×25]+(0.785×25-25÷2),=[90÷2-19.625]+(19.625-12.5),=[45-19.625]+7.125,=25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr2的应用.四.长方体和正方体的表面积【知识点归纳】长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【命题方向】例1:如果一个正方体的棱长扩大到原来的2倍,那么它的表面积就扩大到原来的()倍.A、2B、4C、6D、8分析:正方体的表面积=棱长×棱长×6,设原来的棱长为a,则扩大后的棱长为2a,分别代入正方体的表面积公式,即可求得面积扩大了多少.解:设原来的棱长为a,则扩大后的棱长为2a,原正方体的表面积=a×a×6=6a2,新正方体的表面积=2a×2a×6=24a2,所以24a2÷6a2=4倍,故选:B.点评:此题主要考查正方体表面积的计算方法.例2:两个表面积都是24平方厘米的正方体,拼成一个长方体.这个长方体的表面积是()平方厘米.A、48B、44C、40D、16分析:两个表面积都是24平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.解:24÷6=4(平方厘米),4×10=40(平方厘米);答:长方体的表面积是40平方厘米.故选:C.点评:此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.五.长方体和正方体的体积【知识点归纳】长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【命题方向】例1:一个正方体的棱长扩大3倍,体积扩大()倍.A、3B、9C、27分析:正方体的体积等于棱长的立方,它的棱长扩大几倍,则它的体积扩大棱长扩大倍数的立方倍,据此规律可得.解:正方体的棱长扩大3倍,它的体积则扩大33=27倍.故选:C.点评:此题考查正方体的体积及其棱长变化引起体积的变化.例2:一只长方体的玻璃缸,长8分米,宽6分米,高4分米,水深2.8分米.如果投入一块棱长为4分米的正方体铁块,缸里的水溢出多少升?分析:根据题意知用水的体积加铁块的体积,再减去玻璃缸的容积,就是溢出水的体积.据此解答.解:8×6×2.8+4×4×4-8×6×4,=134.4+64-192,=6.4(立方分米),=6.4(升).答:向缸里的水溢出6.4升.点评:本题的关键是让学生理解:溢出水的体积=水的体积+铁块的体积-玻璃缸的容积,这一数量关系.六.圆柱的侧面积、表面积和体积【知识点归纳】圆柱的侧面积=底面的周长×高,用字母表示:S侧=Ch(C表示底面的周长,h表示圆柱的高),或S侧=2πrh圆柱的底面积=πr2圆柱的表面积=侧面积+两个底面积,用字母表示:S表=2πr2+2πrh圆柱的体积=底面积×高,用字母表示:V=πr2h.【命题方向】例1:做一个铁皮烟囱需要多少铁皮,就是求烟囱的()A、表面积B、体积C、侧面积分析:根据圆柱体的侧面积的定义知道,圆柱侧面积是指将一个圆柱体沿高展开后得到的长方形的面积,做一个铁皮烟囱实际就是做一个没有上、下底面的圆柱体,要求铁皮的多少就是求烟囱的侧面积.解:因为,烟囱是通风的,是没有上下两个底的,所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,故选:C.点评:此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用.例2:一个圆柱形量杯底面周长是25.12厘米,高是10厘米,把它装满水后,再倒入一个长10厘米,宽8厘米的长方体容器中,水面高多少厘米?分析:由题意可知,把圆柱形容器中的水倒入长方体容器中,只是形状改变了,但是水的体积不变.因此,先根据圆柱的容积(体积)公式v=sh,求出圆柱形容器中水的体积,再除以长方体容器的底面积.由此列式解答.解:3.14×(25.12÷3.14÷2)2×10÷(10×8),=3.14×42×10÷80,=3.14×16×10÷80,=502.4÷80,=6.28(厘米);答:水面高6.28厘米.点评:此题属于圆柱和长方体的容积的实际应用,首先根据圆柱的容积(体积)公式求出水的体积,再用水的体积除以长方体容器的底面积.据出解决问题.七.圆锥的体积【知识点归纳】圆锥体积=×底面积×高,用字母表示:V=Sh=πr2h,(S表示底面积,h表示高)【命题方向】例1:把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()A、扩大3倍B、缩小3倍C、扩大6倍D、缩小6倍分析:根据题意知道,在捏橡皮泥的过程中,它的总体积不变,再根据等底等高的圆锥形和圆柱形的关系,即可得到答案.解:根据等底等高的圆锥形的体积是圆柱形体积的,又因为,在捏橡皮泥的过程中,它的总体积不变,所以,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将扩大3倍;故选:A.点评:解答此题的关键是,根据题意,结合等底等高的圆锥形的体积是圆柱形体积的,即可得到答案.例2:一个圆锥形小麦堆,高1米,底面周长18.84米,如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?分析:根据圆锥的底面周长求出底面半径,再代入圆锥的体积公式求出体积,进而求得重量即可.解:r=C÷2π,=18.84÷(2×3.14),=3(米);V锥=πr2h,=×3.14×32×1,=×3.14×9×1,=9.42(立方米);9.42×0.75=7.065(吨);答:这堆小麦大约有7.065吨.点评:此题考查了圆锥的体积公式的实际应用.同步测试一.选择题(共10小题)1.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积2.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.323.下面说法正确的是()A.圆锥的体积等于圆柱体积的B.把0.56扩大到它的100倍是56C.书的总页数一定,未读的页数与已读的页数成正比例4.把一个棱长1厘米的正方体切成两个完全一样的长方体后,表面积比原来增加()A.50%B.C.5.一底面是正方形的长方体,把它的侧面展开后,正好是一个边长为8分米的正方形,原来长方体的体积是()立方分米.A.32B.64C.166.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.1207.奇思用和两种图形拼成了一个图案(如图),这个图案的面积是()dm2.A.10B.8C.68.如图梯形中有()对面积相等的三角形.A.1B.2C.3D.49.一个三角形和一个平行四边形的底相等,面积也相等,已知平行四边形的高是4厘米,那么三角形的高是()A.8厘米B.4厘米C.2厘米D.16厘米10.平行四边形如图所示,计算其面积的算式可以是()A.24×21B.14×16C.21×16二.填空题(共8小题)11.如图,平行四边形的高是4厘米,它的面积是平方厘米.12.如图中,圆的直径是8厘米,那么图中阴影部分的面积是平方厘米.13.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是厘米.(π取3.14)14.一个圆锥体积是12cm3,底面积是1.2cm2,高是cm.15.一个等腰三角的周长是16厘米,底边是4厘米,腰长是厘米.16.一个三角形和与它等底等高的平行四边形面积和是240平方米,三角形面积是平方米.17.一个长方体的长是10厘米,宽是5厘米,它的高是2厘米.这个长方体的表面积是平方厘米,体积是立方厘米.18.一个正方体,如果高减少3厘米,就变成了一个长方体(如图).这时表面积比原来减少48平方厘米,原来正方体的体积是立方厘米.三.判断题(共5小题)19.一根圆木的长一定,它的体积和横截面积成正比例.(判断对错)20.一块长方体的橡皮泥捏成一个正方体,体积发生了变化.(判断对错)21.图中阴影部分的面积是大平行四边形面积的一半.(判断对错)22.两个三角形相比较,高越长面积就越大.(判断对错)23.圆柱的体积一定比圆锥的体积大,圆锥的体积一定比圆柱的体积小.