七年级数学期末考试试题
- 格式:doc
- 大小:192.46 KB
- 文档页数:7
2023-2024学年安徽省蚌埠市七年级上学期期末数学考试试题1.2024的相反数是()A.2024B.C.D.2.2023年蚌埠市1—10月统计月报显示,我市一般公共预算收入152亿元,其中152亿用科学记数法表示为()A.B.C.D.3.设是有理数,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则4.学校为了了解中学1600名家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校400名家长进行调查,下列说法正确的是()A.某中学1600名家长是总体B.400名家长的意见是总体的一个样本C.样本容量是400名D.每一名家长是个体5.有理数在数轴上的位置如图所示.下列式子错误..的是()A.B.C.D.6.如果代数式的值为8,那么代数式的值为()A.8B.5C.D.7.已知线段长度为9,点在直线上且有,是的中点,则等于()A.B.C.或D.或8.如果与互余,与互补,则与的关系是()A.B.C.D.9.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三:人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱:如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A.B.C.D.10.如图,每一个图案都是用“◎”和“★”组成的,请观察并思考第个图案中“◎”的个数为()A.B.C.D.11.比较大小:__________.12.若与是同类项,则______.13.装电线杆时只要确定两根电线杆,就能确定同一行的电线杆所在的直线,理由是________.14.为了加强环保教育,某中学组织学生参加义务收集废旧电池的活动.下面是对随机抽取的40名学生收集废旧电池的数量进行的统计:废旧电池数/节45678人数/人9111154如果用扇形统计图表示上述数据,那么“收集废旧电池的数量是8节”部分的扇形的圆心角等于___________.15.我们把有公共顶点和一条公其边的两个角称为“共边角”.(1)当两个“共边角”为和时,它们非公共边的两边的夹角为________°;(2)若两个“共边角”非公共边的两边所成的角是直角,则这两个角的平分线的夹角度数为_______°.16.(1)计算:(2)解方程组:17.已知,.(1)求的值;(2)若的值与的取值无关,求的值.18.如图,已知,.(1)请用尺规在内作使得.(2)在(1)的条件下,若,,平分,则______.19.某校为落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图:组别时间(分钟)人数102520(1)求出本次被调查的学生数;(2)请求出统计表中的值;(3)根据调查结果,请你估计该校2200名学生中每天体育锻炼时间不少于1小时的学生人数.20.某商场第1次用39000元购进甲,乙两种商品,销售完后获得利润6000元,它们的进价和售价如表(总利润单价利润销售量):价格商品进价(元/件)售价(元/件)甲120135乙100120(1)该商场第1次购进甲,乙两种商品各多少件?(2)商场第2次以原进价购进甲,乙两种商品,购进甲商品的件数不变,而购进乙商品的件数是第1次的2倍,甲商品按原售价销售,而乙商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于5400元,则乙种商品是按几折销售的?21.已知数轴上的A,B两点分别对应有理数a和b,且满足.(1)________,________;(2)若点P从A点出发,以每秒2个单位长度的速度向数轴负半轴运动,那么运动多少秒时?(3)已知点C在数轴上对应的数为20,若点P,Q分别从点A、B出发,分别以每秒2个单位长度和每秒4个单位长度的速度向C点运动,直至Q点到C点时停止,那么当时,求Q点对应的数.。
南平市2023-2024学年第一学期七年级期末质量抽测数学试题(考试时间:90分钟;满分:150分)友情提示:①本试卷仅供选用学校使用;②所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.有理数2024的相反数是A. 2024 B.2024-C.12024D.12024-2.计算32a a+的结果是A.6a2B.5C.5a D.a3.下列各式中,是一元一次方程的是A.10x-=B.x y-C.3=1x D.210x-=4.2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13 000 000人次,将数据13 000 000用科学记数法表示为A.61.310⨯B.71.310⨯C.80.1310⨯D.61310⨯5.从不同方向看某几何体得到如图所示的三个图形,那么该几何体是A.长方体B.圆锥C.正方体D.圆柱6.飞机上有一种零件的尺寸标准是2005±(单位:mm),则下列零件尺寸不合格的是A.196mm B.198mm C.204mm D.210mm7.若关于x 的一元一次方程36x m +=的解是x =2,则m 的值为A .0B .1C .2D .38.若单项式223m x y -与85n x y 是同类项,则m ,n 的值分别是A .22m n ==,B .41m n ==,C .42m n ==,D .23m n ==,9.若一个角是它的余角的5倍,则这个角的大小是A .15°B .30°C .75°D .150°10.定义一种新运算“※”的计算规则是:a ※b =a +b (其中a ,b 都是有理数).例如 3※4=3+4=7. 下列等式成立的个数是①a ※b =b ※a ②( a ※b )※c =a ※(b ※c ) ③ a ※(b+c )=a ※b +a ※cA .3B .2C .1D .0二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置)11. 如果+20元表示增加 20元,那么-6元表示__________.12.单项式7xy 的系数是__________.13.把原来弯曲的河道改直,则河道的长度变短了,这里用到的数学知识是__________.14.若∠A =53°,则∠A 的补角的大小为_________.15.数轴上的点A 到原点的距离是4,则点A 表示的数为_________. 16.如图是用围棋棋子摆成的“T ”字图案,按这样的规律摆下去,那么摆成第n 个“T ”字图案所需棋子数为_________.(用含n 的代数式表示)三、解答题(本大题共7小题,共86分.请在答题卡的相应位置作答) 17.(本题满分12分)计算 :2312(13)-+⨯-18.(本题满分12分)先化简,再求值:2(23)(325)a b a b ++-+,其中a =1,b =2-.19.(本题满分12分) 解方程:31+2=23x x -20.(本题满分12分)已知线段AB 与点C 的位置如图所示,按下列要求画出图形.(1)画射线BC 和直线AC ;(2)画线段AB 的延长线,在AB 的延长线上截取点E ,使得AE =2AB ,若AB =3,点D 是AB 的中点,求线段DE 的长度.21.(本题满分12分)如图1,在边长为a 的大正方形中剪去一个边长为b 的小正方形.(1)若a =20,b =4,分别求S 1,S 2的面积;(2)若将图1的阴影部分沿虚线剪开,重新拼成图2的长方形,且长为30,宽为15,求S 1∶S 2的值.第20题图第21题图22.(本题满分12分)我国明代数学著作《算法统宗》中有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客空一房。
广东省深圳市2023-2024学年七年级(上)期末考试数学模拟卷02答案与解析一.选择题(共10小题,满分30分,每小题3分)1.﹣2的相反数是()A.2B.﹣2C.D.【分析】利用相反数的定义判断即可.【解答】解:﹣2的相反数是2.故选:A.2.台湾岛是我国第一大岛,面积35800平方千米,在世界大岛中列第38位.将35800用科学记数法表示为()A.3.58×104B.3.58C.3.58×105D.0.358×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将35800用科学记数法表示是3.58×104.故选:A.3.我校要了解学生的课外作业负担情况,你认为下列抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查七年级全体学生D.随机调查七、八、九年级学生各50名【分析】利用抽样调查应具有全面性以及随机性,进而得出答案.【解答】解:∵我校要了解学生的课外作业负担情况,∴抽样方法中比较合理的是随机调查七、八、九年级学生各50名.故选:D.4.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.5.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1D.3a2b﹣3ba2=0【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.6.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=b D.若x=y,则=【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若a=b,则ac=bc,正确,不合题意;C、若=,则a=b,正确,不合题意;D、若x=y,则=,a≠0,故此选项错误,符合题意.故选:D.7.