2018年山东省高考理科数学试题Word版
- 格式:doc
- 大小:553.00 KB
- 文档页数:6
2017 年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共 50 分)、选择题:本大题共 10小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1)【2017 年山东,理 1,5分】设函数 y 4 x 2的定义域为 A ,函数 y ln (1 x )的定义域为 B ,则 A B ( ) (A ) 1,2 (B ) (1,2 (C ) 2,1 (D ) 2,1) 答案】 D解析】由4 x 20得 2 x 2,由1 x 0得x 1,A B={x| 2 x 2} {x|x 1} {x| 2 x 1},故选 D .2)【 2017年山东,理 2, 5分】已知 a R , i 是虚数单位,若 z a 3i ,z z 4,则 a ( )设其回归直线方程为 y bx a ,10已知 x 10i 225 , yi 1600, b 4 ,该班某学生的脚i1i1长为 24,据此估计其身高为()A ) 160 (B ) 163(C )166 (D ) 170答案】 C解析】 x 22.5,y 160, a 160 4 22.5 70,y 4 24 70 166,故选 C .6)【2017 年山东,理 6,5 分】执行两次如图所示的程序框图,若第一次输入的 x 值为 7,第二次输入的 x 值为 9,则第一次、第二次输出的 a 值分别为( ) ( A )0,0 (B )1, 1 (C )0,1 (D )1,0 答案】 D解析】第一次 x 7,22 7,b 3,32 7,a 1;第二次 x 9,22 9,b 3,32 9,a 0 ,故选 D .7)【 2017年山东,理 7,5分】若 a b 0,且 ab 1,则下列不等式成立的是( )1b b 11 b 1 b( A ) 1 或 1 ( 答案】 A 解析】由 z a 3i, z z 4 得 3)【 2017 年山东,理 为真命题的是(( A ) p q 答案】 B 解析】由 x 0时 x 1 1,ln ( x 1) 有意义, 即 p ,q 均是真命题,故选 B .B ) 7 或 72a3, 5 分】已知命题 )3 4 ,所以 a 1 ,故选 A .B ) p q 4)【 2017 年山东,理 4,5 分】已知 x 、 B )2 D ) 3p : x 0, ln(x 1) 0;命题 q :若 a b ,C ) p qD ) 知 p 是真命题, y 满足约束条件由 2 1,2 21; 21 2,( 1) ( 2)2则 a 2 b 2 ,下列命题pq2可知 q 是假命题,(A )0 答案】 Cxy30 解析】由 3x+y 5 0 画出可行域及直线x 3 0C )5xy303x y 5 0 ,则 z x 2 y 的最大值是( x30( D )6x 2y 0如图所示,平移 x 2y 0发现,当其经过直线 3x y 5 0 与 x 3 的交点 ( 3,4) 时, z x 2y 最大为 z 3 2 4 5,故选 C .5)【 2017年山东,理 5,5 分】为了研究某班学生的脚长 x (单位:厘米)和身高 y (单位: 厘米)的关系,从该班随机抽取 10 名学生,根据测量数据的散点图可以看出 y 与 x 之间有线性相关关系,A )aalog 2 (a b)(B ) alog 2(a b) a ( C )alog 2(a b)a( D )log 2 (a b) a ab2a 22a2 bb2b2a答案】 Bba 11 1解析】 a 1,0 b 1, a 1,log 2 (a b ) log 22 ab 1, 2 b a a b alog 2(a b ),故选 B .2 b b8)【2017 年山东, 理 8,5分】从分别标有 1,2,⋯,9的 9 张卡片中不放回地随机抽取 2次,每次抽取 1 张, 则抽到在 2 张卡片上的数奇偶性不同的概率是( )答案】 C 解析】 2C 5C 4 5 ,故选 C .9 8 99)【2017 年山东,理 9,5 分】在 ABC 中,角 A 、 B 、C 的对边分别为 a 、b 、c ,若 ABC 为锐角三角形, 且满足sinB (1 2cosC ) 2sin AcosC cos Asin C ,则下列等式成立的是( )(A )a 2b (B )b 2a (C ) A 2B(D ) B 2A答案】 A 解析】 sin (A C ) 2sin BcosC 2sin AcosC cos Asin C 所以 2sin BcosC sin AcosC 2sinB sinA 2b a , 故选 A .10)【2017 年山东,理 10,5 分】已知当 x 0,1 时,函数 y (mx 1)2的图象与 y x m 的图象有且只有一个交点,则正实数 m 的取值范围是( ) (A ) 0,1 2 3,(B ) 0,1 3,( C ) 0, 2 2 3,(D ) 0, 2 3,答案】 B解析】当 0 m 1时, 1 1 , y (mx 1)2 单调递减,且 y (mx 1)2 [(m 1)2 ,1] , y x m 单调递增,且 my x m [m,1 m] ,此时有且仅有一个交点;当 m 1时, 0 1 1, y (mx 1)2 在[ 1,1] 上单调 mm 递增,所以要有且仅有一个交点,需 (m 1)2 1 m m 3 ,故选 B .第 II 卷(共 100 分)、填空题:本大题共 5 小题,每小题 5 分11)【2017 年山东,理 11,5分】已知 (1 3x )n 的展开式中含有 x 2的系数是 54,则 n . 答案】 4解析】 r1 C r n 3x r C r n 3r x r,令r 2得:C 2n 32 54,解得 n 4.113)【2017 年山东,理 13,5 分】由一个长方体和两个 1圆柱体构成的几何体的三视图如4 图,则该几何体的体积为 .答案】 2212 解析】该几何体的体积为 V 1 121 2 2 1 1 2 . 425A)4B)5C)7D)2e 1 e 2 e 1 e 212)【2017年山东,理 12,5分】已知 e 1 、 e 2是互相垂直的单位向量,若 3e 1 e 2与e 1 e 2的夹角为 60 ,则实数 的值是 .3 2 1 2 cos60 1 2,解得: 3.32214)【 2017 年山东,理 14,5 分】在平面直角坐标系 xOy 中,双曲线 x 2 y2 1( a 0, b 0 )的右支与焦 ab点为 F 的抛物线 x 2 2py ( p 0)交于 A 、B 两点,若 AF + BF =4 OF ,则该双曲线的渐近线方程 为. 答案】 y 2 x222 x 2 y 21 2 2 1 2 2 2 2 2 a 2 b 2 a y 2 pb y a b 0 ,x 22 py2所以 y A y B 2p 2b p a 2b 渐近线方程为 y 2 x . a215)【2017 年山东,理 15,5 分】若函数 e xf(x)(e 2.71828 是自然对数的底数)在 f(x) 的定义域上单调 f (x) 具有 M 性质。
2018年普通高等学校招生全国统一考试(山东卷)数 学(理)第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率: P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是 (A )1 (B)2 (C)3 (D)4 解析:本题考查集合子集的概念及交集运算。
集合M 中必含有12,a a 则{}{}12124,,,M a a M a a a ==或 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A )1 (B )-i (C)±1 (D) ±i 解析:本题考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±(3)函数ln cos ()22y x x ππ=-<<的图象是解析:本题考查复合函数的图象。
ln cos 22y x x ππ⎛⎫=-<< ⎪⎝⎭是偶函数,可排除B,D;由cos x 的值域可以确定。
(4)设函数()1f x x x a =++-的图象关于直线x =1对称,则a 的值为 (A) 3 (B)2 (C)1 (D)-1解析:本题考查分段函数的图象。
2018年高考数学试题及答案word版一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2等于多少?A. 1B. 2C. 3D. 4答案:B2. 已知向量a = (1, 2),向量b = (3, 4),向量a与向量b的点积为多少?A. 5B. 6C. 7D. 8答案:C3. 在一个等差数列中,首项为3,公差为2,第10项的值是多少?A. 23B. 24C. 25D. 26答案:A4. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 3答案:A5. 一个圆的半径为5,圆心到直线x + y - 7 = 0的距离为多少?A. 3B. 4C. 5D. 6答案:B6. 若复数z = 1 + i,则|z|等于多少?A. √2B. 2C. √3D. 3答案:A7. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。
A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 2D. x^3 - 3x^2答案:A8. 已知双曲线方程为x^2/9 - y^2/16 = 1,其渐近线方程为多少?A. y = ±(4/3)xB. y = ±(3/4)xC. y = ±(4/3)x + 1D. y = ±(3/4)x + 1答案:A9. 已知正方体的体积为8,求其表面积。