(判断对错)四.计算题(共5小题)24.计算出下面图形的面积.(单位:厘米)25.已知:直角三角形如图所示,若以AC为轴旋转一周得一个几何体,求这个几何体的体积.26.求阴影部分的面积.(π取3.14)27.计算下面长方体的表面积和正方体的体积.(单位:厘米)28.(表面积和体积)五.应用题(共7小题)29.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?30.小明家一面外墙墙皮脱落,要重新粉刷,每平方米需要用0.5千克涂料.如果涂料的价格是每千克15元,粉刷这面墙需要多少元?31.一块三角形的地,底是600米,高是450米,这块地的面积是多少公顷?32.一个圆锥形沙堆,高1.5米,底面周长是18.84米,如果每立方米沙子重500千克,那么这堆沙子共重多少千克?33.一根圆柱形实心钢管,它的横截面周长是25.12cm,那么它的横截面面积是多少?34.一个长方体的食品盒,长8厘米,宽8厘米,高12厘米,如果围着它贴一圈商标(上、下面不贴),这张商标纸的面积至少有多少平方厘米?35.王大爷家有一块菜地(如图).(1)这块菜地的面积是多少平方米?(2)如果每平方米收青菜12千克,这块菜地一共收青菜多少千克?参考答案与试题解析一.选择题(共10小题)1.【分析】压路机的前轮是圆柱形,压路机的前轮转动一周所压过的路面积是指前轮的侧面积.【解答】解:压路机的前轮转动一周所压过的路面面积是指前轮的侧面积.故选:B.【点评】压路机的前轮的形状是圆柱,这个圆柱是侧躺在地面,转动一周,所压过的面正好是圆柱的侧面.2.【分析】要使削成的圆柱的体积最大,也就是用10厘米作为圆柱的底面直径,8厘米作为圆柱的高,根据圆柱的体积公式:V=Sh,把数据代入公式解答.【解答】解:以10厘米为底面直径,高是8厘米;3.14×(10÷2)2×8=3.14×25×8=78.5×8=628(立方厘米答:这个圆柱体的体积是628立方厘米.故选:C.【点评】解答此题的关键是,如何将一个长方体削成一个最大的圆柱,并找出它们之间的联系,再根据相应的公式解决问题.3.【分析】A.因为等底等高的圆锥的体积是圆柱体积的,所以圆锥体积是圆柱体积的.这种说法是错误的.B.根据小数点的位置移动引起小数大小变化的规律,把一个小数扩大100倍,也就是把这个小数的小数点向右移动两位,即0.56 扩大100倍是56.因此,把0.56扩大到它的100倍是56.这种说法是正确的.C.因为未读的页数+已读的页数=一本书的总页数,所以书的总页数一定,未读的页数与已读的页数不成正比例.因此,书的总页数一定,未读的页数与已读的页数成正比例.这种说法是错误的.据此判断.【解答】解:A.因为等底等高的圆锥的体积是圆柱体积的,所以圆锥体积是圆柱体积的.这种说法是错误的.B.根据小数点的位置移动引起小数大小变化的规律,把一个小数扩大100倍,也就是把这个小数的小数点向右移动两位,即0.56 扩大100倍是56.因此,把0.56扩大到它的100倍是56.这种说法是正确的.C.因为未读的页数+已读的页数=一本书的总页数,所以书的总页数一定,未读的页数与已读的页数不成正比例.因此,书的总页数一定,未读的页数与已读的页数成正比例.这种说法是错误的.故选:B.【点评】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用;小数点的网址移动引起小数大小变化规律的应用;比例的意义及应用.4.【分析】把正方体切成完全一样的两块长方体后,它的表面积比原来增加了2个正方体的面的面积,正方体有6个面,由此即可解答问题.【解答】解:2÷6=答:表面积比原来增加.故选:C.【点评】此题要抓住一个正方体切割出2个完全一样的长方体的方法,得出切割后比原来增加了2个正方体的面,是解决此类问题的关键.5.【分析】理解长方体的侧面展开图:把它的侧面展开后正好成一个边长是8分米的正方形,这说明长方体的底面周长和高相等,都是8分米,因长方体的底面是正方形,所以能求出底面边长,进一步求出底面积,再根据长方体的体积=底面积×高,即可列式解答.【解答】解:底面边长:8÷4=2(分米)底面积:2×2=4(平方分米)体积:4×8=32(立方分米)答:这个长方体的体积是32立方分米.故选:A.【点评】此题考查了长方体的侧面展开图和体积公式,关键是弄清侧面展开图与长方体之间的关系.6.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.7.【分析】通过观察可知这个图案是由4个平行四边形和一个正方形组合而成,根据平行四边形的面积公式计算出4个平行四边形的面积;根据正方形的面积等于对角线乘积的一半计算出正方形的面积;然后将4个平行四边形的面积和正方形的面积相加即可求出答案.【解答】解:2×1×4+×2×2=8+2=10(平方分米)答:这个图案的面积是10平方分米.故选:A.【点评】本题考查了平行四边形的面积公式和正方形面积等于对角线乘积的一半公式的应用,要熟练掌握.8.【分析】根据三角形的面积公式:S=底×高÷2,则等底同高的三角形面积相等;根据图形的特点解答即可.【解答】解:如图,△ABD 与△ACD ,等底同高,所以S △ABD =S △ACD△ABC 与△DBC ,等底同高,所以S △ABC =S △DBC因为S △ABO =S △ABC ﹣S △BOC ,S △DOC =S △DBC ﹣S △BOC ,等量代换得:S △ABO =S △DOC即梯形ABCD 中共有3对面积相等的三角形.故选:C .【点评】本题主要运用三角形的面积与底成正比的性质;等底同高的三角形面积相等.9.【分析】根据平行四边形的面积公式S =ah 及三角形的面积公式S =ah ÷2,推导出在一个平行四边形和一个三角形的面积相等,底边长相等时,三角形的高是平行四边形的高的2倍,再列式解答即可.【解答】解:4×2=8(厘米)答:三角形的高是8分米.故选:A .【点评】本题主要是灵活利用平行四边形的面积公式及三角形的面积公式推导:一个平行四边形和一个三角形的面积相等,底边长相等时,平行四边形的高是三角形的高的一半.10.【分析】根据平行四边形的面积公式:S =ah ,把数据代入公式解答.【解答】解:16×21=33624×14=336答:这个平行四边形的面积是336.故选:C.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式,注意:底与高的对应.二.填空题(共8小题)11.【分析】根据题意可知,平行四边形的底为5厘米时,高不可能为4厘米,因为高是两条平行线内最短的线段,所以这个平行四边形的底应该为3厘米,高为4厘米,那么根据平行四边形的面积=底×高计算即可得到答案,其中平行四边形的边长5厘米不参与计算.【解答】解:3×4=12(平方厘米)答:它的面积为12平方厘米.故答案为:12.【点评】解答此题的关键是确定平行四边形的底为哪一条,然后再根据平行四边形的面积公式进行计算即可.12.【分析】求阴影部分的面积,可以分成两部分:上面阴影部分的面积=半圆的面积﹣三角形的面积,下面阴影部分的面积=长方形的面积﹣半圆的面积,然后把两部分阴影部分的面积相加;圆的面积=πr2,三角形的面积=底×高÷2,由此代入解答即可.【解答】解:3.14×(8÷2)2÷2=3.14×16÷2=25.12(平方厘米)[8×(8÷2)﹣25.12]+[25.12﹣8×(8÷2)÷2]=6.88+9.12=16(平方厘米)答:图中阴影部分的面积是16平方厘米;故答案为:16.【点评】求阴影部分的面积,只要把不规则图形的面积转化为规则图形的面积,即把阴影部分的面积化为求常用图形面积的和与差求解.13.【分析】根据圆柱的侧面展开图特征可知,这个正方形的边长等于圆柱的底面周长和高,由此根据即可解答问题.【解答】解:3.14×4=12.56(厘米)答:圆柱的高是12.56厘米.故答案为:12.56.【点评】解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等.14.【分析】根据圆锥的体积公式:V=sh,那么h=3V÷S,把数据代入公式解答.【解答】解:12×3÷1.2=36÷1.2=30(厘米)答:高是30厘米.故答案为:30.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.15.