有理数a、b、c在数轴上所对应的点如图所示,则下列结论正确的是()A.a+b<0B.a+b>0C.a+c<0D.b+c>0【分析】先根据数轴判断出﹣4<b<﹣3<﹣1<a<0<1<c<2,再结合有理数的加法法则逐一判断即可.【解答】解:由数轴知,﹣4<b<﹣3<﹣1<a<0<1<c<2,∴a+b<0,a+c>0,b+c<0,故选:A.8.若a2+3a﹣4=0,则2a2+6a﹣3=()A.5B.1C.﹣1D.0【分析】将已知条件变形可得a2+3a=4,然后将2a2+6a﹣3变形为2(a2+3a)﹣3后代入数值计算即可.【解答】解:∵a2+3a﹣4=0,∴a2+3a=4,∴2a2+6a﹣3=2(a2+3a)﹣3=2×4﹣3=5,故选:A.9.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x+2)=2x+9C.+2=D.﹣2=【分析】根据“每3人乘1车,最终剩余2辆车;若每2人共乘1车,最终剩余9个人无车可乘”,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:+2=.故选:C.10.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算:|﹣5|=5.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:512.若﹣2a2m b与a4b n﹣1是同类项,则2m﹣n=2.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,根据有理数的减法,可得答案案.【解答】解:∵﹣2a2m b与a4b n﹣1是同类项,∴2m=4,n﹣1=1,m=2,n=2.2m﹣n=2×2﹣2=2,故答案为:2.13.已知x=﹣1是方程﹣2(x﹣a)=4的解,则a的值为1.【分析】把x=﹣1代入方程计算即可求出a的值.【解答】解:把x=﹣1代入方程得:﹣2(﹣1﹣a)=4,去括号得:2+2a=4,解得a=1,故答案为:1.14.A、B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是1cm或9cm.【分析】由已知条件知A,B,C三点在同一直线上,做本题时应考虑到A、B、C三点之间的位置,分情况可以求出A,C两点的距离.【解答】解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故答案为:1cm或9cm.15.如图图形都是由同样大小的小钢珠按一定规律排列的,按照此规律排列下去,第40个图形有小钢珠820颗.【分析】根据图形变化规律可知,第n个图形有个小球,据此规律计算即可.【解答】解:第1个图中有1个小球,第2个图中有3个小球,3=1+2,第3个图中有6个小球,6=1+2+3,第4个图中有10个小球,10=1+2+3+4,……,照此规律,第n个图形有个小球,当n=40时,小球个数为,故答案为:820.三.解答题(共7小题,满分55分)16.(5分)由6个棱一样长的正方体组成的几何体如图所示.在指定的方格内画出该几何体从三个方向看到的形状图.【分析】根据三视图的画法分别画出从正面看、从左面看,从上面看所得到的图形即可.【解答】解:这个组合体的三视图如下:17.(7分)解方程:(1)2x﹣(x+10)=6x;(2)1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣x﹣10=6x,移项合并得:5x=﹣10,解得:x=﹣2;(2)去分母得:6﹣9x+15=2+10x,移项合并得:19x=19,解得:x=1.18.(8分)计算:(1)计算:﹣14﹣;(2)先化简,后求值:5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)],其中x=﹣,y=﹣3.【分析】(1)先算乘方,再算乘除,后算加减,有括号先算括号里边的;(2)先去小括号,再去中括号,最后合并同类项,进行计算即可解答.【解答】解:(1)﹣14﹣=﹣1﹣×(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0;(2)5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)]=5x2﹣5xy﹣(5x2﹣6y+3xy+6y)=5x2﹣5xy﹣5x2+6y﹣3xy﹣6y=﹣8xy,当x=﹣,y=﹣3,原式=﹣8×(﹣)×(﹣3)=﹣12.19.(8分)在疫情期间,某县城为了保障学校学生的正常学习,需每天抽取不低于总学生人数的30%进行核酸抽检.为了更好地统计每天抽测的学生人数,医务人员以每天抽测2000人为标准,超过的人数记作正,不足的人数记作负.下表是该县城学校一周核酸抽检情况的记录(单位:人):星期一二三四五与标准的差/人+21+16﹣10﹣11﹣26(1)该县城哪天抽检的学生人数最多?哪天抽检的最少?分别是多少人?(2)聪明的你,帮医务人员计算下这周该县城总共核酸抽检了学生多少人?【分析】(1)根据正数和负数的实际意义列式计算即可;(2)根据正数和负数的实际意义列式计算即可.【解答】解:(1)2000+21=2021(人),2000﹣26=1974(人),即该县城星期一抽检的学生人数最多,最多为2021人;星期五抽检的学生人数最少,最少为1974人;(2)2000×5+(21+16﹣10﹣11﹣26)=10000﹣10=9990(人),即这周该县城总共核酸抽检了学生9990人.20.(8分)某校随机抽取部分学生,就”对自己做错题进行整理、分析、改正”这一学习习惯进行问卷调查,选项为:很少、有时、常常、总是(每人只能选一项);调查数据进行了整理,绘制成部分统计图如图:请根据图中信息,解答下列问题:(1)该调查的总人数为200,a=12%,b=36%,“常常”对应扇形的圆心角的度数为108° ;(2)请你补全条形统计图;(3)若该校有2000名学生,请你估计其中”总是”对错题进行整理、分析、改正的学生有多少名?【分析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;用360°乘以“常常”的人数所占比例.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.【解答】解:(1)∵44÷22%=200(名),∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.故答案为:200、12、36、108°;(2)常常的人数为:200×30%=60(名),补全图形如下:.(3)∵2000×36%=720(名),∴“总是”对错题进行整理、分析、改正的学生约有720名.21.(9分)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?【分析】(1)设调入x名工人,根据“调整后车间的总人数是调入工人人数的3倍多4人“得:16+x =3x+4,可解得答案;(2)设y名工人生产螺栓,由“1个螺栓需要2个螺母”,可得240y×2=400(22﹣y),即可解得答案.【解答】解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得x=6,∴调入6名工人;(2)由(1)知,调入6名工人后,车间有工人16+6=22(名),设y名工人生产螺栓,则(22﹣y)名工人生产螺母,∵每天生产的螺栓和螺母刚好配套,∴240y×2=400(22﹣y),解得y=10,∴22﹣y=22﹣10=12,答:10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.22.(10分)(1)如图1,已知点C、D为线段AB上两点,且AB=4AD=5BC,点M和点N分别是线段AC和BD的中点.若线段AB=20cm,则线段AD=5cm,BC=4cm,MN= 4.5cm.(2)已知OC、OD为从∠AOB顶点出发的两条射线,∠AOB=5∠BOC且∠AOB=120°,射线OM和射线ON分别平分∠AOC、∠BOD.①如图2,若OC、OD均为∠AOB内的两条射线,且∠AOB=4∠AOD,求∠MON的度数.②如图3,若OC为∠AOB外的一条射线,且∠MON=20°,则∠AOD=64或16°.【分析】(1)根据题意可得AD=5cm,BC=4cm,计算出BD=AB﹣AD=15cm,AC=AB﹣BC=16cm,再根据中点的定义得出,,最后根据MN=AB﹣BN﹣AM即可得出答案;(2)①先计算∠BOC=24°,根据角平分线的定义得出∠AOM=∠COM=48°,,进而得出答案;②分两种情况:当OD在∠AOB内部时,当OD在∠AOB外部时,分别计算即可.【解答】解:(1)∵AB=20cm,AB=4AD=5BC,∴AD=5cm,BC=4cm,∴BD=AB﹣AD=20﹣5=15cm,AC=AB﹣BC=20﹣4=16cm,∵点M和点N分别是线段AC和BD的中点,∴,,∴,故答案为:5;4;4.5;(2)①∵∠AOB=5∠BOC=120°,∴∠BOC=24°,∴∠AOC=120°﹣24°=96°,∵OM平分∠AOC,∴∠AOM=∠COM=48°,∵∠AOB=4∠AOD=120°,∴∠AOD=30°,∴∠BOD=90°,∠DOM=18°,∵ON平分∠BOD,∴,∴∠MON=45°﹣18°=27°;②当OD在∠AOB内部时,∵∠AOC=120°+24°=144°,OM平分∠AOC,∴∠AOM=∠COM=72°,∴∠BOM=72°﹣24°=48°.∵∠MON=20°,∴∠BON=28°.∵ON平分∠BOD,∴∠DON=∠BON=28°,∴∠DOM=8°,∴∠AOD=72°﹣8°=64°;当OD在∠AOB外部时,∠DON=∠BON=20°+48°=68°,∵∠AOM=∠COM=72°,∴∠AON=72°﹣20°=52°,∴∠AOD=68°﹣52°=16°.。
.六棱柱.圆柱.四棱
.圆锥
.要调查下列问题,适合采用全面调查(普查)的是(
.对全国中学生视力状况的调查
月份人均网上购物的次数
A .