A. 12B. 16C. 24D. 32答案:C10. 已知函数f(x) = ln(x),求f'(1)。
A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为3,求第5项的值。
答案:48612. 已知三角形的三边长分别为3, 4, 5,求其面积。
答案:613. 已知函数f(x) = x^2 - 6x + 8,求其对称轴方程。
绝密★启用并使用完毕前2018年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1.答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为()A.2+iB.2-iC.5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(-1)=()(A)-2(B)0(C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()(A)(B)(C)(D)(5)将函数y=sin(2x+φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0(D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线O M斜率的最小值为(A)2(B)1(C)(D)(7)给定两个命题p,q。
理科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题 第2页(共9页)4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+理科数学试题 第3页(共9页)11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2018年高考山东卷理科数学真题及参考答案一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C) i 43- (D) i 43+答案:D2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)答案:C3.函数1)(log 1)(22-=x x f 的定义域为 (A))210(, (B) )2(∞+, (C) ),2()210(+∞ , (D) )2[]210(∞+,, 答案:C4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是(A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根(C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根 答案:A5.已知实数y x ,满足)10(<<<a a a y x ,则下列关系式恒成立的是 (A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 答案:D6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为 (A )22(B )24(C )2(D )4答案:D7.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分。
2018年山东省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设z =1−i1+i +2i ,则|z|=( ) A.12 B.0 C.√2 D.12. 已知集合A ={x|x 2−x −2>0},则∁R A =( ) A.{x|−1≤x ≤2}B.{x|−1<x <2}C.{x|x ≤−1}∪{x|x ≥2}D.{x|x <−1}∪{x|x >2}3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,其他收入增加了一倍以上B.新农村建设后,种植收入减少C.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半D.新农村建设后,养殖收入增加了一倍4. 设S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.−10 B.−12 C.12 D.105. 设函数f(x)=x 3+(a −1)x 2+ax .若f(x)为奇函数,则曲线y =f(x)在点(0, 0)处的切线方程为( ) A.y =−x B.y =−2x C.y =x D.y =2x6. 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A.14AB →−34AC →B.34AB →−14AC →C.14AB →+34AC →D.34AB →+14AC →7. 某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.2√5B.2√17C.2D.38. 设抛物线C:y 2=4x 的焦点为F ,过点(−2, 0)且斜率为23的直线与C 交于M ,N 两点,则FM →⋅FN →=( )A.6B.5C.8D.79. 已知函数f(x)={e x ,x ≤0,ln x,x >0,g(x)=f(x)+x +a ,若g(x)存在2个零点,则a 的取值范围是( )A.[0, +∞)B.[−1, 0)C.[1, +∞)D.[−1, +∞)10. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A.p 1=p 3B.p 1=p 2C.p 1=p 2+p 3D.p 2=p 311. 已知双曲线C:x 23−y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.3B.32C.4D.2√312. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.2√33B.3√34C.√32D.3√24二、填空题:本题共4小题,每小题5分,共20分。
北京市朝阳区人力资源和社会保障局朝人社发〔2018〕9号2018年人事人才工作要点2018年人事人才工作的指导思想和总体要求是:以邓小平理论和“三个代表”重要思想为指导,全面贯彻党的十七届五中全会、市委十届八次全会和区委十届十三次全会精神,深入落实科学发展观,按照“民生为重、人才优先”的原则,着力提高公务员管理的科学化水平,大力加强人才队伍建设,全面促进就业,深化人事制度改革,进一步落实和推进事业单位绩效工资制度改革,抓亮点,强作风,再创人事人才工作新优势,为推进“新四区”发展战略,促进“十二五”规划的顺利实施提供强有力的人才支撑。
一、深入实施公务员法及其配套法规,大力加强公务员队伍建设1、贯彻落实公务员法及其配套法规。
深入贯彻《公务员》及新颁布施行的公务员转任、回避、聘任制公务员管理、新录用人员试用期管理办法和公务员录用特殊体检标准等配套法规,加强对法规学习、宣传、培训及落实的监督检查。
2、健全公务员管理机制。
完善凡进必考的公务员进入机制,按照“一次考试,二次调剂”的考录形式,做好本年度招录公务员职位审核和二次调剂职位审核工作。
区级机关招录具有两年以上基层工作经历人员比例达到90%以上。
完善公务员任用管理机制,着力调整科级干部任用方式。
将科级干部任用方式由现在以组织任命为主转化为通过竞争上岗方式完成,力争全区科级干部竞争上岗率达到70%。
研究制定《朝阳区公务员转任交流实施办法》,继续实行区级党政机关面向街乡公开遴选优秀公务员工作;继续实施街乡与区级机关年轻公务员之间上挂下派工作;继续实施城管系统公务员交流工作,完成首个5年轮换。
3、建立平时考核制度。
适时制定《朝阳区公务员平时考核实施办法》,在试点单位组织开展平时考核试点工作,将平时考核与年底考核相结合,做到平时考核与年底考核各占一定比例。
同时,搞好试点单位的工作总结和经验推广,在全区逐步推行平时考核工作制度。
4、着力加强公务员队伍建设。
探索优化科级干部结构的有效形式,着手研究面向全区选拔科级干部的做法。
2018年山东省高考理科数学试题
5 c 绝密★启用前
i (B)1+i (c)-1-i (D)-1+i
(3)要得到函数=sin(4x- )的图像,只需要将函数=sin4x的图像()
(A)向左平移个单位(B)向右平移个单位
(c)向左平移个单位(D)向右平移个单位
(4)已知ABcD 的边长为a,∠ABc=60 ,则=
(A)- (B)- (c)(D)
(5)不等式|X-1|-|X-5| 2的解集是
(A)(- ,4)(B)(- ,1)(c)(1,4)(D)(1,5)
(6)已知x,满足约束条,若z=ax+的最大值为4,则a=
(A)3 (B)2 (c)-2 (D)-3
(7)在梯形ABcD中, ABc= ,AD//Bc,Bc=2AD=2AB=2将梯形ABcD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为
(A)(B)(c)(D)2
(8)已知某批零的长度误差(单位毫米)服从正态分布N(0,3),从中随机取一,其长度误差落在区间(3,6)内的概率为(附若随机变量ξ服从正态分布N(μ,σ)),则P(μ-σξμ+σ)=6826%,P(μ-2σξμ+2σ)=9544%)
(A)456% (B)1359% (c)2718% (D)3174%
(9)一条光纤从点(-2,-3)射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()