【分析】已知等腰三角形的周长是16厘米,底边长4厘米,依据等腰三角形的两条腰相等,用三角形的周长减去底边的长,再除以2,就是等腰三角形的腰长,据此解答.【解答】解:(16﹣4)÷2=12÷2=6(厘米)答:腰长是6厘米.故答案为:6.【点评】本题主要考查了学生对等腰三角形周长计算方法的应用,注意等腰三角形的两腰相等.16.【分析】因为平行四边形的面积的是与它等底等高的三角形面积的2倍,所以这两个面积的和是三角形面积的3倍,所以用两个面积的和除以3就是三角形的面积.【解答】解:240÷(1+2)=2400÷3=80(平方米)答:三角形面积是80平方米.故答案为:80.【点评】此题考查了等底等高的三角形与平行四边形的面积之间的关系:平行四边形的面积的是与它等底等高的三角形面积的2倍.17.【分析】根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式:V=abh,把数据分别代入公式解答.【解答】解:(10×5+10×2+5×2)×2=(50+20+10)×2=80×2=160(平方厘米)10×5×2=100(立方厘米)答:这个长方体的表面积是160平方厘米、体积是100立方厘米.故答案为:160、100.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.18.【分析】根据题意,高减少3厘米,表面积比原来减少48平方厘米,表面积减少的只是4个侧面的面积,减少的4个侧面是完全相同的长方形,用减少的面积除以4求出减少的一个面的面积,用面积除以宽(3厘米),即可求出正方体的边长,再根据正方体的体积公式:V=a3,解答即可.【解答】解:边长:48÷4÷3=12÷3=4(厘米)体积:4×4×4=16×4=64(立方厘米)答:原来正方体的体积是64立方厘米.【点评】此题解答关键是理解高减少3厘米,表面积比原来减少48平方厘米,表面积减少的只是4个侧面的面积,底面积不变,进而求出正方体的边长,再根据体积公式解答即可.三.判断题(共5小题)19.【分析】判断体积和横截面积成什么比例关系,就看这两种量是否是对应的比值一定还是乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:因为圆木的体积÷横截面积=圆木的长(一定),是比值一定,所以一根圆木的长一定,它的体积和横截面积成正比例;原题说法正确.故答案为:√.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定还是乘积一定,再做出判断.20.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积,所以把一块长方体橡皮泥捏成一个正方体后,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体橡皮泥捏成一个正方体后,只是形状变了,但体积不变,故原题说法错误;【点评】此题考查的目的是理解掌握物体体积的意义,物体所占空间的大小叫做物体的体积.21.【分析】由题意可知:因为3个阴影三角形的底的和等于平行四边形的底,高等于平行四边形的高,所以3个阴影三角形的面积和等于平行四边形的面积的一半,据此即可进行解答.【解答】解:因为3个阴影三角形的底的和等于平行四边形的底,高等于平行四边形的高,所以3个阴影三角形的面积和等于平行四边形的面积的一半;所以原题说法正确.故答案为:√.【点评】解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.22.【分析】三角形的面积=底×高÷2,因此决定三角形面积大小的因素有两个,那就是它的底和对应底上的高,据此即可解答.【解答】解:根据以上分析知:当三角形的底一定时,高越长,面积越大,如三角形的底也是变化的,高越长,面积不一定越大.故答案为:×.【点评】本题主要考查了根据三角形面积公式解答问题的能力.23.【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以在没有确定圆柱与圆锥是否等底等高这个前提条件下,无法确定圆柱。
第28讲表面积与体积(二)一、知识要点解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定。
二、精讲精练【例题1】有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。
把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。
如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。
两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。
把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。
3×3×0.06+2×2×0.04=0.7(立方米)0.7÷6的平方=7/360(米)=1又17/18(厘米)答:大水池的水面升高了1又17/18厘米。
练习1:1、有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。
把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?2、用直径为20厘米的圆钢,锻造成长、宽、高分别为30厘米、20厘米、5厘米的长方体钢板,应截取圆钢多长(精确到0.1厘米)?3、将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗),求这个大正方体的体积。
表面积和体积(二)【知识点1】:长方体正方体的切割与拼接例1:一个长方体底面是一个边长为20厘米的正方形,高为40厘米,如果把它的高增加5厘米,它的表面积会增加多少平方厘米?练习1:有一个长方体,如果把高增加3cm后,就变成一个正方体,表面积就会增加96cm2。
求这个长方体的体积。
练习2:把一个长方体和一个正方体拼成一个新的长方体,这个新长方体的表面积比原来的长方体的表面积增加了80平方厘米,求正方体的表面积。
练习3:把一个长方体截去一个高为8厘米的长方形后,剩下的部分是一个正方体。
正方体的表面积比原来长方体的表面积减少320平方厘米。
求原来长方体的体积。
例2:把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了多少平方厘米。
练习1:一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方体表面积多了200平方厘米,求原来长方体的表面积?练习2:把一个正方体木块锯成3个大小一样的小长方体后,表面积增加了36平方厘米。
原来正方体的表面积是多少?练习3:用两个棱长是3厘米的正方体,拼成一个长方体,它的表面积比两个正方体的表面积少多少平方厘米,这个长方体的表面积是多少平方厘米。
例3:把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?练习1:一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的小正方体,表面积增加了多少平方厘米?练习2:有一个棱长是1米的正方体木块,如果把它锯成相等的8个小正方体,表面积增加多少平方米?练习3:如下图,一个正方体被切成12个大大小小的长方体,这些长方体表面积的总和是350平方厘米,求原来正方体的表面积和体积。
例4:把一个长为10分米,宽为6分米,高为8分米的长方形,切割成相等的两个长方体,有几种切法,那种增加的表面积最多?哪种增加的表面积最少?练习1:把两个相同的长方体拼成一个大的长方体,已知小长方体的长是8cm,宽是6cm,高是3cm。
《立体图形的表面积和体积》复习2教学目标:1.进一步掌握表面积和体积的计算方法,能灵活应用表面积和体积的知识解决实际问题。
2.能联系实际说明解决问题的思考过程,培养数学思维水平和分析问题、解决问题的水平,进一步发展空间观点。
3. 培养学生敢于交流、擅长倾听、积极补充的水平。
渗透画图解决问题的策略。