B .
C .
A .块
B .二、填空题(本大题共5小题,每小题15.如图,周长为个单位长度的圆片上有一点右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,运动情况依次记录如表:计次第次
第滚动周数
AD BD AB +=BD CD CB -=6a (5a +2124-1
+
三、解答题(一)(本大题共3小题,每小题8分,共16.计算:(1)______,______(1)这次抽样调查的总人数是______,组所在扇形的圆心角的大小是______;
x =y =B
AC BD
(1)比较线段与的大小,并说明理由;
AB=cm BC=cm x
(1)______,______(用含的代数式表示);
x
(3)解:(人)答:该市每周校外锻炼身体时长不少于20.(1),理由见解析;
(2);
(3)当在点时,到点的距离和最小,最小值为150405000019000500
+⨯=6AC BD =18AD =P B 、、A B C
∴当在点时,为,此时的最小值P B PB 0PA PB PC ++PA =+。
西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。
2023/2024学年度第二学期七年级期末质量检测数学试卷温馨提示:1.数学试卷4页,三大题,共23小题,满分100分,考试时间100分钟,请合理分配时间。
2.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.3.请将答案写在答题卷上,在试卷上答题无效,考试结束只收答题卷.4.请你仔细思考,认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列实数中,是无理数的是( )A .0.1B .C .2πD2.石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为0.0000000335cm ,将0.0000000335这个数用科学记数法表示为( )A .B .C .D .3.下列运算中,正确的是( )A .B .C .D .4.已知a <b ,下列结论中,错误的是()A .B .a +c <b +cC .-3a >-3bD .5.如图,立定跳远是安徽省初中学生体育中考的选考项目,测量立定跳远成绩的依据是()A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .两直线相交有且只有一个交点6.将分式中的x ,y 的值都扩大为原来的3倍,则分式的值( )A .不变B .扩大为原来的6倍C .缩小为原来的D .扩大为原来的3倍7.下列图形中,由∠1=∠2,能得到的是()A .B .67-93.3510-⨯83.3510-⨯933.510-⨯70.33510-⨯111-=-0=321a a ÷=()2224ab a b -=33a b<22ac bc >2xx y-13AB CD ∥C .D .8.如图为商场某品牌椅子的侧面图,椅面DE 与地面AB 平行,椅背AF 与BD 相交于点C ,其中∠DEF =120°,∠ABD =55°,则∠ACB 的度数是()A .70°B .65°C .60°D .50°9.若关于x 的一元一次不等式组有3个整数解,则m 的取值范围是( )A .0≤m <1B .0<m <1C .-4≤m <-3D .0<m ≤110.已知实数a 、b 、c 满足c -a -b =ab ,下列结论一定正确的是( )A .若a =3,b =-1,则c =1B .若a +b =0,则c >0C .若,则D.若,则二、填空题(本大题共6小题,每小题3分,满分18分)11.若分式有意义,则x 的取值范围为______.12.因式分解:______.13.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,即三角形的三边长分别为a ,b ,c ,记,那么其面积.如果某个三角形的三边长分别为2,3,3,其面积S介于整数n 和n +1之间,那么n 的值是______.14.如图,直线AB 、CD 相交于点O ,∠AOC =25°,EO ⊥CD ,垂足为O ,OF 平分∠BOE ,则∠DOF =______°.15.凸透镜成像是自然界中的一个基本现象,其中物距记为u ,像距记为v ,透镜焦距记为f ,三者满足关系式:,若已知u 、f ,则v =_____.16.如图,,点E ,F 分别在直线AB ,CD 上,点P 在AB ,CD 之间,若,∠EPF =150°,∠PFC =120°,那么∠AEP =______°.242x m x ->⎧⎨-≤⎩221,32ab a b =+=52c =()241110,m m c m a b+=-≠=2ab m =21x -2xy x -=2a b cp ++=S =111u v f+=AB CD ∥三、解答题(本大题共7小题,满分52分)17.(6分)计算:18.(6分)解不等式:,并把它的解集在数轴上表示出来.19.(7分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点A ,B ,C 都在格点(网格线的交点)上,现将△ABC 平移,使点A 平移到点D ,点E ,F 分别是B ,C 的对应点.(1)请在图中画出平移后的△DEF ;(2)△DEF 的面积为______.20.(7分)先化简,再求值:,其中x =4.21.(8分)观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:……(1)写出符合以上规律的第5个等式:______;(2)已知n 为正整数,写出符合以上规律的第n 个等式,并说明等式成立的理由.22.(8分)如图,CE 平分∠ACD ,AE 平分∠CAB 交AD 于F ,且∠1+∠2=90°.()()()2115x x x --+-7132x x +-≤222121124x x x x x +-+⎛⎫-÷ ⎪+-⎝⎭()()()22221122122⨯+=⨯+-⨯()()()22222134134⨯+=⨯+-⨯()()()22223146146⨯+=⨯+-⨯()()()22224158158⨯+=⨯+-⨯(1)试说明:;(2)若∠3-∠4=20°,求∠AFC 的度数.23.(10分)某科技协会为迎接科技活动月,准备购进若干台A 、B 两种型号的无人机进行开幕式表演.已知每个A 型号的无人机进价比每个B 型号进价多500元,且用28000元购进A 型号无人机的数量与用24000元购进B 型号的数量相同.(1)求A 、B 型号的无人机每个进价分别是多少元?(2)若该协会购进B 型号无人机数量比A 型号的数量的2倍还少3个,且购进A 、B 两种型号无人机的总数量不超过10个,现两种无人机都要购买且预算经费是3万元,请判断预算经费是否够用?并说明理由.AB CD ∥。
2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。
2023-2024学年山东省淄博市周村区(五四制)七年级下学期期末考试数学试题1.下列命题中假命题的是()A.同旁内角互补,两直线平行B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直2.满足的最大整数是()A.1B.2C.3D.43.如图,,等边的顶点B,C分别在,上,当时,的大小为()A.B.C.D.4.不等式的解集在数轴上表示正确的是()A.B.C.D.5.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC6.如图1,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10.小凯转动转盘做频率估计概率的实验,当转盘停止转动后,指针指向的数字即为实验转出的数字.图2,是小凯记录下的实验结果情况,那么小凯记录的实验是()A.转动转盘后,出现偶数B.转动转盘后,出现能被3整除的数C.转动转盘后,出现比6大的数D.转动转盘后,出现能被5整除的数7.一种药品的说明书上写着:“每日用量,分次服用”,一次服用这种药品的有效剂量不可以为()A.B.C.D.8.如图,在中,,的平分线交于点,,交于点,于点,,,则下列结论错误的是()A.B.C.D.9.若关于的不等式组无解,则的取值范围是()A.B.C.D.10.如图,在△ABC中,∠ACB=90°,Rt△ABC≌Rt△AB'C',且∠ABC=∠CAB',连接BC',并取BC'的中点D,则下列四种说法:①AC'//BC;②△ACC'是等腰直角三角形;③AD平分∠CAB';④AD⊥CB'.其中正确的个数为()A.1个B.2个C.3个D.4个11.如图,已知,,,则________°.12.如图,在中,,,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若,则AD的长为________.13.已知x,y满足的方程组是,则x+y的值为___.14.如图,在中,平分,于点,若的面积为,则阴影部分的面积为___________.15.如图,在中,,,,E是边上一点,将沿折叠,使点B的对应点恰好落在边上,则的长等于___________.16.解方程组:(1);(2).17.解不等式(组):(1)(2)18.解不等式组,并求出它的所有整数解的和.19.如图,在中,,.(1)作出的角平分线,点E在线段上(要求:尺规作图,方法不限,不写作法,保留作图痕迹);(2)在射线上找一点P,使与(1)中所作的全等(要求:尺规作图,方法不限,不写作法,保留作图痕迹).20.如图,是的角平分线,,交于点E.(1)求证:.(2)当时,请判断与的大小关系,并说明理由.21.某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?22.如图,点E在等边△ABC的边AB所在直线上,以EC为一边作等边△ECF,顶点E、C、F顺时针排序.(1)点E在线段AB上,连接BF.求证:BF//AC;(2)已知AB=6,当△BCF是直角三角形时,求BE的长.23.在中,,为边中点,连接,与相交于点,过作,交于点,连接.(1)依题意补全图形;(2)求证:;(3)判断的数量关系,并证明.。