(A)或(B 或
(c)或(D)或
(10)设函数f(x)= ,则满足f(f(a))= 的a取值范围是()。
2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案2018年普通高等学校招生全国统一考试理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则AB =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos2α=( ) A .89B .79C .79- D .89- 5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数422y xx =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC∆为等边三角形且其面积为93则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设12F F ,是双曲线22221xy C ab-=:(00a b >>,)的左,右焦点,O是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若16PFOP=,则C 的离心率为( )A 5B .2C 3D 212.设0.2log0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1xy ax e =+在点()01,处的切线的斜率为2-,则a =________.第二种生产方式⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc Ka b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P K k k ≥.19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.⑴证明:平面AMD ⊥平面BMC ;⑵当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.⑴证明:12k <-; ⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA,FP ,FB 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.⑴若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;⑵若0x =是()f x 的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答。
山东省2018年高考样题数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 3.考试结束后,监考人将本试卷和答题卡一并收回.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.设集合{}{}6,4,3,2,12≤+==x x x Q P ,则Q P ⋂等于 A.{1,2} B. {3,4} C.{1} D. {-2,-1,0,1,2} 本小题主要考查不等式的解法及集合的基本运算,考查实数、集合的运算能力. 解答:A2.一粒骰子,抛掷一次,得到奇数的概率是A.21 B. 61 C.32 D. 43 本题主要考查互斥事件的概率. 解答:A3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 A.x x f sin )(= B.1)(+-=x x f C.()x x a a x f -+=21)( D.xxx f +-=22ln )( 本小题主要考查基本函数及其复合函数的奇偶性与单调性,考查函数基本性质的应用. 解答:D4.如果直线l 将圆04222=--+y x y x 平分且不通过第四象限,那么l 的斜率的取值范围是A .⎥⎦⎤⎢⎣⎡21,0B .[]1,0C .[]2,0D .⎪⎭⎫⎢⎣⎡21,0本小题主要考查直线与圆的位置关系,考查数形结合的能力. 解答:C5.已知⎪⎭⎫⎝⎛-∈0,2πx ,()54cos -=-x π,则=x 2tanA .247 B .247- C .724 D .724- 本小题主要考查利用同角三角函数关系式与二倍角公式求值,考查运算能力. 解答:D6.已知向量b a ,,且b a BC b a AB 65,2+-=+=,b a CD 27-=,则一定共线的三点是A. A 、B 、DB. A 、B 、CC. B 、C 、DD. A 、C 、D 本小题主要考查平面向量的运算与共线向量的概念,考查运算能力. 解答:A7.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是 A .分层抽样法,系统抽样法 B .分层抽样法,简单随机抽样法 C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法本小题主要考查随机抽样的三种抽样方法. 解答:B8.已知实数a , b 满足等式ba ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121,下列五个关系式①0<b<a②a<b<0③0<a<b④b<a<0⑤a=b其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个本小题主要考查指数式、指对互化以及分类讨论数学思想方法. 解答:B9.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使()()222121x f x f x x f +>⎪⎭⎫ ⎝⎛+恒成立的函数的个数是 A .0B .1C .2D .3本题主要考查函数的凹凸性,看上去好像超纲,但结合函数的图像准确理解凹凸的含义,不难作出答案. 解答:B10.在△ABC 中,若CcB b A a cos cos cos ==,则ABC ∆是 A.直角三角形 B.等边三角形 C.钝角三角形 D.等腰直角三角形本题主要考查解三角形的知识,要求对正弦、余弦定理灵活掌握. 解答:B11. 变量y x ,满足下列条件:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≥+≥+0,024*********y x y x y x y x ,则使y x z 23+=的值最小的()y x ,是A. ( 4.5 ,3 )B. ( 3,6 )C. ( 9, 2 )D. ( 6, 4 )本小题主要考查一元二次不等式组与平面区域问题以及简单的线性规划问题,考查数形结合的能力. 解答:A12.若122=+b a ,222=+c b ,222=+a c ,则ca bc ab ++的最小值为A .213-B .321- C .321--D .321+本小题主要考查对代数式的认识,考查综合运用条件解决问题的能力. 解答:B第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前,将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.()()=-+++-221111i ii i.本小题主要考查复数的代数运算,考查运算能力. 解答:-114.求满足100005312222<++++n 的最大整数解的程序框图A 处应为 .本小题主要考查学生对于基本框图逻辑结构的理解,同时考查学生对于数列求和以及不等式等实际数学问题的具体分析的能力.解答:n -215.已知两个圆:122=+y x ①与()1322=-+y x ②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆()()222r b y a x =-+-和()()222r d y c x =-+-的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为__________.本小题主要考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和归纳推广数学命题的能力.解答:()()0222222=--++-+-d c b a y b d x a c .16.已知m 、n 是不同的直线,α、β是不重合的平面, 命题p :若βαβα⊂⊂n m ,,//,则n m // 命题q :若n m n m //,,βα⊥⊥,则βα//下面的命题中,真命题的序号是 (写出所有真命题的序号). ①“p 或q ”为真;②“p 且q ”为真; ③p 真q 假 ; ④“p ⌝”为真 本小题主要考查直线与直线、直线与平面、平面与平面的位置关系以及命题的判断,考查逻辑推理能力和空间想象能力. 解答:①④三、解答题(本大题共6小题,共74分.解答应写文字说明;证明过程或演算步骤)(17)(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力. 解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下:甲答对试题数ξ的数学期望E ξ=5961321210313010=⨯+⨯+⨯+⨯. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=310361426C C C C +=321202060=+,P (B )=15141205656310381228=+=+C C C C . 