教学重点:使用表面积和体积的计算方法解决实际问题。
教学难点:灵活使用知识解决实际问题。
教学过程:一、揭示课题师:今天我们继续复习生:立体图形的表面积和体积。
师:我们今天重点复习相关立体图形表面积和体积的实际问题。
二、求什么师:关于实际问题,我们总结了四步,生:一读、二想、三算、四查。
(板书)师:一读,那请大家读一读。
生:制作一个直径3分米,高5分米的圆柱形无盖铁皮水桶,需要多少铁皮?师:读完后你知道了什么?生:需要多少铁皮就是求圆柱的侧面积加一个底面积。
师:一读,就是读完我们需要清楚求什么?(板书:求什么?)那下面我们就来试一试。
出示活动要求,一起读一读合作要求(1).独立完成练习纸第一题。
(2).完成后小组内交流想法,准备全班交流。
1.做10根通风管,一共需要多少铁皮就是求()A一根通风管的侧面积 B一根通风管侧面积的10倍C体积2.一种计算机包装箱标注的尺寸是380×260×530(单位cm)。
它所占的空间是多少立方分米?A表面积 B体积 C底面积做这个包装箱至少要硬纸板多少平方分米?A表面积 B体积 C底面积3.一个长方体金鱼缸,长60厘米,宽40厘米,高40厘米,小军不小心把其中的一个面打破了,已知爸爸重新配了一块1600平方厘米的玻璃,请问小军可能是把那个面打破的?A左面 B上面 C前面4.一个棱长是6厘米的魔方,算式6×6×6算的是什么?A表面积 B体积 C表面积或者体积师:比较,算表面积和体积的算式一样,但什么是不一样的。
(1)表面积和体积的意义不同,(2)计算方法不同,最后的6一个表示6个面,一个表示棱长6cm,(3)单位不同师:由这题你想到了哪道判断题。
专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R=2. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1∶4,则该圆台外接球的表面积为( )A .56πB .64πC .112πD .128πh r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )AB .CD 例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.6例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【总结提升】求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A. B. C. D例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.例18. (2019年高考天津卷理)的正方形,侧棱长均若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方25体确定直径解决外接问题.专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C【解析】【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为: 226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.h r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =故选:C.例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1⊙4,则该圆台外接球的表面积为( ) A .56πB .64πC .112πD .128π 【答案】C【解析】【分析】作出圆台的轴截面等腰梯形,其外接圆是圆台外接球的大圆,在这个轴截面中进行计算可得.【详解】如图等腰梯形ABCD 是圆台的轴截面,EF 是圆台的对称轴,圆台上、下底面的面积之比为1:4,则半径比为1:2,设圆台上、下底面半径分别为r ,2r ,因母线与轴的夹角是60︒,母线长为2,可得圆台的高为1,r =R ,球心到下底面(大圆面)的距离为x ,若球心在圆台两底面之间,如图点M 位置,则222R x =+且222(1)R x =-+,无解;若圆台两底面在球心同侧,如图点O 位置,则222R x =+且222(1)R x =++,解得4x =,则228R =, 则该圆台外接球的表面积为2112R 4π=π.故选:C .【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π【答案】B【解析】【分析】设圆锥的高为h ,利用母线与底面所成角求出高即可得解.【详解】设圆锥的高为h , 因为母线与底面所成的角为π6,所以πtan 61h =.圆锥的体积2π1π3=⨯⨯=V . 故选:B例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯ 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯' ()()679933320607109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) AB.CD【答案】C【解析】【分析】 设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙, 所以122r r =, 又12222r r l lπππ+=, 则121r r l +=, 所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以221122214313r h l V V r h ππ==甲乙 故选:C.例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.【答案】 203##263 22##322 【解析】【分析】第一空,将该多面体置于正方体中,由此可知该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,由此可求得其体积;第二空,结合阿基米德多面体的外接球刚好是补形后正方体的棱切球,再求M ,N 两点间距离的最大值即可.【详解】依题意,可将该多面体补成一个棱长为2的正方体,如图,所以该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,其体积112088111323V =-⨯⨯⨯⨯⨯=; 该阿基米德多面体的外接球刚好是正方体的棱切球,即与正方体的各条棱相切于棱的中点的球,该球直径为M ,N 两点间距离的最大值为外接球的直径,则max MN =故答案为:203; 【总结提升】1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:AB AD DB===∴ADB△是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△该几何体的表面积是:632⨯++ 故选:C.例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【答案】232π+33π##3π3【解析】【分析】先画出直观图,再求出圆锥的高,求出两个半圆锥的侧面积之和,从而求出此几何体的表面积和体积.【详解】该几何体为两个底面半径为1,母线长为2的半圆锥拼接而成,设圆锥的高为h,由勾股定理得:413h=-=,则两个半圆锥的侧面积之和为12π22π2⨯⨯=,如图,AB =2CD =,且AB CD ⊥,所以四边形ADBC 的面积为22÷=, 该几何体的表面积为232π+,该几何体的体积为21π13⨯=故答案为:2π 【总结提升】 求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,CD ∴= 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .2【答案】C【解析】 设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d = 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=3a =,2233r ∴==∴球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C . D【答案】D【解析】【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =, D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==PA PB PC ∴=====2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴R ∴=,34433V R ∴=π==,故选D. 