2023-2024学年度第一学期期末质量抽测七年级数学2024.01(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-5的绝对值是( )A.B .5C .-5D .2.下面几何体中,是圆锥的为()A .B .C .D .3.代数式-7x 的意义可以是( )A .-7与x 的和B .-7与x 的差C .-7与x 的积D .-7与x 的商4.如图是某地某一天的天气预报,该天的温差是()A .1℃B .10℃C .19℃D .9℃5.下列运算正确的是( )A .B .C .D .6.若,则的余角的大小是( )A .B .C .D .7.把弯曲的公路改直,能够缩短行程,这样做的道理是()A .两点之间,线段最短B .两点确定一条直线C .两点之间,射线最短D .两点之间,直线最短8.若,则下列变形正确的是()1515-358a b ab+=22a a -=22232a b ab a b -=34ab ab ab-=-4030A '∠=︒A ∠4930'︒5930'︒13930'︒14130'︒a b =A .B .C.D .9.如图,货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,海岛B 在它北偏东40°方向上.则的度数是( )A .60°B .80°C .100°D .120°10.我国古代数学名著《孙子算经》中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x 尺,根据题意可列方程为( )A .B .C .D .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作______米.12.单项式-3ab 的系数为______.13.关于x 的一元一次方程的解为,则a 的值为______.14.若,则的值是______.15.如图,数轴上点A 和点B 表示的数分别是3和-6,动点P 从B 点出发,以每秒1个单位长度的速度向左匀速移动,动点Q 同时从A 点出发,以每秒2个单位长度的速度向左匀速移动.设移动时间为t 秒,当动点Q 到点B 的距离等于动点P 到点B 的距离时,t 的值为______.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(本小题6分)如图,已知四点A ,B ,C ,D ,请按下列要求用直尺和圆规作图.34a b =22a b -=+33a b =a b c c=AOB ∠()14.512x x -=-2145x x -=+.()1 4.512x x -=+()14.512x x +=-25x a +=2x =2210m m +-=2243m m +-(1)连接BC ;(2)作射线BD 交直线AC 于点O ;(3)连接DA ,在DA 的延长线上作线段.17.(本小题10分)计算:(1);(2).18.(本小题10分)下面是小董同学解一元一次方程的过程,请认真阅读并回答问题.解:,……第一步,……第二步,……第三步.……第四步(1)①以上求解过程中,第______步进行的是移项,移项的依据是______;②第______步开始出现错误,这一步错误的原因是______;(2)求该一元一次方程的解;(3)除纠正上述错误外,请你根据平时的学习经验,就解一元一次方程时还需要注意的事项给其他同学提一条建议(一条即可).19.(本小题9分)先化简下式,再求值:,其中,.20.(本小题8分)如图,点C 是线段AB 的中点,点D 在线段AB 上,且.若,求线段DC 的长.21.(本小题8分)下表是某次篮球联赛积分榜:队名比赛场次胜场负场积分前进1410424东方1410424光明149523蓝天149523雄鹰147721远大147721AE AD =323(5)(3)128⨯---÷()421(2)13244-⨯--÷+1213323x x x --+=-()()183118221x x x +-=--18331842x x x +-=--18341823x x x ++=-+1925x =()()22225333a b ab ab a b --+12a =2b =2DB AD =18AB =卫星1441018钢铁141414(1)由积分榜可得:负一场积______分,胜一场积______分;(2)某队本次比赛后胜场总积分能等于负场总积分吗?请用一元一次方程知识给予验证.22.(本小题12分)数学活动课上,小明和小伟准备了一根质地均匀的木杆和若干个2g 的砝码.然后利用木杆和砝码做下列实验:①在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;②在木杆两边距支点18cm 处各悬挂一个2g 的砝码,发现左右保持平衡;③木杆右边砝码重量和位置保持不变,支点位置不变.在木杆左边砝码下加挂一个2g 的砝码,然后把这两个砝码一起向右移动,直至左右平衡,记录此时支点到木杆左边挂砝码处的距离;④在木杆左边两个砝码下再加挂一个2g 的砝码,然后把这三个砝码一起向右移动,直至左右平衡,记录此时支点到木杆左边挂砝码处的距离;⑤在木杆左边继续加挂砝码,并重复以上操作.小明和小伟记录如下:木杆左边砝码重量(单位:g )支点到木杆左边砝码处的距离x (单位:cm )木杆右边砝码重量(单位:g )支点到木杆右边砝码处的距离(单位:cm )2182184921866218…………(1)如果木杆左边挂有n 个砝码,移至左右平衡时,n 与x 满足的规律是______;(2)小明和小伟意犹未尽,在课余时间利用上述规律制作了如图简易杆秤,其中秤盘质量10g ,重物质量,秤砣质量100g ,秤纽与秤盘的水平距离为,秤纽与零刻线的水平距离为,零刻度线与末刻度线水平距离为50cm .当秤盘不放重物,秤砣在零刻线时,杆秤平衡;当秤盘放入质量为500g 的重物,秤砣从零刻度线移至末刻度线时,杆秤平衡.①l 与a 的数量关系是______;②列方程求解:小明在秤盘上放了一个笔记本,秤砣位于零刻度线右侧15cm 处时,杆秤平衡,求笔记本的重量.23.(本小题12分)g m cm l cm a[问题初探]数学活动课上,李老师将一副三角尺按图1所示位置摆放.分别作出,的平分线BH ,BF .然后提出问题:求的度数.(1)①“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,BH 和BF 仍然是,的平分线,DB 和BC 在同一直线上.分别计算出图2,图3中的度数,发现的度数均为______°.②探究完图2,图3所示的特殊位置问题后,“智慧小组”的同学猜想出图1中的度数应该与图2,图3中的度数相同.他们经过合作交流后发现,在图2,图3中和的度数都已知或能求出具体的度数,但图1中,和求不出具体的度数,所以想到了用字母表示数.如果设,则可以用含的式子表示和,然后利用角的和与差,就能求出的度数.请你根据“智慧小组”的思路,求出图1中的度数.[类比分析](2)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出,的平分线DN ,DM .他们认为利用同样方法也能求出的度数.请你求出的度数.[学以致用](3)如图5,已知点C 在线段AB 上,.点D 在线段AC 上,点E 在线段AB 延长线上,且.若,求的值.2023-2024期末考试七上数学数学答案一、选择题(本题共10小题,每小题3分,共30分)1.B 2.A 3.C 4.C 5.D 6.A 7.A 8.C 9.B 10.D二、填空题(本题共5小题,每小题3分,共15分)11.-80 12.-3 13.1 14.