因为事件A 、B 相互独立, 方法一:∴甲、乙两人考试均不合格的概率为 ()()()45115141321=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⋅=⋅B P A P B A P∴甲、乙两人至少有一人考试合格的概率为 ()454445111=-=⋅-=B A P P 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为()()()454415143215143115132=⨯+⨯+⨯=⋅+⋅+⋅=B A P B A P B A P P 答:甲、乙两人至少有一人考试合格的概率为4544.(18)(本小题满分12分)已知向量()x x m cos ,sin 2=,)cos 2,cos 3(x x n =,定义函数()()1log -⋅=n m x f a ()1,0≠>a a(I )求函数()x f 的最小正周期; (II )确定函数()x f 的单调递增区间.本小题主要考查平面向量与三角函数的综合运用.解:(I )因为12cos 2sin 3cos 2cos sin 322++=+=⋅x x x x x所以()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=62sin 2log πx x f a ,故ππ==22T (II )令()⎪⎭⎫ ⎝⎛+=62sin 2πx x g ,则()x g 的单调递增的正值区间是Z k k k ∈⎪⎭⎫ ⎝⎛+-,6,12ππππ,()x g 的单调递减的正值区间是Z k k k ∈⎪⎭⎫ ⎝⎛++,125,6ππππ当10<<a 时,函数()x f 的单调递增区间为Z k k k ∈⎪⎭⎫ ⎝⎛++,125,6ππππ当1>a 时,函数()x f 的单调递增区间为Z k k k ∈⎪⎭⎫ ⎝⎛+-,6,12ππππ(19) (本小题满分12分)如图,在棱长为1的正方体1111D C B A ABCD -中,点E 是棱BC 的中点,点F 是棱CD 上的动点.(Ⅰ)试确定点F 的位置,使得F D 1⊥平面AB 1F ;(Ⅱ)当D 1E ⊥平面AB 1F 时,求二面角C 1―EF ―A 的余弦值; (III )求异面直线D 1E 与BC 1所成的角.本小题主要考查线面关系和正方体等基础知识,考查空间想象能力、运算能力和推理论证能力.利用两平面的法向量求也可.解:(Ⅰ)连结A 1B ,则A 1B 是D 1E 在面ABE 1A 1上的射影. ∵AB 1⊥A 1B ,∴D 1E ⊥AB 1于是D 1E ⊥平面AB 1F , D 1E ⊥AF .连接DE ,则DE 是D 1ED 底面ABCD 内的射影. ∴D 1E ⊥AF ,DE ⊥AF .∵ABCD 是正方形,E 是BC 的中点, ∴当且仅当F 是CD 的中点时,DE ⊥AF , 既当点F 是CD 的中点时,D 1F ⊥平面AB 1F .(Ⅱ)当D 1E ⊥平面AB 1F 时,由(Ⅰ)知点F 是CD 的中点. 又已知点E 是BC 的中点,连结EF ,则EF ∥BD .连接AC ;设AC 与EF 交于点H ,则CH ⊥EF .连结C 1H ,则CH 是C 1H 在底面ABCD 内的影.∴C 1H ⊥EF ,既∠C 1HC 上二面角C 1-EF -C 的平面角.在Rt △C1CH 中,∵C 1C =1,CH =41,AC =42.∴22421tan 11===∠CH C C HC C . ∴cos ∠C 1HC =31故二面角C 1-EF -A 的余弦值为31(III )连结1BC ,取11D A 的中点G ,连接BG ,因为 B E //1GD ,BE =1GD , 则BG //D 1E ,则直线BG 与BC 1所成的角,即为异面直线D 1E 与BC 1所成的角 在△BC 1G 中,由余弦定理得22cos 1=∠GBC ,则所求角为ο45. (20)(本小题满分12分)(I )已知椭圆C 的方程是()012222>>=+b a by a x ,设斜率为k 的直线l ,交椭圆C于A 、B 两点,AB 的中点为M . 证明:当直线l 平行移动时,动点M 在一条过原点的定直线上;(Ⅱ)利用(I )所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心. 本题主要考查直线与椭圆的位置关系,学生的作图能力.解:(I )设直线l 的方程为m kx y +=,与椭圆C 的交点()11,y x A 、()22,y x B ,则有⎪⎩⎪⎨⎧=++=12222b y ax mkx y , 解得 02)(222222222=-+++b a m a kmx a x k a b ,∵ 0>∆,∴ 2222k a b m +<,即 222222k a b m k a b +<<+-.则 222221212222212,2ka b mb m kx m kx y y ka b kma x x +=+++=++-=+, ∴ AB 中点M 的坐标为⎪⎪⎭⎫⎝⎛++-22222222,k a b m b k a b kma .∴ 线段AB 的中点M 在过原点的直线 022=+y k a x b 上. (Ⅱ)如图,作两条平行直线分别交椭圆于A 、B 和C 、D ,并分别取AB 、CD 的中点M 、N ,连接直线MN ;又作两条平行直线(与前两条直线不平行)分别交椭圆于A 1、B 1和C 1、D 1,并分别取A 1B 1、C 1D 1的中点M 1、N 1,连接直线M 1N 1,那么直线MN 和M 1N 1的交点O 即为椭圆中心.21.(本小题满分12分)已知函数()()0,,ln 2≠+-==a bx ax x g x x f(Ⅰ)若2=b ,且()()()x g x f x h -=存在单调递减区间,求a 的取值范围; (Ⅱ)设函数()x f 的图象C 1与函数()x g 图象C 1交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.本题综合考察导数在解决函数单调性,函数曲线的切线等问题中的作用.解:(I )x ax x x h b 221ln )(,22--==时,则.1221)(2xx ax ax x x h -+-=--=' 因为函数()x h 存在单调递减区间,所以0)(<'x h 有解. 又因为0>x 时,则0122>-+x ax 有0>x 的解.①当0>a 时,122-+=x ax y 为开口向上的抛物线,0122>-+x ax 总有0>x 的解;②当0<a 时,122-+=x ax y 为开口向下的抛物线,而0122>-+x ax 总有0>x 的解;则044>+=∆a ,且方程0122=-+x ax 至少有一正根.此时,01<<-a 综上所述,a 的取值范围为()()+∞⋃-,00,1.(II )证法一 设点P 、Q 的坐标分别是()11,y x P ,()22,y x Q ,210x x <<, 则点M 、N 的横坐标为,221x x x +=在C 1点M 处的切线斜率为,2|1212121x x x k x x x +==+= 在C 2点N 处的切线斜率为b x x a b ax k x x x ++=+=+=2)(|212221 假设C 1在点M 处的切线与C 2在点N 处的切线平行,则21k k = 即b x x a x x ++=+2)(22121,则 )2()(2)()(2)(21212221221222112bx x abx x a x x b x x a x x x x +-+=-+-=+-=1212ln ln x x y y -=-所以1212121)1(2ln x x x x x x +-= 设12x xt =则1,1)1(2ln >+-=t t t t ① 令1,1)1(2ln )(>+--=t t t t t r ,则22214(1)(),(1)(1)t r t t t t t -'=-=++ 因为1>t 时,0)(>'t r ,所以)(t r 在),1[+∞上单调递增. 故.0)1()(=>r t r 则tt t +->1)1(2ln . 这与①矛盾,假设不成立. 故C 1在点M 处的切线与C 2在点N 处的切线不平行. 证法二:同证法一得)(2)ln )(ln (121212x x x x x x -=-+ 因为01>x ,所以)1(2ln )1(121212-=+x xx x x x 令12x x t =,得1),1(2ln )1(>-=+t t t t ② 令11ln )(,1),1(2ln )1()(-+='>--+=tt t r t t t t t r 则因为22111)1(ln tt t t t t -=-='+,所以1>t 时,0)1(ln >'+t t故t t 1ln +在[)+∞,1上单调递增.从而011ln >-+tt ,即0)(>'t r于是)(t r 在[)+∞,1上单调递增.故0)1()(=>r t r 即)1(2ln )1(->+t t t 这与②矛盾,假设不成立. 故C 1在点M 处的切线与C 2在点N 处的切线不平行. 22.(本小题满分14分)已知数列{}n b 是等差数列,100,1103211=+++=b b b b b , (Ⅰ)求数列{}n b 的通项n b ;(Ⅱ)设数列{}n a 的通项⎪⎪⎭⎫ ⎝⎛+=n n ba 11lg ,记n S 是数列{}n a 的前n 项和,试比较n S与1lg 21+n b 的大小,并证明你的结论. 本题是综合题,主要考查等差数列、数学归纳法、对数函数的性质等基本知识,以及归纳猜想,等价转化和代数式恒等变形的能力,相比之下,对能力的考查,远远高于对知识的考查.