例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B .34π C .2π D .4π 【答案】B 【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴2r ==. ∴圆柱的体积为V =πr 2h =34π×1=34π. 故选B .例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】B【解析】由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为68102+-=2,∴R ≤2. 又2R ≤3,∴R ≤32,∴V ma x =3439()322ππ=.故选B . 点睛:解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题.例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.【答案】144π【解析】【分析】设球心为O ,作出过球心的截面图如图所示,然后根据已知条件结合球的性质求解即可.【详解】 设球心为O,作出过球心的截面图如图所示,则OA =由截面圆的周长为6π,得26AB ππ⨯=,∴3AB =,6.所以该球的表面积为246=144ππ⨯.故答案为:144π.例18. (2019年高考天津卷理)的正方形,侧棱长若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】,借助勾股定理,可知四棱锥的高.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,圆柱的底面半径为, 故圆柱的体积为. 例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】 25π42=11221ππ124⎛⎫⨯⨯= ⎪⎝⎭易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O , 由于223122AM =-=,故1222222S =⨯⨯=△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:343V r π==.. 【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.。
第二节简单几何体的表面积和体积复习目标学法指导1.柱、锥、台体的表面积和体积公式.2.球的表面积和体积公式.3.一些简单组合体表面积和体积的计算.4.柱、锥、台体之间关系.(发展要求)1.搞清楚几何体的表面积包括侧面积和底面积.2.求侧面积时,往往需要研究侧面展开图.3.会分解简单组合体为常见的柱、锥、台,进一步求出面积、体积.4.所有公式均不要求记忆.空间几何体的表面积和体积公式如下表面积体积S表=S侧+2S底表面积即空间几何体暴露在外的所有面的面积之和棱柱的底面积为S,高为h,V=S·hV柱=S·hS=S′V台=13(S′+S S +S)h S表=S侧+S底棱锥的底面积为S,高为h,V=13S ·h S ′=0 V 锥=13S ·hS 表=S 侧+ S 上底+S 下底棱台的上、下底面 面积分别为S ′,S,高为h, V=13(S ′+ S S+S)h圆柱的底面半径和母线长分别为r,lS 表=2πr 2+2πrl 圆柱的高为h,V=πr 2h圆锥的底面半径和母线长分别为r,l S 表=πr 2+πrl 圆锥的高为h,V=13πr 2h圆台的上、下底面半 径和母线长分圆台的高为h,V=13π(r ′2+别为r,r′,l,S表=π(r′2+r2+r′l+rl)r′r+r2)h球球半径为R,S球=4πR2V球=43πR31.概念理解(1)表面积应为侧面积和底面积的和,要注意组合体中哪些部分暴露或遮挡.(2)求空间几何体体积的常用方法①公式法:直接根据相关的体积公式计算.②等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.③割补法:把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体.2.求面积或体积中相关联的结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①正方体的外接球,则3②正方体的内切球,则2R=a;③球与正方体的各棱相切,则2(2)长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=222a b c ++.(3)正四面体的外接球与内切球的半径之比为3∶1.1.圆柱的底面积为S,侧面展开图是一个正方形,那么圆柱的侧面积是( A )(A)4πS (B)2πS (C)πS (D)23πS 解析:由πr 2=S 得圆柱的底面半径是πS , 故侧面展开图的边长为2π·πS =2πS,所以圆柱的侧面积是4πS.故选A.2.正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为3,D为BC 的中点,则三棱锥A-B 1DC 1的体积为 . 解析:如图,在正三棱柱ABC-A 1B 1C 1中, 因为AD ⊥BC,AD ⊥BB 1, BB 1∩BC=B,所以AD ⊥平面B 1DC 1. 所以11A B DC V-=1113B DC S ∆·AD=13×12×233=1. 答案:13.某几何体的三视图如图所示(单位:cm),则该几何体的体积为 cm 3,表面积为 cm 2.解析:由三视图可得该几何体为二分之一圆锥, 圆锥的底面半径为1,高为2,所以可得该几何体的体积为12×13×π×12×2=π3, 该几何体的表面积为12×π×12+12π×114++12×2×2=)51π2+2.答案: π3)51π2+24.已知正四棱锥O-ABCD 32,3,则以O 为球心,OA 为半径的球的表面积是 . 解析:设O 到底面的距离为h,则13×3×32,解得32()()2233+62262h ⎛⎫+ ⎪ ⎪⎝⎭6故球的表面积为4π×62=24π.答案:24π5.(2019·浙江宁波模拟)已知一个三棱锥的三视图如图所示,其中俯视图是顶角为120°的等腰三角形,侧视图为直角三角形,则该三棱锥的表面积为,该三棱锥的外接球体积为.解析:由三视图得几何体的直观图如图.所以S表=2×12×2×2+12×3512×3 1153如图,作DE⊥DB,以D为原点,DB所在直线为x轴,DE所在直线为y 轴,DA所在直线为z轴,建立空间直角坐标系,则3设球心坐标为(x,y,z),因为(x-2)2+y2+z2=x2+y2+z2,①x2+y2+(z-2)2=x2+y2+z2,②(x+1)23)2+z2=x2+y2+z2,③所以x=1,y=3,z=1,所以球心的坐标是(1,3,1), 所以球的半径是()222131++=5.所以球的体积是43π×(5)3=2053π.答案:4+15+32053π考点一几何体的表面积[例1] (1)(2018·金丽衢十二校联考)某四面体的三视图如图所示,正视图、侧视图都是腰长为2的等腰直角三角形,俯视图是边长为2的正方形,则此四面体的最大面的面积是( )(A)2 23(D)4(2)(2019·湖州模拟)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )(A)4π3(B)5π3(C)4π3(D)5π3(3)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为;(4)四棱锥S-ABCD中,底面ABCD是边长为2的正方形,侧面SAD是以SD为斜边的等腰直角三角形,若四棱锥S-ABCD的体积取值范围为4383],则该四棱锥外接球表面积的取值范围是.