-1 15.3或9三、解答题ABE ∠CBE ∠HBF ∠ABE ∠CBE ∠HBF ∠HBF ∠HBF ∠HBF ∠ABE ∠CBE ∠ABE ∠CBE ∠DBA α∠=αABE ∠CBE ∠HBF ∠HBF ∠ADB ∠CDE ∠MDN ∠MDN ∠3AC BC =12DE AB =9AD EC BE +=CDAB每画对一个得2分(作,必须有作图痕迹,没有扣一分)17.(本小题10分)计算:(1).(2).18.(本小题10分)(1)①第三步,等式性质1;②第二步,去括号后,等式左边括号里的第二项没有变号;(2)解:;;;;.(3)解一元一次方程时,去分母时,不要漏乘;去括号时,括号外的数要与括号里的每一项相乘,移项需要变号等(答案不唯一).19.(本小题9分),当,时,原式.20.(本小题8分)∵,,∴.又∵点C 是线段AB 的中点,∴.∴.AE DE =()()()3128235311531283⨯---÷=---⨯()11512811512813=---=-+=()42111(2)132416(19)4442-⨯--÷+=⨯--⨯+()()148484122=--⨯+=--=1213323x x x --+=-()()183118221x x x +-=--18331842x x x +-=-+18341823x x x ++=++2325x =()()222222222253331553968a b ab ab a b a b ab ab a b a b ab --+=---=-12a =2b =22111162826284316132242⎛⎫=⨯⨯-⨯⨯=⨯⨯-⨯⨯=-=- ⎪⎝⎭18AB =2DB AD =163AD AB ==192AC AB ==3CD AC AD =-=(1)由积分榜可得:负一场积___1___分,胜一场积___2___分;(2)设一个队胜了x 场,则负了场..∴.∵x 是整数,∴不符合实际.∴没有哪个队的胜场总积分等于负场总积分.22.(本小题12分)(1)规律是nx =18;(2)①l 与a 的数量关系是l =10a ;②由题意,∴.∴.∴.∴.设笔记本的重量为,,,,答:笔记本重150g .23.(本小题12分)(1)①的度数为 30 °;②∵,∴.∵BH 平分,∴.∵,∴.∴.∵BF 平分,∴.∴.(2)设.∵,∴.∵DN 平分,∵.∵,∴.()14x -214x x =-43x =43x =()()1050050100l a +⋅=+⋅()()105001050100a a +⋅=+⋅51010500a a =+1a =10l =g m ()()1010115100m +⋅=+⋅10160m +=150m =HBF ∠45DBE ∠=︒45ABE DBA DBE α∠=∠+∠=︒+ABE ∠122.522HBE ABE α∠=∠=︒+60ABC ∠=︒60CBD ABC DBA α∠=∠-∠=︒-()456015CBE DBE CBD αα∠=∠-∠=︒-︒-=-︒CBE ∠17.522EBF CBE α∠=∠=-︒22.57.53022HBF HBE EBF αα⎛⎫∠=∠-∠=︒+--︒=︒ ⎪⎝⎭ADE β∠=90EDB ∠=︒90ADB ADE EDB β∠=∠+∠=︒+ADB ∠14522ADN ADB β∠=∠=︒+60ADC ∠=︒60CDE ADC ADE β∠=∠-∠=︒-∵DM 平分,∴.∴.∴.(3)设,∴.∴.∴.设,∴...∵,∴.∴.∴.∴.∴.CDE ∠13022EDM CDE β∠=∠=︒-303022ADM ADE EDM βββ∠=∠+∠=︒-+=︒+45301522MDN ADN ADM ββ⎛⎫∠=∠-∠=︒+-︒+=︒ ⎪⎝⎭BC x =33AC BC x ==4AB AC BC x =+=122DE AB x ==CD y =3AF AC CD x y =-=-2EC ED CD x y =-=-2BE DE CD BC x y x x y =--=--=-9AD EC BE +=()329x y x y x y -+-=-74y x =74x y =47AB x y ==17CD AB =。
2023届七年级上学期末考试数学试题及答案====================================问题1. 一个长方形的长为10 cm,宽为5 cm。
求它的面积。
答案1. 长方形的面积可以通过长度乘以宽度来求得,因此它的面积为10 cm × 5 cm = 50 cm²。
问题2. 一辆汽车以每小时60公里的速度行驶,行驶6小时后,总共行驶了多远?答案2. 汽车的速度是每小时60公里,行驶了6小时,因此总共行驶了60公里/小时 × 6小时 = 360公里。
问题3. 如果一个圆的半径为3 cm,求它的周长。
答案3. 圆的周长可以通过公式2πr来计算,其中r为半径。
因此,这个圆的周长为2 × 3.14 × 3 cm = 18.84 cm。
问题4. 一个正方形的边长为6 cm,求它的面积。
答案4. 正方形的面积可以通过边长的平方来计算。
因此,这个正方形的面积为6 cm × 6 cm = 36 cm²。
问题5. 一个矩形的面积为24 cm²,宽度为4 cm,求它的长度。
答案5. 矩形的面积可以通过长度乘以宽度来计算。
已知宽度为4 cm,面积为24 cm²,因此长度为24 cm² ÷ 4 cm = 6 cm。
问题6. 一个三角形的底边长为12 cm,高度为8 cm,求它的面积。
答案6. 三角形的面积可以通过底边长乘以高度的一半来计算。
因此,这个三角形的面积为(12 cm × 8 cm) ÷ 2 = 48 cm²。
问题7. 一个长方体的长为5 cm,宽为3 cm,高为2 cm,求它的体积。
答案7. 长方体的体积可以通过长度乘以宽度乘以高度来计算。
因此,这个长方体的体积为5 cm × 3 cm × 2 cm = 30 cm³。
问题8. 一个圆的直径为10 cm,求它的半径。
2023-2024学年山东省烟台市福山区七年级上学期期末考试数学试题1.下列各数中,无理数是()A.B.C.D.2.下列四种图案中,不是轴对称图形的是()A.B.C.D.3.若三角形的三边长分别为3,4,x,则x的取值范围是()A.B.C.D.4.利用课本上如图所示的计算器进行计算,其按键顺序及结果如下:显示结果为()A.32B.8C.4D.25.已知点,,点C在y正半轴上,且的面积是8,则点C的坐标为()A.B.C.D.6.如图,直线表示一条河,,表示两个村庄,向两个村庄供水,现有如图所示的四种铺设管道的方案,则所需管道最短的方案是()A.B.C .D .7.如图,线段把分为面积相等的两部分,则线段是()A .三角形的角平分线B .三角形的中线C .三角形的高D .以上都不对8.如图,一直线与两坐标轴的正半轴分别交于,两点,是线段上任意一点(不包括端点),过点分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A .B .C .D .9.已知关于x 的多项式是一个完全平方式,则在平面直角坐标系中,一次函数的图象一定经过()A .第一、二、三象限B .第一、二、四象限C .第一、二象限D .第三、四象限10.一次函数(m ,n 为常数且)与正比例函数在同一平面直角坐标系中的图象可能是()A .B .C .D .11.请写出一个正整数n,使得是整数,______.12.在平面直角坐标系内,点到轴的距离是______.13.在平面直角坐标系中,点A的坐标为,若轴,且,则点B的坐标为__________.14.如图,在中,将和按如图所示方式折叠,点B,C均落于边上一点G处,线段,为折痕.若,则______.15.如图,将纸片沿过点B的直线折叠,使点C落边上的E点,折痕为.若的周长为,,,则______.16.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形,对角线交于点.若,则________________.17.已知某正数的两个不同的平方根为和,的立方根为.(1)求a,b的值;(2)求的平方根.18.格点的正方形网格中的位置如图所示.(1)在图中画出关于直线对称的;(2)若网格中每个小正方形的边长为1,求的面积.19.如图,D是的边AB上一点,,交于点E,.(1)求证:;(2)若,,求的长.20.春节将近,小明决定将家里长的圆柱体不锈钢护栏上均匀的缠满彩色丝带.已知圆柱体的不锈钢护栏的底面周长为,彩色丝带的宽度不计,若相邻两圈丝带间隔.请你帮小明计算一下,最少需要多长的丝带.21.已知直线的表达式为,点A,B分别在x轴、y轴上.(1)求出点的A,B的坐标,并在下图中画出直线的图象;(2)将直线向上平移4个单位得到直线,点C,D分别在x轴、y轴上.求出点C,D的坐标及直线的表达式,并在下图中画出直线的图象;(3)若点P到x轴的距离为4,且在直线上,求的面积.22.如图,在中,,,平分.(1)求的度数;(2)若,垂足为点D,,,,求的长.23.如图,在平面直角坐标系中,直线l的图象是第一、三象限的角平分线.(1)实验与探究:由图观察易知关于直线l的对称点的坐标为,请在图中分别表明、关于直线l的对称点的位置,并写出它们的坐标:________、_______;(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任何一点关于第一、第三象限的角平分线l的对称点的坐标为__________.(3)类比与猜想:坐标平面内任一点关于第二、四象限的角平分线l的对称点的坐标为__________;(4)运用与拓广:已知两点、,试在第一、三象限的角平分线l上确定一点Q,使点Q到D、E两点的距离之和最小,请求出这个最小的距离之和.24.如图,直线与x轴交于点A,与y轴交于点B,C是线段上一点(不与点A,B重合),以边作如图所示的,且,,连接.(1)请判断线段与的关系,并说明理由;(2)当时,求点D的坐标.。