解:(Ⅰ)设数列{}n b 的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=1002)110(1010,111d b b 解得⎩⎨⎧==211d b ∴12-=n b n(Ⅱ)由12-=n b n ,知()⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛+++=1211lg 311lg 11lg n S n()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=121131111lg n ,12lg lg 211+=+n b n .因此要比较n S 与1lg 21+n b 的大小,可先比较与12+n 的大小.取1=n ,有()11+>112+⋅,取2=n ,有(1+1)(1+31)>122+⋅,……由此推测(1+1)(1+31)…(1+121-n )>12+n . ①若①式成立,则由对数函数性质可断定:1lg 21+>n n b S下面用数学归纳法证明①式. (i )当1=n 时已验证①式成立.(ii )假设当k n =()Z k k ∈≥,1时,①式成立,即(1+1)(1+31)…(1+121-k )>12+k .那么,当1+=k n 时,(1+1)(1+31)…(1+121-k )[1+1)1(21-+k ]>12+k (1+121+k )=1212++k k ()22+k , ∵()2221212⎥⎦⎤⎢⎣⎡+++k k k -2)32(+k=012112)384(48422>+=+++-++k k k k k k ,∴2)21k k +>=+. 因而 .1)1(2)1211)(1211()311)(11(++>++-+++k k k 这就是说①式当1+=k n 时也成立.由(i ),(ii )知①式对任何正整数n 都成立. 由此证得:1lg 21+>n n b S山东省2018年高考样题数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 3.考试结束后,监考人将本试卷和答题卡一并收回.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的) 1.设P、Q 为两个非空实数集合,定义集合},5,2,0{},,|{=∈∈+=+P Q b P a b a Q P 若}6,2,1{=Q ,则Q P +中元素的个数是A .9B .8C .7D .6本题主要考查集合概念的理解,以及对知识的迁移能力,对基本知识的掌握要准确、牢固.解答:B2.一粒骰子,抛掷一次,得到奇数的概率是A.21 B.61 C.32 D. 43 本题主要考查考生对于古典概型的理解、运用,互斥事件的概率加法公式. 解答:A3.若b a c b a +===,2,1,且a c ⊥,则向量a与b 的夹角为A.30°B.60°C.120°D.150°本题主要考查向量的内积及运算,向量的内积是解决夹角与距离的工具,应灵活掌握. 解答:C4. 为了得到函数)62s i n (π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度本题 综合考查三角函数诱导公式,三角函数图象变换的知识,以及逻辑分析能力和直觉思维能力. 答案;B5. 在下列关于直线l 、m 与平面α、β的命题中,真命题是 A.若β⊂l 且βα⊥,则α⊥l B.若β⊥l 且βα//,则α⊥l .C.若β⊥l 且βα⊥,则α//lD. 若m =⋂βα且m l //,则α//l . 本题主要考查立体几何初步的有关知识,包括直线与直线、直线与平面、平面与平面的位置关系的知识,要求学生有很好的空间想象能力. 解答:B6.某初级中学有学生270人,其中一年级118人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,118,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 A .②、③都不能为系统抽样 B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样本题主要考查统计中的抽样方法的有关知识,新课程把这部分只是放到了必修内容里,也就是说对于现代公民应必备的知识,反映了我们整个国家的进步,此类题型应该给予重视. 解答:D7. 若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是A.50<<kB.05<<-kC. 130<<kD.50<<k 本题主要考查平面解析几何初步知识,包括圆的一般方程、圆的标准方程、直线与圆的交点等知识,但此题考察的解题方法是数形结合的思想方法. 解答:A8 . 向高为H 的水瓶中注水, 注满为止. 如果注水量V 与水深h 的函数关系的图象如右图所示, 那么水瓶的形状是( )解答:B9 . 在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是 A.直角三角形. B.等边三角形.hABCDC.钝角三角形.D.等腰直角三角形.本题主要考查解三角形的知识, 要求对正弦、余弦定理灵活掌握. 解答:B10.已知实数b a ,满足等式,)31()21(b a =下列五个关系式①a b <<0 ②0<<b a ③b a <<0 ④0<<a b⑤b a =其中不可能...成立的关系式有A .1个B .2个C .3个D .4个本小题综合考查指数式、指数式与对数式互化以及指数函数的有关知识,分类讨论数学思想方法. 解答:B11.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 本题以一元二次不等式的有关知识为载体,综合考查考生利用已经获取的信息,处理并解决新问题的能力. 解答:C12.在直角坐标系xoy 中,已知A O B ∆三边所在直线方程分别为3032,0,0=+==y x y x则AOB ∆内部和边上整点(即横、纵坐标均为整数的点)的总数是A .95B .91C .88D .75本题主要考查了解析几何必修内容的线性规划. 解答:B第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前,将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.复数),,,(,R d c b a di c bi a ∈++的积为实数的充要条件是 . 本题主要考查复数和常用逻辑用语的知识. 解答:0=+bc ad14.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算得63.272=K ,根据这一数据分析,我们有理由认为打鼾与患心脏病是 的(有关,无关)本题主要考查统计案例的有关知识,对828.102>K 就有99.9%理由认为两个量是有关系的. 解答:有关.15. 已知n 次多项式()n n n n n a x a x a x a x P ++++=--1110 ,如果在一种算法中,计算kx 0()n k ,4,3,2=的值需要1-k 次乘法,计算()03x P 的值共需要9次运算(6次乘法,3次加法),那么计算()010x P 的值共需要 次运算. 下面给出一种减少运算次数的算法:()()()1100,+++==k k k a x xP x P a x P ,(=k 0, 1,2,…,1-n ).利用该算法,计算()03x P 的值共需要6次运算,计算()010x P 的值共需要 次运算.本题涉及算法的知识,但重在考查考生的合情推理能力和创造性思维能力. 解答:65,2016. 以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号).本题通过多选的开放形势,综合考查椭圆和双曲线的概念、简单几何性质,并结合平面向量的知识,考查学生处理简单轨迹问题的能力 . 解答: ③④三、解答题(本大题共6小题,共74分.解答应写文字说明、证明过程或演算步骤)17.(本小题满分12分)已知232,534cos παππα<≤=⎪⎭⎫ ⎝⎛+.求⎪⎭⎫ ⎝⎛+42cos πα的值.本小题考查两角和正、余弦公式,倍角的正弦、余弦公式,同角三角函数的基本关系式以及诱导公式等基础知识,考查基本运算能力.解:……3分47443ππαπ<+≤且0)4cos(>+πα,∴47423ππαπ<+≤………………………………6分从而 ,……………8分…………………………10分………………………………12分18.(本题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(I )写出图一表示的市场售价与时间的函数关系P =f (t ); 写出图二表求援 种植成本与时间的函数关系式Q =g (t );(II )认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?300(注:市场售价和种植成本的单位:元/210kg,时间单位:天)本题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.解:(I)由图一可得市场售价与时间的函数关系为由图二可得种植成本与时间的函数关系为即当0≤t≤200时,配方整理得当200< t ≤300时,配方整理得综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.19.(本小题满分12分)如图, 在直三棱柱111C B A ABC -中,3=AC ,5AB =,4=BC ,41=AA ,点D 是AB 的中点,(I )求证:1BC AC ⊥; (II )求证:11//CDB AC 平面.本题考察学生对空间图形中直线与直线,直线与平面相互关系的识别能力,综合考查学生的空间想象能力、逻辑推理能力.