解析:(1)因为几何体为一个四面体,六条棱长分别为2223所以四面体的四个面的面积分别为12×2×2=2,12×2×2212×2×221 2×22sin π33因此四面体的最大面的面积是3.故选C.(2)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(3)设圆锥底面半径为r,母线长为l,母线与轴夹角为θ, 则=22π122rl r l r⋅-2π,r l=3,即sin θ=3,θ=π3. 解析:(4)四棱锥S-ABCD 中,可得AD ⊥SA,AD ⊥AB ⇒AD ⊥平面SAB ⇒平面SAB ⊥平面ABCD,过S 作SO ⊥AB 于O,则SO ⊥平面ABCD, 设∠SAB=θ, 故S ABCDV-=13S 四边形ABCD ·SO=83sin θ, 所以sin θ∈[3,1]⇒θ∈[π3,2π3]⇒-12≤cos θ≤12, 在△SAB 中,SA=AB=2, 则有SB=221cos θ-,所以△SAB 的外接圆半径r=2sin SBθ=21cos θ-,将该四棱锥补成一个以SAB 为一个底面的直三棱柱,得外接球的半径R=21r +⇒S=4πR2=4π(21cos θ++1), 所以S ∈[28π3,20π]. 答案:(1)C (2)D (3)π3答案:(4)[28π3,20π] (1)已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.(2)多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开成平面图形计算,而表面积是侧面积与底面圆的面积之和.1.(2019·浙江十校联盟)如图所示,已知某几何体的三视图及其尺寸(单位:cm),则该几何体的表面积为( C )(A)15π cm2(B)21π cm2(C)24π cm2(D)33π cm2解析:由三视图可知,则该几何体是一个圆锥,圆锥的底面半径为3,母线长为5,故该几何体的表面积为S表=πr2+πrl=π×32+π×3×5=24π(cm2).故选C.2.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( A )(A)81π4(B)16π(C)9π(D)27π4解析:易知球心在正四棱锥的高上,设球的半径为R,则(4-R)2+(2)2=R2, 解得R=94,所以球的表面积为4π×(94)2=814π.故选A.考点二几何体的体积[例2] (1)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )(A)12cm3(B)1 cm3(C)16 cm3 (D)13cm3(2)(2018·天津卷)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H, M(如图),则四棱锥M-EFGH的体积为.解析:(1)由题意,根据给定的三视图可知,该几何体表示一个底面为腰长为1的等腰直角三角形,高为1的三棱锥, 如图所示,所以该三棱锥的体积为V=13×12×1×1×1=16(cm 3),故选C.解析:(2)依题意,易知四棱锥M-EFGH 是一个正四棱锥,且底面边长为2,高为12. 故M EFGHV=13×(2)2×12=112. 答案:(1)C 答案:(2)112(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解,其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.某三棱锥的三视图如图所示,则该三棱锥的体积为( D )(A)60 (B)30 (C)20 (D)10解析:如图,把三棱锥A-BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A-BCD 的高为4,故该三棱锥的体积V=13×12×5×3×4=10.故选D.考点三 与面积、体积相关的综合问题[例3] (1)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则12S S = ;(2)将边长为a 的正方形ABCD 沿对角线AC 折起,点A,B,C,D 折叠后对应点为A ′,B ′,C ′,D ′,使B ′D ′=a,则三棱锥D ′-A ′B ′C ′的体积为 .解析:(1)设正四面体棱长为a,则正四面体的表面积为 S 1=43a 23a2,正四面体的高2233a a ⎛⎫- ⎪ ⎪⎝⎭6a,由13r ·S 1=1332·h 知r=146a. 因此内切球的表面积为S 2=4πr 2=2π6a,则12S S 2236a a 63.解析:(2)如图所示,正方形ABCD 及折叠后的直观图.易知在直观图中,A ′B ′=B ′C ′=C ′D ′=D ′A ′=a, 且A ′D ′⊥D ′C ′,A ′B ′⊥B ′C ′, 取A ′C ′的中点E,连接D ′E,B ′E, 则D ′E ⊥A ′C ′,D ′E=EB ′=2a,所以D ′E ⊥EB ′,所以D ′E ⊥平面A ′B ′C ′. D ′E 即为三棱锥D ′-A ′B ′C ′的高. 故D A B C V''''-=13S △A ′B ′C ′·D ′E =13×12×a ×a ×2a=2a 3.答案:(1)63 答案:(2)2a 3(1)①解决与球有关问题的关键是球心及球的半径,在球中球心与截面圆圆心的连线、截面圆圆心与截面圆周上一点、该点与球心的连线构成一个直角三角形.②解决多面体(或旋转体)的外接球、内切球问题的关键是确定球心在多面体(或旋转体)中的位置,找到球半径(或直径)与几何体相关元素之间的关系.有时将多面体补形为正(长)方体再求解.(2)求几何体表面上两点间的最短距离的常用方法是选择恰当的母线或棱将几何体展开,转化为求平面上两点间的最短距离.1.已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC,AA 1=12,则球O 的半径为( C ) (A)3172 (B)210(C)132(D)310解析:如图,由球心作平面ABC 的垂线, 则垂足为BC 的中点M.又AM=12BC=52,OM=12AA 1=6, 所以球O 的半径 R=OA=22562⎛⎫+ ⎪⎝⎭=132. 故选C.2.已知某几何体的三视图如图所示,则该几何体的表面积是 ,体积是 .解析:本题考查空间几何体的三视图、体积和表面积的计算.由三视图得该几何体为底面是以上底为1,下底为3,高为3的直角梯形,高为3的直四棱柱,则其表面积为2×3×1+32+3×3+1×3+3×3+3×13=33+313,体积为3×3×1+32=18.答案:33+31318考点四易错辨析[例4] (2019·浙江绍兴模拟)如图是由半球和圆柱组合而成的几何体的三视图,则该几何体的体积为( )(A)5π3 (B)8π3(C)10π3(D)12+2π3解析:由题得,几何体是水平放置的一个圆柱和半个球,所以该几何体的体积为V=43π×13×12+π×12×2=83π,故选B.正确解决此类问题应注意确认几何体的形状时,要紧扣三视图,不能凭感觉去确定.已知直三棱柱ABC-A1B1C1的侧棱长为4,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA1,BB1,CC1分别交于三点M,N,Q,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为( C ) 2(B)3 3(D)4解析:如图,不妨设N在B处,AM=h,CQ=m,则有MB2=h2+4,BQ2=m2+4,MQ2=(h-m)2+4,由MB2=BQ2+MQ2,得m2-hm+2=0.则Δ=h2-8≥0,即h2≥8,所以该直角三角形的斜边MB≥23.故选C.类型一几何体的表面积1.如图是一个封闭几何体的三视图,则该几何体的表面积为( C )(A)7π cm2(B)8π cm2(C)9π cm2(D)11π cm2解析:依题意,题中的几何体是从一个圆柱中挖去一个半球后所剩余的部分,其中圆柱的底面半径是1 cm、高是 3 cm,球的半径是1 cm,因此该几何体表面积等于12×(4π×12)+π×12+2π×1×3=9π(cm2).