四川省成都市成华区2023-2024学年七年级上学期期末考试数学试题注意事项:1.全卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分,全卷总分150分;考试时间120分钟.2.请在答题卡上作答,答在试卷、草稿纸上无效.3.在答题卡上作答时,考生需首先准确填写自己的姓名、准考证号,并用2B 铅笔准确填涂好自己的准考证号.A 卷的第Ⅰ卷为选择题,用2B 铅笔填涂作答;其他题,请用黑色墨水签字笔书写,字体工整、笔迹清楚,请按照题号在各题目对应的答题区域内作答,超出答题区域书写的答案无效.4.保持答题卡面清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如果10+°C 表示零上10度,则零下8度表示()A.8+℃B.8-℃C.10+℃D.10-℃2.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体占1%.要反映上述信息,宜采用的统计图是()A.扇形统计图B.折线统计图C.条形统计图D.频数直方图3.由一个长方体和一个圆柱组成的几何体如图所示,则这个几何体的俯视图是()A. B.C. D.4.2023年,我国克服较为严重的自然灾害等多重不利影响,全年粮食产量再创历史新高,全国粮食总产量13908.2亿斤,其中数据“13908.2亿”用科学记数法表示为()A.713908210⨯B.111.3908210⨯C.121.3908210⨯D.131.3908210⨯5.下列计算正确的是()A .235ab ba ab+= B.222a b ab ab -=C.23a a a += D.422a a -=6.如图数轴上点,,,A B C D 分别对应有理数abcd ,,,.则下列各式中值最小的是()A.aB.bC.cD.d7.把一副三角板ABC (其中30ABC ∠=︒)与BDE (其中45DBE ∠=︒)按如图方式拼在一起,其中点,,A B D 在同一直线上.若BF 平分,CBE BG ∠平分DBE ∠,则FBG ∠=()A.65︒B.75︒C.775︒.D.85︒8.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑩个图案用的木棍根数是()A.39B.44C.49D.54第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做蕴含的数学道理是____________.10.已知有理数a 、b 满足2(2)10a b -++=,则a b =_____.11.如图,C 是线段AB 上一点,D 是线段AC 的中点,E 是线段BC 的中点.若16cm DE =,则AB 的长是______cm .12.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.13.我国著名数学家华罗庚说:“数形结合百般好,割裂分家万事非”.如图,在边长为1的正方形纸板上,依次贴上面积为1111,,,,24816的长方形或正方形纸片,请你用“数形结合”的数学思想计算:11111111248163264128256+++++++=______.三、解答题(本大题共5个小题,共48分)14.(1)计算:()532426143⎛⎫-+⨯-⎪⎝⎭;(2)计算:()21181522⎛⎫-⨯---+⨯ ⎪⎝⎭.15.(1)解方程:211434x x -+-=;(2)先化简再求值:()2223232x y x y xy x y xy ⎡⎤----⎣⎦,其中1,2x y =-=-.16.为了更好地落实《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》精神,我区教育主管部门对部分初中学生“每天完成书面作业的时间”进行了随机调查.为便于统计学生每天完成书面作业的时间t (单位:小时),设置了如下四个选项(每个参加随机调查的学生选且只选一项):A(1),B(1 1.5),C(1.52),D(2)t t t t ≤<≤<≤>.根据调查结果绘制了如下两幅不完整的统计图,请根据统计图信息解答下列问题:(1)参加此次随机调查的学生共有多少人?选项A 的学生人数有多少人?(2)在扇形统计图中,求选项D 所对应的扇形圆心角的度数;(3)我区约有24000名初中学生,那么请估算“每天完成书面作业的时间不超过90分钟”的初中学生约有多少人?17.为了美化环境,建设生态成华,某社区需要进行绿化改造.现有甲、乙、丙三个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,丙队每天能完成的绿化改造面积是甲队的45,甲、乙、丙合作一天能完成1200平方米的绿化改造面积.(1)问甲、乙、丙三个工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需进行绿化改造的面积共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,预算发现:甲、乙两队合作完成的费用和甲、乙、丙三队合作完成的费用相等,问丙队每天的施工费用为多少元?18.已知120AOB ∠=︒,射线OC 在AOB ∠的内部,60AOC ∠<︒.将射线OC 绕点O 逆时针旋转60︒形成射线OD .(1)如图1,若90AOD ∠=︒,那么AOC ∠和BOD ∠的度数相等吗?为什么?(2)作射线OE ,使射线OE 为AOD ∠的平分线.①如图2,当射线OC 恰好平分AOE ∠时,求BOD ∠的度数;②如图3,设AOC α∠=,试探究BOD ∠与EOC ∠之间有何数量关系?说明理由.B 卷(50分)一、填空题(每小题4分,共20分)19.若a 、b 互为相反数,c 为8的立方根,则22a b c +-=___________.20.由大小相同的小正方体搭成一个几何体,若搭成的几何体的左视图和俯视图如图所示,则所需小正方体的最少个数为______.21.如果一个长方形内部能用正方形按如图方式既不重叠又无缝隙铺满,就称这个长方形为优美长方形.如图所示的优美长方形ABCD 的周长为52,则正方形EMPQ 的边长为______.22.在数学创新设计活动中,某创新小组同学设计了一个“回头差”游戏:对依次排列的两个整式,m n 进行操作,第1次操作后得到整式串,,m n n m -;第2次操作后得到整式串,,,m n n m m --;第3次操作后得到整式串,,,,m n n m m n ---;…其规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差.则该“回头差”游戏第2024次操作后得到的整式串中各项之和为______.23.一个四位正整数,它的千位数字a 比个位数字d 大6,百位数字b 比十位数字c 大2,且满足335a b c da +++-能被10整除,则这个四位正整数的最大值为______,最小值为______.二、解答题(本大题有3个小题,共30分)24.对于有理数,a b ,定义了一种“⊗”的新运算,具体为:()()223a b a b a b a b a b ⎧-≥⎪⊗=⎨-<⎪⎩(1)计算:①()21⊗-;②()()43-⊗-;(2)若2x =是关于x 的一元一次方程313m x ⊗=-+的解,求m 的值.25.某市居民的燃气收费,按户为基础、年为周期进行阶梯收费,具体如表所示,请根据表中信息解答下列问题:阶梯年用气量()3mx 收费单价第一阶梯0400x ≤≤的部分2.67元3/m 第二阶梯4001200x <≤的部分3.15元3/m 第三阶梯31200m 以上的部分3.63元3/m 备注:若家庭人口超过四人,每增加一人,第一、二阶梯年用气量的上限分别增加33100m 200m 、(1)一户3人家庭,若年用气量为3200m ,则该年此户需缴纳燃气费用为______元;若年用气量为3500m ,则该年此户需缴纳燃气费用为______元;(2)一户不超过4人的家庭,年用气量超过了31200m ,设该年此户需缴纳燃气费用为y 元,请用含x 的代数式表示y ;(3)甲户家庭人口为3人,乙户家庭人口为5人,2023年甲乙两户缴纳的燃气费用均为3855元,请判断甲乙两户年用气量分别达到哪个阶梯?并求出2023年甲乙两户年用气量分别是多少立方米(结果精确到31m )?26.