证明:(I )直三棱柱111C B A ABC -,底面三边长3=AC ,5=AB ,4=BC∴ BC AC ⊥,又ABC CC 平面⊥1,∴1BC 在平面ABC 内的射影为BC ∴1BC AC ⊥;(II )设1CB 与B C 1的交点为E ,连结DE ,∵ D 是AB 的中点,E 是1BC 的中点,∴ 1//AC DE , ∵ 1CDB DE 平面⊂,11CDB AC 平面⊄,∴11//CDB AC 平面 . 20.(本小题满分12分)设数列{}n a 的前项和为22n S n =,{}n b 为等比数列,且11b a =, ()1122b a a b =-, (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设nnn b a c =,求数列{}n c 的前n 项和n T . 本题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(Ⅰ)因为当1=n 时,211==S a ,当2≥n 时, ()24122221-=--=-=-n n n S S a n n n ,故{}n a 的通项公式为24-=n a n ,设{}n b 的公比为q ,则11b qd b =,4=d ,所以41=q 故111412--⎪⎭⎫ ⎝⎛⨯==n n n q b b ,即{}n b 的通项公式为142-=n n b(Ⅱ)∵()114124224---=-==n n nn n n n b a c ,∴121214)12(...45431...--++⨯+⨯+=+++=n n n n c c c T ,n n n n n T 4)12(4)32(...4543414132⨯-+⨯-++⨯+⨯+⨯=-,两式相减得()()]54)56[(314124...4442131321+-=-+++++--=-n n n n n n T ,∴]54)56[(91+-=n n n T .21.(本小题共12分) 已知函数()a x x x x f +++-=9323, (I )求()x f 的单调递减区间;(II )若()x f 在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 本题主要考查导数在研究函数中的应用,会用导数求函数的单调区间、最值. 解:(I )()9632++-='x x x f ,令()0<'x f ,解得1-<x 或3>x , 所以函数()x f 的单调递减区间为(-∞,-1),(3,+∞).(II )因为()a a f +=+-+=-2181282,()a a f +=+++-=22181282, 所以()()22->f f ,因为在(-1,3)上()0>'x f ,所以()x f 在[-1, 2]上单调递增,又由于()x f 在[-2,-1]上单调递减,因此()2f 和()1-f 分别是()x f 在区间[-2,2]上的最大值和最小值,于是有 2022=+a ,解得 2-=a , 故()29323-++-=x x x x f ,因此72931)1(-=--+=-f , 即函数()x f 在区间[-2,2]上的最小值为-7.22.(本题满分14分)已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M ,(I )求抛物线方程;(II )过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(Ⅲ)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.本题考查抛物线的标准方程和简单几何性质,直线的方程,直线与抛物线、圆的位置关系,以及点到直线的距离公式的等基本知识,综合考查学生运用解析法处理几何问题的能力.解:(I )抛物线2,524,222=∴=+-==p p p x px y 于是的准线为. ∴抛物线方程为x y 42=.(II )∵点A 的坐标是(4,4), 由题意得()4,0B ,()2,0M ,又∵()0,1F , ∴,43,;34-=∴⊥=MN FA k FA MN k 则FA 的方程为()134-=x y ,MN 的方程为x y 432-=-, 解方程组)54,58(5458,432)1(34N y x x y x y ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=--=得. (Ⅲ)由题意得,圆M 的圆心是点(0,2),半径为2.当4=m 时,直线AK 的方程为4=x ,此时,直线AK 与圆M 相离,当4≠m 时,直线AK 的方程为),(44m x my --=即为04)4(4=---m y m x , 圆心()2,0M 到直线AK 的距离2)4(16|82|-++=m m d ,令1,2>>m d 解得.1>∴m 当时,直线AK 与圆M 相离; 当1=m 时,直线AK 与圆M 相切;当1<m 时,直线AK 与圆M 相交.。
2018年全国各地高考数学(理科试卷及答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年全国各地高考数学(理科试卷及答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年全国各地高考数学(理科试卷及答案)(word版可编辑修改)的全部内容。
2018年高考数学理科试卷(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{}8,2,1,0B,那么==A,{}8,6,1,1-=A.⋂B2.若复数z满足i1+⋅,其中i是虚数单位,则z的实部为.=zi23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为.5.函数()1log 2-=x x f 的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数()⎪⎭⎫ ⎝⎛<<-+=222sin ππϕx x y 的图象关于直线3π=x 对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线()0,012222>>=-b a by a x 的右焦点()0,c F 到一条渐近线的距离为c 23,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()⎪⎪⎩⎪⎪⎨⎧≤<-+≤<=02,2120,2cos x x x xx f π, 则()()15f f 的值为 .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数()()R a ax x x f ∈+-=1223在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB 为直径的圆C 与直线l 交于另一点D .若0=⋅,则点A 的横坐标为 .13.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、, 120=∠ABC ,ABC ∠的平分线交AC 于点D ,且1=BD ,则c a +4的最小值为 .14.已知集合{}*∈-==N n n x x A ,12|,{}*∈==N n x x B n ,2|.将B A ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡...指.定区域...内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,A B均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP△的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作....................答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4-5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学科#网22.(本小题满分10分)如图,在正三棱柱ABC—A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s 〈t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8}2.2 3.90 4.85.[2,+∞)6.3107.π6-8.29.210.4311.–3 12.313.9 14.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD—A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD—A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为5cos()αβ+=-,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-. 因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin(2sin sin1)(2sin1)(sin1)fθθθθθθθθ=--=-+-=--+′.令()=0fθ′,得θ=π6,当θ∈(θ0,π6)时,()>0fθ′,所以f(θ)为增函数;当θ∈(π6,π2)时,()<0fθ′,所以f(θ)为减函数,因此,当θ=π6时,f(θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为.