故选C.2.某三棱锥的三视图如图所示,该三棱锥的表面积是( B )(A)28+65(B)30+65(C)56+125(D)60+125解析:根据三棱锥的三视图可还原此几何体的直观图如图,此几何体为一个底面为直角三角形,高为4的三棱锥,因此表面积为S=12×(2+3)×4+12×4×5+12×4×(2+3)+12×5415 5故选B.类型二几何体的体积3.某几何体的三视图如图所示,它的体积为( C )(A)72π(B)48π(C)30π(D)24π解析:由三视图知该几何体是由一个半球和一个圆锥构成的组合体,所以其体积为V=12×43π×33+13π×32×4=30π.故选C.4.某几何体的三视图如图所示,则该几何体的体积为( D )(A)π2(B)1+π2(C)1+π(D)2+π解析:由三视图可得,该几何体是一个长方体和半个圆柱的组合体,则该几何体的体积为V=12×2+12×π×12×2=2+π,故选D.5.(2018·全国Ⅲ卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为3则三棱锥D-ABC体积的最大值为( B )3333解析:由等边△ABC的面积为3323,所以AB=6,所以等边△ABC的外接圆的半径为r=33AB=23.设球的半径为R,球心到等边△ABC的外接圆圆心的距离为d,则d=22R r-=1612-=2.所以三棱锥D-ABC高的最大值为2+4=6,所以三棱锥D-ABC体积的最大值为13×93×6=183.故选B.6.(2019·名校协作体模拟)某几何体的三视图(单位:mm)如图所示,则它的体积是cm3,表面积是cm2.解析:由三视图得该几何体底面是一个以上底为2,下底为4,高为3的直角梯形,高为33的四棱锥,则其体积为13×33×2+42×3=93(cm3),表面积为1 2×3×33+2+42×3+12×3×2+12×3×4+12×5×33=(18+63)(cm2).答案:93(18+63)7.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.解析:由题意知所给的几何体是棱长均为2的八面体,它是由两个有公共底面的正四棱锥组合而成的,正四棱锥的高为1,所以这个八面体的体积为2V 正四棱锥=2×13×(2)2×1=43.答案:43类型三 面积、体积综合问题8.(2018·浙江绍兴质量调测)已知一个几何体的三视图如图所示,则该几何体的体积是( A )(A)83 (B)8 (C)203(D)6 解析:如图所示,在棱长为2的正方体中,题中的三视图对应的几何体为四棱锥P-ADC 1B 1,其中P 为棱A 1D 1的中点,则该几何体的体积11P ADC B V -=211P DB C V -=211D PB C V-=2×13×11PB C S∆×DD 1=83. 故选A.9.已知球的直径SC=4,A,B是该球球面上的两点,AB=3,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为( C )(A)33(B)23(C)3 (D)1解析:由题意知,如图所示,在棱锥S-ABC中,△SAC,△SBC都是有一个角为30°的直角三角形,且3,SC=4,所以3作BD⊥3×3)2×3. SC于D点,连接AD,易证SC⊥平面ABD,因此V=13故选C.。
第2讲空间几何体的表面积与体积【2014年高考会这样考】考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大.【复习指导】本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题.基础梳理1.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh正棱台S侧=12(C+C′)h′V=13(S上+S下+S上S下)h球S球面=4πR2V=43πR32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.两种方法(1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图.(2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.双基自测1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是().A.4πS B.2πSC.πS D.23 3πS解析设圆柱底面圆的半径为r,高为h,则r=S π,又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS.答案 A2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为().A.3πa2B.6πa2C.12πa2D.24πa2解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为(2a)2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2.答案 B3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是( ).A .8B .6 2C .10D .8 2解析 由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C. 答案 C 4.(2011·湖南)设右图是某几何体的三视图,则该几何体的体积为( ). A.92π+12 B.92π+18 C .9π+42 D .36π+18解析 该几何体是由一个球与一个长方体组成的组合体,球的直径为3,长方体的底面是边长为3的正方形,高为2,故所求体积为2×32+43π⎝ ⎛⎭⎪⎫323=92π+18.答案 B5.若一个球的体积为43π,则它的表面积为________. 解析 V =4π3R 3=43π,∴R =3,S =4πR 2=4π·3=12π. 答案 12π考向一几何体的表面积【例1】►(2011·安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为().A.48 B.32+817C.48+817 D.80[审题视点] 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面积.解析换个视角看问题,该几何体可以看成是底面为等腰梯形,高为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为17,所以该几何体的表面积为48+817.答案 C以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.【训练1】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于().A. 3 B.2C.2 3 D.6解析由正视图可知此三棱柱是一个底面边长为2的正三角形、侧棱为1的直三棱柱,则此三棱柱的侧面积为2×1×3=6.答案 D考向二 几何体的体积【例2】►(2011·广东)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( ).A .18 3B .12 3C .9 3D .6 3[审题视点] 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公式求解.解析 该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为3,故V =3×3×3=9 3. 答案 C以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【训练2】 (2012·东莞模拟)某几何体的三视图如图所示,则该几何体的体积等于( ).A.283πB.163π C.43π+8 D .12 π解析 由三视图可知,该几何体是底面半径为2,高为2的圆柱和半径为1的球的组合体,则该几何体的体积为π×22×2+43π=283π.