(1)【发现问题】如图,在数阵1中,第1行圆圈中的数为1,即21;第2行两个圆圈中的数和为22+,即22;…;第n 行n 个圆圈中的数和为n n n n ++++ ,即______.这样,数阵1中共有______个圆圈,数阵1中所有圆圈中的数之和可以表示为______.(2)【解决问题】将数阵1旋转可得数阵2,将数阵2旋转可得数阵3,请仔细观察这三个数阵,并结合三个数阵,计算:2222123n ++++ .(结果用含n 的代数式表示)(3)【拓展应用】根据以上发现,计算:222212320241232024++++++++ .答案A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如果10+°C 表示零上10度,则零下8度表示()A.8+℃ B.8-℃C.10+℃D.10-℃【答案】B 【解析】【分析】根据“负数是与正数互为相反意义的量”即可得出答案.【详解】解:因为10+°C 表示零上10度,所以零下8度表示“8-℃”.故选B【点睛】本题考查正负数的意义,属于基础题,解题的关键在于理解负数的意义.2.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体占1%.要反映上述信息,宜采用的统计图是()A.扇形统计图B.折线统计图C.条形统计图D.频数直方图【答案】A 【解析】【分析】本题考查了统计图的选择;根据扇形统计图能清楚的表示出各部分所占总体的百分比可得答案.【详解】解:因为要反映空气成分所占的百分比,所以宜采用的统计图是扇形统计图,故选:A .3.由一个长方体和一个圆柱组成的几何体如图所示,则这个几何体的俯视图是()A. B.C. D.【答案】D 【解析】【分析】本题考查了简单组合体的三视图,掌握从上面看到的图形是俯视图,是解答本题的关键,根据从上面看到的图形是俯视图,即可解答.【详解】从上面看下边是一个矩形,矩形的内部是一个圆,故选:D .4.2023年,我国克服较为严重的自然灾害等多重不利影响,全年粮食产量再创历史新高,全国粮食总产量13908.2亿斤,其中数据“13908.2亿”用科学记数法表示为()A.713908210⨯B.111.3908210⨯C.121.3908210⨯D.131.3908210⨯【答案】C 【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,科学记数法的表现形式为10n a ⨯,其中110a ≤<,n 为正整数,据此求解即可,正确确定a 和n 的值是解题的关键.【详解】13908.2亿121.3908210=⨯,故选:C .5.下列计算正确的是()A.235ab ba ab +=B.222a b ab ab -=C.23a a a +=D.422a a -=【答案】A 【解析】【分析】本题考查了整式的加减,据此逐项计算即可,熟练掌握合并同类项法则是解题的关键.【详解】A.235ab ba ab +=,计算正确,符合题意;B.222,a b ab 不是同类项,不能合并,不符合题意;C.2,a a 不是同类项,不能合并,不符合题意;D.422a a a -=,计算错误,不符合题意;故选:A .6.如图数轴上点,,,A B C D 分别对应有理数a b c d ,,,.则下列各式中值最小的是()A.aB.bC.cD.d【答案】C 【解析】【分析】本题考查了实数与数轴的关系,绝对值的几何意义,结合数轴可以得出a b c d ,,,四个数的绝对值的大小,进而判断即可,熟知离原点越近的点所表示的数的绝对值越小是解题的关键.【详解】由数轴可得,点A 离原点距离最远,其次是点D ,再次是点B ,C 点离原点距离最近,∴a d b c >>>,∴其中值最小的是c ,故选:C .7.把一副三角板ABC (其中30ABC ∠=︒)与BDE (其中45DBE ∠=︒)按如图方式拼在一起,其中点,,A B D 在同一直线上.若BF 平分,CBE BG ∠平分DBE ∠,则FBG ∠=()A.65︒B.75︒C.775︒.D.85︒【答案】B 【解析】【分析】本题考查了角的和差和角平分线的意义,先根据平角的定义计算出CBE ∠,再根据角平分线的意义得出,EBF EBG ∠∠,最后根据FBG EBF EBG ∠=∠+∠求解即可.【详解】∵点,,A B D 在同一直线上,∴180ABC CBE DBE ∠+∠+∠=︒,∵30ABC ∠=︒,45DBE ∠=︒,∴180105CBE ABC DBE ∠=︒-∠-∠=︒,∵BF 平分,CBE BG ∠平分DBE ∠,∴1152.5,22.522EBF CBE EBG DBE ∠=∠=︒∠=∠=︒,∴52.522.575FBG EBF EBG ∠=∠+∠=︒+︒=︒,故选:B .8.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑩个图案用的木棍根数是()A.39B.44C.49D.54【答案】D 【解析】【分析】本题考查图形的数字规律.根据前几个图形,得出后一个图形比前一个的木棍数多5根,据此规律求解即可.【详解】解:由图可知:第1个图案用了459+=根木棍,第2个图案用了45214+⨯=根木棍,第3个图案用了45319+⨯=根木棍,第4个图案用了45424+⨯=根木棍,L∴第n 个图案用的木棍根数是45n +;当10n =时,451054+⨯=,故选:D .第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做蕴含的数学道理是____________.【答案】两点之间,线段最短【解析】【分析】此题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点之间线段最短的性质.【详解】解:从大山中开挖隧道穿过,把道路取直,使两点处于同一条线段上.这样做包含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】此题主要考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题的关键.10.已知有理数a 、b 满足2(2)10a b -++=,则a b =_____.【答案】1【解析】【分析】本题考查平方数和绝对值的非负性.根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,20a -=,10b +=,解得2a =,1b =-,所以,()211a b =-=.故答案为:1.11.如图,C 是线段AB 上一点,D 是线段AC 的中点,E 是线段BC 的中点.若16cm DE =,则AB 的长是______cm .【答案】32【解析】【分析】本题考查了线段中点的有关计算;根据线段中点的定义可得AD DC =,CE BE =,然后根据线段之间的关系计算即可.【详解】解:∵D 是线段AC 的中点,E 是线段BC 的中点,∴AD DC =,CE BE =,∵16cm DE DC CE =+=,∴()232cm AB AD DC CE BE DC CE =+++=+=,故答案为:32.12.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.【答案】8374x x -=+【解析】【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x -元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解.【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x -元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,则可列方程为:8374x x -=+故答案为:8374x x -=+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.13.我国著名数学家华罗庚说:“数形结合百般好,割裂分家万事非”.如图,在边长为1的正方形纸板上,依次贴上面积为1111,,,,24816的长方形或正方形纸片,请你用“数形结合”的数学思想计算:11111111248163264128256+++++++=______.【答案】255256【解析】【分析】本题考查了数字类变化规律,通过观察图形可得11111124822++++=- n n ,代入计算即可,能够利用数形结合的思想是解题的关键.【详解】由题意可得,111111111111124822244822n n n -⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L L 1111111112244822n n --+-+-+-=+L 112n =-,∴1111111111248163264128256256256255+++++++=-=,故答案为:255256.三、解答题(本大题共5个小题,共48分)14.