②因为三角形OAB 的面积为26,所以2126AB OP ⋅=,从而42AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,). 综上,直线l 的方程为532y x =-+.19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),().设x 0为f (x )与g (x )的“S "点,由f (x 0)与g (x 0)且f ′(x 0)与g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*)得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b 〉0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-=-=′,′. 由f (x )与g (x )且f ′(x )与g ′(x ),得22e e (1)2xx b x a xb x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a 〉0,存在b 〉0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+, 即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x 〉0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x 〈f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC . 又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt△OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆, 从而1-A 2312-⎡⎤=⎢⎥-⎣⎦.(2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=, 则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6.连结OB ,因为OA 为直径,从而∠OBA =π2, 所以π4cos 6AB ==.因此,直线l 被曲线C 截得的弦长为 D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥,当且仅当122xy z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.学科%网解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111||310|cos ,|||||522BP AC BP AC BP AC ⋅==⋅⨯.因此,异面直线BP 与AC 1所成角的余弦值为310.(2)因为Q 为BC 的中点,所以31(,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即330,2220.y y z ⎧+=⎪⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin |cos |,|||CCCC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
2018年普通高等学校全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的的四个选项中,只有一个项是符合题目要求的。
(1)设集合2{60}M x x x =+-<,{13}N x x =≤≤,则MN =A.[1,2)B. [1,2]C. (2,3]D. [2,3] 【解析】:{32}M x x =-<<,{|13}N x x =≤≤,则[1,2)M N =,答案应选A 。
(2)复数2(2iz i i-=+为虚数单位)在复平面内对应的点所在的象限为 A.第一象限 B.第二象限 C.第三象限 D.第四象限【解析】:22(2)34255i i iz i ---===+对应的点为34(,)55-在第四象限,答案应选D.(3)若点(,9)a 在函数3xy =的图象上,则tan6a π的值为A.0B.3C. 1D. 【解析】:因为点(,9)a 在函数3xy =的图象上,所以2393a ==,2a =,tantan 63a ππ== D. (4)不等式5310x x -++≥的解集是A.[5,7]-B. [4,6]C. (,5][7,)-∞-+∞D. (,4][6,)-∞-+∞ 【解析】:解法一:当5x >时,原不等式可化为2210x -≥,解得6x ≥;当35x -≤≤时,原不等式可化为810≥,不成立;当3x <-时,原不等式可化为2210x -+≥,解得4x -≤.综上可知6x ≥,或4x -≤,答案应选D 。
解法二:可以作出函数53y x x =-++的图象,令5310x x -++=可得4x -=或6x =,观察图像可得6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D 。
解法三:利用绝对值的几何意义,53x x -++表示实数轴上的点x 到点3x =-与5x =的距离之和,要使点x 到点3x =-与5x =的距离之和等于10,只需4x -=或6x =,于是当6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D 。
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设121iz ii-=++,则z=()A.0 B.12C.1D2.已知集合{}2|20A x x x=-->,则A=Rð()A.{}|12x x-<<B.{}|12x x-≤≤C.{}{}|1|2x x x x<->UD.{}{}|1|2x x x x-U≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .12 5.设函数()()321f x x a x ax=+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r( )A .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC+u u ur u u u rD .1344AB AC+u u ur u u u r7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=u u u u r u u u r( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a=++,若()g x 存在2个零点,则a的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC,ABC△的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3C.D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.B.C.4D.二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案) 16.已知函数()2sin sin 2f x x x=+,则()f x 的最小值是________.三、解答题(共70分。
2018年山东省高考理科数学试题及答案1.删除文章中的考试注意事项,因为这些内容不影响文章的理解和改写。
2.改写每段话如下:一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是正确的。
1)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=。
答案:B=1-2i。
2)设集合A={y|y=2,x∈R},B={x|x-1<0},则。
答案:A=(-1,1),B=(0,1)。
3)某高校调查了200名学生每周的自时间(单位:小时),并制成了频率分布直方图。
其中自时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]。
根据直方图,这200名学生中每周的自时间不少于22.5小时的人数是。
答案:D=140.4)若变量x,y满足2x+y≤2,2x-3y≤9,x≥0,y≥0,则x+y的最大值是。
答案:C=10.5)一个由半球和四棱锥组成的几何体,其三视图如图所示。
则该几何体的体积为。
答案:B=1212+π/3.6)已知直线a,b分别在两个不同的平面α,β内。
则“直线a和直线b相交”是“平面α和平面β相交”的必要条件。
答案:不需要选择。
I)证明:设FC的中点为I,连接GI,HI。
在△CEF中,因为G是CE的中点,所以GI//EF;又因为EF//OB,所以GI//OB。
在△CFB中,因为H是FB的中点,所以HI//BC;又因为HI∩GI=I,所以平面GHI//平面ABC。
因为GH∥平面GHI,所以XXX。
II)解法一:连接OO',则OO'⊥平面ABC。
又因为AB=BC,且AC是圆O的直径,所以BO⊥AC。
以O为坐标原点。
由题意得B(0,2/3,0),C(-2/3,0,0),过点F作FM垂直OB于点M,所以FM=√(FB²-BM²)=√3.可得F(0,2/3,2/3),故BC=(-2/3,-2/3,0),BF=(0,-2/3,2/3)。