答案 A考向三 几何体的展开与折叠【例3】►(2012·广州模拟)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体DABC 的体积.[审题视点] (1)利用线面垂直的判定定理,证明BC 垂直于平面ACD 内的两条相交线即可;(2)利用体积公式及等体积法证明. (1)证明 在图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC , 取AC 的中点O ,连接DO ,则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC , 又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥BACD 的高,BC =22,S △ACD =2,∴V BACD = 13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体DABC 的体积为423.(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练3】已知在直三棱柱ABCA1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,如图所示,则CP+P A1的最小值为________.解析P A1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的问题解决.计算A1B=AB1=40,BC1=2,又A1C1=6,故△A1BC1是∠A1C1B=90°的直角三角形.铺平平面A1BC1、平面BCC1,如图所示.CP+P A1≥A1C.在△AC1C中,由余弦定理得A1C=62+(2)2-2·6·2·cos 135°=50=52,故(CP+P A1)min=5 2.答案5 2难点突破17——空间几何体的表面积和体积的求解空间几何体的表面积和体积计算是高考的一个常见考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧、把一个空间几何体纳入一个更大的几何体中的补形技巧、对旋转体作其轴截面的技巧、通过方程或方程组求解的技巧等,这是化解空间几何体面积和体积计算难点的关键.【示例1】►(2010·安徽)一个几何体的三视图如图,该几何体的表面积为().A .280B .292C .360D .372【示例2】► (2011·全国新课标)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.。
长方体、正方体表面积、体积复习题(二)判断题:1,长方体的6个面不可能有正方形。
2,决定长方体大小的是它的长,宽,高。
3,在一个长方体中,相对的面完全相同,相对的棱长度相等。
4,所有的正方体都有6个面。
5,正方体的面中有可能有长方形。
6,一个正方体的棱长总和是50分米,它的棱长是5分米。
7,计算做一个无盖鱼缸所需材料的总面积,就是求这个鱼缸6个面的总面积。
8,将一个长方体切成两个同样大小的小长方体,每个小长方体的表面积是原长方体表面积的一半。
9,正方体的棱长扩大为原来的3倍,表面积就扩大为原来的9倍。
10,如果一个长方体和一个正方体的棱长和相等,那么它们的表面积一定相等。
11,长方体体积的大小是由相交于一个顶点的三条棱的长短来决定的。
12,正方体的体积比长方体的体积大。
13,两个体积相等的长方体,它们的长,宽,高一定相等。
14,1立方厘米比1平方厘米大。
15如果一个长方体和一个正方体的底面周长和高都相等,那么它们的体积相等。
16,一个正方体的棱长为2cm,扩大到原来的3倍后,表面积和体积都扩大到原来的9倍。
17,冰箱的容积就是冰箱的体积。
18,形状不规则的物体,如石块儿,苹果,桃子的,它们的体积,无法求出。
19,容积的计算方法和体积计算方法相同。
20,计算容积时只能用升或者毫升做单位。
21,一个容器的体积一定比它的容积大。
22,表面积相等的两个长方体,体积一定相等。
23,长度单位,面积单位和体积单位之间的进率都是1000。
24两个体积相等的正方体它们的棱长一定相等。
25物体的体积越大,容积越大。
26,把两个一样大的正方体拼成一个长方体后,体积和表面积都不变。
27,棱长为5cm的正方体纸盒,一定能装下体积为10立方厘米的小铁块儿。
28,至少要用4个体积是1立方厘米的正方体,才能拼成一个大正方体。
29,当正方体的棱长为6cm时,正方体的体积和表面积的数值相等。
30,一个正方体的棱长是6cm,它们的表面积和体积相等。
第28讲表面积与体积(二)一、知识要点解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定。
二、精讲精练【例题1】有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。
把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。
如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。
两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。
把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。
3×3×0.06+2×2×0.04=0.7(立方米)0.7÷6的平方=7/360(米)=1又17/18(厘米)答:大水池的水面升高了1又17/18厘米。
练习1:1、有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。
把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?2、用直径为20厘米的圆钢,锻造成长、宽、高分别为30厘米、20厘米、5厘米的长方体钢板,应截取圆钢多长(精确到0.1厘米)?3、将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗),求这个大正方体的体积。
长方体与正方体表面积和体积复习课教学设计(5篇范例)第一篇:长方体与正方体表面积和体积复习课教学设计《长方体与正方体表面积和体积复习课》教学设计一、教学目标1、通过整理与复习,使学生进一步长方掌握体和正方体的特征内在联系,表面积、体积、容积的概念以及相邻单位间进率;2、熟练掌握长方体和正方体表面积和体积的计算方法,以及不规则图形体积的计算方法,并在具体情境中正确运用。
3、进一步培养学生的空间观念,提高空间想象能力。
二、教学重难点重点:归纳整理有关长方体和正方体的知识,形成知识体系。
熟练掌握不同长方体和正方体表面积和体积的计算方法。
难点:灵活运用所学知识,解决实际问题。
三、教具准备长方体正方体模具四:教学过程(一)复习导入师:这一节课我们来进行长方体和正方体表面积和体积的复习,对于这一章,你还能记住哪些内容?生:长方体和正方体都有六个面、八个顶点、12条棱。
生:长方体和正方体体积和表面积的计算方法… …师:本单元的主要内容就是从同学们刚才所说的特征、表面积、体积这三方面展开的。
(板书)下面请同学们独立、认真、快速的完成复习提纲(二)整理1、组内整理2、小组汇报(1)特征。
分别从长方体和正方体的面、棱、顶点三方面汇报,其他小组补充。
(2)表面积。
分别从概念、长方体和正方体各自的计算方法、常用单位三方面汇报,其他小组补充(3)体积。
分别从概念、长方体和正方体各自的计算方法、常用单位三方面汇报,其他小组补充3、教师总结:对于空间几何体来说,特征是核心。
特征是区分表面积和体积的依据,正因为特征不同,表面积和体积的计算方法不同,单位也不同。
长方体和正方体在计算各自的体积和表面积时,计算方法也不一样。
(三)巧设练习,运用知识师:通过刚才同学们的汇报,大家已经对本单元的知识有了系统的了解,下面我们一起做几个练习题,检查一下同学们能否灵活运用这些知识。
本环节共四关,同学们做好准备了吗?开始:第一关:一、填空:1、一个长方体的长、宽、高分别是4厘米、2厘米、1厘米。