2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.8 9.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .B .12C .D .22.已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .–1,0)B .0,+∞)C .–1,+∞)D .1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2 B .p 1=p 3 C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分。
2018年高考理科数学(全国I卷)试题(含答案)WORD版2018年普通高等学校招生全国统一考试理科数学注意事项:1.在答题卡上填写姓名和准考证号。
2.选择题用铅笔在答题卡上涂黑对应的答案标号,非选择题在答题卡上作答。
3.考试结束后将试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
每小题有四个选项,只有一项是正确的。
1.设 $z=\frac{1-i+2i}{1+i}$,则 $|z|$ 等于A。
$\frac{1}{2}$B。
$\sqrt{2}$C。
$1$D。
$2$2.已知集合 $A=\{x|x^2-x-2>0\}$,则 $A$ 等于A。
$\{-1<x<2\}$B。
$\{-1\leq x\leq 2\}$C。
$\{x2\}$D。
$\{x\leq -1\}\cup \{x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为了更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A。
新农村建设后,种植收入减少B。
新农村建设后,其他收入增加了一倍以上C。
新农村建设后,养殖收入增加了一倍D。
新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和。
若$3S_3=S_2+S_4$,$a_1=-12$,则切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$5.设函数 $f(x)=x^3+(a-1)x^2+ax$。
若 $f(x)$ 是奇函数,则曲线 $y=f(x)$ 在点 $(0,0)$ 处的切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$6.在 $\triangle ABC$ 中,$AD$ 是 $BC$ 边上的中线,$E$ 是 $AD$ 的中点,则 $EB$ 等于A。
山东理科数学
一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则
2()a bi +=
(A )54i -(B )54i +(C )34i -(D )34i +
(2)设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B = (A )[0,2](B )(1,3)(C )[1,3)(D )(1,4) (3
)函数()f x =
(A )1(0,)2
(B )(2,)+∞(C )1(0,)(2,)2
+∞(D )1(0,][2,)2
+∞ (4)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是
(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根
(C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根
(5)已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是 (A )
22
11
11
x y >++(B )22ln(1)ln(1)x y +>+ (C )sin sin x y >(D )22x y >
(6)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为
(A )B )C )2(D )4
(7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有
志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二
组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为
(A )1(B )8(C )12(D )18
(8)已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是
(A )1(0,)2
(B )1(,1)2
(C )(1,2)(D )(2,)+∞ (9)已知,x y 满足约束条件10,
230,
x y x y --≤⎧⎨
--≥⎩当目标函数
(0,0)z ax by a b =+>>在该约束条件下取到最小值22a b +的最小
值为
(A )5(B )4(C D )2
(10)已知a b >,椭圆1C 的方程为22
221x y a b +=,双曲线2C 的方程为
22221x y a b -=,1C 与2C 2C 的渐近线方程为
(A )0x =(B 0y ±=(C )20x y ±=(D )20x y ±=
二、填空题:本大题共5小题,每小题5分,共25分
(11)执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 .
(12)在ABC ∆中,已知tan AB AC A ⋅=,当6
A π
=
时,
ABC ∆的面积为 .
(13)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则
1
2
V V = . (14)若24()b ax x
+的展开式中3x 项的系数为20,则22a b +的最小值为 .
(15)已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点
(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x
是()g x =关于
()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .
三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)
已知向量(,cos2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的
图象过点(
12
π
和点2(
,2)3
π
-. (Ⅰ)求,m n 的值;
(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数
()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)
的距离的最小值
为1,求()y g x =的单调增区间. (17)(本小题满分12分)
如图,在四棱柱1111ABCD A BC D -中,
底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.
(Ⅰ)求证:111//C M A ADD ;
(Ⅱ)若1CD 垂直于平面ABCD 且1CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.
(18)(本小题满分12分)
乒乓球台面被网分成甲、乙两部分,如图,
甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球
后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落
点在A 上的来球,小明回球的落点在C 上的概率为12
,在D 上的概率为13
;对落点在B 上的来球,小明回球的落点在C 上的概率为15
,在D 上的概率为3
5
.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望. (19)(本小题满分12分)
已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令1
1
4(1)n n n n n
b a a -+=-,求数列{}n b 的前n 项和n T . (20)(本小题满分13分)
设函数22
()(ln )x e f x k x x x
=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底
数).
(Ⅰ)当0k ≤时,求函数()f x 的单调区间;
(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.
(21)(本小题满分14分)
已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有
||||FA FD =.当点A 的横坐标为3时,ADF
∆为正三角形.
(Ⅰ)求C 的方程;
(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E , (ⅰ)证明直线AE 过定点,并求出定点坐标;
(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.。