(1)计算:()532426143⎛⎫-+⨯- ⎪⎝⎭;(2)计算:()21181522⎛⎫-⨯---+⨯ ⎪⎝⎭.【答案】(1)54-;(2)0【解析】【分析】本题考查了含乘方的有理数的混合运算和乘法运算律,(1)直接利用乘法分配律进行计算即可;(2)先算乘方和括号,再算乘法,最后算加减;熟练掌握运算法则和顺序是解题的关键.【详解】(1)解:原式()()()5324242426143=⨯--⨯-+⨯-35928=-+-54=-;(2)解:原式118442=⨯-⨯22=-0=.15.(1)解方程:211434x x -+-=;(2)先化简再求值:()2223232x y x y xy x y xy ⎡⎤----⎣⎦,其中1,2x y =-=-.【答案】(1)11x =;(2)227x y xy -+,18【解析】【分析】本题考查了解一元一次方程和整式的化简求值,(1)根据去分母,去括号,移项,合并同类项,系数化为1的顺序解方程即可;(2)先去括号,再进行整式的加减,最后代入数值计算即可;熟练掌握知识点是解题的关键.【详解】(1)解:去分母得:()()4213148x x --+=,去括号得:843348x x ---=,去移项得:834843x x -=++,合并同类项得:555x =,系数化1得:11x =;(2)解:原式()2223263x y x y xy x y xy =--+-2223263x y x y xy x y xy=-+-+227x y xy =-+,当1,2x y =-=-时,原式()()()22(1)271218=-⨯-⨯-+⨯-⨯-=.16.为了更好地落实《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》精神,我区教育主管部门对部分初中学生“每天完成书面作业的时间”进行了随机调查.为便于统计学生每天完成书面作业的时间t (单位:小时),设置了如下四个选项(每个参加随机调查的学生选且只选一项):A(1),B(1 1.5),C(1.52),D(2)t t t t ≤<≤<≤>.根据调查结果绘制了如下两幅不完整的统计图,请根据统计图信息解答下列问题:(1)参加此次随机调查的学生共有多少人?选项A 的学生人数有多少人?(2)在扇形统计图中,求选项D 所对应的扇形圆心角的度数;(3)我区约有24000名初中学生,那么请估算“每天完成书面作业的时间不超过90分钟”的初中学生约有多少人?【答案】(1)100人,8人(2)43.2︒(3)约有15360人【解析】【分析】本题考查了条形统计图和扇形统计图,以及利用样本估计总体等知识,(1)用选项C 的人数除以其所占比例,即可求出学生总数,然后用总人数减去其他三组的人数,即可求解;(2)用360度乘以其所占比例求解即可;(3)利用样本估计总体的思想解答即可;解题的关键是从统计图中获取解题所需要的信息.【小问1详解】此次调查的总人数是2424%100÷=(人),∴选项A 中的学生人数是1005624128---=(人),∴参加此次随机调查的学生共有100人,选项A 的学生人数有8人;【小问2详解】360143.20021⨯︒=︒,∴选项D 所对应的扇形圆心角的度数为43.2︒;【小问3详解】8562400015360100+⨯=(人)∴“每天完成书面作业的时间不超过90分钟”的初中学生约有15360人.17.为了美化环境,建设生态成华,某社区需要进行绿化改造.现有甲、乙、丙三个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,丙队每天能完成的绿化改造面积是甲队的45,甲、乙、丙合作一天能完成1200平方米的绿化改造面积.(1)问甲、乙、丙三个工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需进行绿化改造的面积共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,预算发现:甲、乙两队合作完成的费用和甲、乙、丙三队合作完成的费用相等,问丙队每天的施工费用为多少元?【答案】(1)甲、乙、丙三个工程队每天能完成的绿化改造面积分别是500平方米,300平方米,400平方米(2)丙队每天的施工费用为500元【解析】【分析】本题考查了一元一次方程的应用,(1)设乙队每天能完成绿化改造的面积是x 平方米,则甲队每天能完成绿化改造的面积是()200x +平方米,丙队每天能完成绿化改造的面积是()42005x +平方米,甲、乙、丙合作一天能完成1200平方米的绿化改造面积列方程求解即可;(2)设丙队每天的施工费用为y 元,根据甲、乙两队合作完成的费用和甲、乙、丙三队合作完成的费用相等,列方程求解即可;准确理解题意,找出等量关系是解题的关键.【小问1详解】设乙队每天能完成绿化改造的面积是x 平方米,则甲队每天能完成绿化改造的面积是()200x +平方米,丙队每天能完成绿化改造的面积是()42005x +平方米,依题意得:()()420020012005x x x ++++=,解得:300x =,则()4200500,2004005x x +=+=,所以,甲、乙、丙三个工程队每天能完成的绿化改造面积分别是500平方米,300平方米,400平方米;【小问2详解】设丙队每天的施工费用为y 元,依题意得:()()1200012000600400600400500300500300400y +⨯=++⨯+++,解得:500y =,答:丙队每天的施工费用为500元.18.已知120AOB ∠=︒,射线OC 在AOB ∠的内部,60AOC ∠<︒.将射线OC 绕点O 逆时针旋转60︒形成射线OD .(1)如图1,若90AOD ∠=︒,那么AOC ∠和BOD ∠的度数相等吗?为什么?(2)作射线OE ,使射线OE 为AOD ∠的平分线.①如图2,当射线OC 恰好平分AOE ∠时,求BOD ∠的度数;②如图3,设AOC α∠=,试探究BOD ∠与EOC ∠之间有何数量关系?说明理由.【答案】(1)相等,理由见解析(2)①40︒;②2BOD EOC ∠=∠,理由见解析【解析】【分析】本题考查了角平分线的定义,角的计算.(1)根据90AOD ∠=︒,120AOB ∠=︒,即可确定AOC ∠和BOD ∠两个角的大小;(2)①根据角平分线的定义可得31221∠=∠+∠=∠,再由60COD ∠=︒,可得120∠=︒,然后根据120AOB ∠=︒,即可求解;②根据角平分线的定义可得12302α∠=︒-,再由120AOB ∠=︒,可得422∠=∠,即可.【小问1详解】解:AOC ∠和BOD ∠的度数相等.理由如下:120,90AOB AOD ∠=︒∠=︒ ,1209030BOD ∴∠=︒-︒=︒,60,90COD AOD ∠=︒∠=︒ ,906030AOC ∴∠=︒-︒=︒,30AOC BOD ∴∠=∠=︒,即AOC ∠和BOD ∠的度数相等;【小问2详解】解:如图,射线OC 恰好平分AOE ∠,12∴∠=∠,射线OE 恰好平分AOD ∠,31221∴∠=∠+∠=∠,60COD ∠=︒ ,3260∴∠+∠=︒,21160∴∠+∠=︒,120∴∠=︒,220,340∴∠=︒∠=︒,120AOB ∠=︒Q ,412012312020204040∴∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,即BOD ∠的度数是40︒;②答:数量关系是2BOD EOC ∠=∠.理由如下:60,1COD α∠=︒∠= ,60AOD α∴∠=︒+,射线OE 平分AOD ∠,()11126022AOD α∴∠+∠=∠=︒+,()112603022ααα∴∠=︒+-=︒-,120AOB ∠=︒Q ,()41201206060AOD αα∴∠=︒-∠=︒-︒+=︒-,422∴∠=∠,即2BOD EOC ∠=∠.B 卷(50分)一、填空题(每小题4分,共20分)19.若a 、b 互为相反数,c 为8的立方根,则22a b c +-=___________.【答案】2-【解析】【分析】利用相反数,立方根的性质求出a b +及c 的值,代入原式计算即可得到结果.【详解】解:根据题意得:02a b c +==,,22022a b c ∴+-=-=-,故答案为:2-【点睛】此题考查了代数式求值,相反数、立方根的性质,熟练掌握运算法则是解本题的关键.20.由大小相同的小正方体搭成一个几何体,若搭成的几何体的左视图和俯视图如图所示,则所需小正方体的最少个数为______.【答案】9【解析】【分析】本题考查了由三视图判断小正方体的个数,根据左视图可猜想俯视图每一排的个数情况,即可求解.【详解】由左视图和俯视图可知,∴小正方体的最少个数为3112119+++++=(个),故答案为:9.21.如果一个长方形内部能用正方形按如图方式既不重叠又无缝隙铺满,就称这个长方形为优美长方形.如图所示的优美长方形ABCD 的周长为52,则正方形EMPQ 的边长为______.【答案】2【解析】【分析】本题考查了一元一次方程的应用,设正方形EMPQ 的边长为x ,根据图可得各个正方形的边长,最后再根据优美长方形ABCD 的周长列方程求解即可,熟练掌握知识点是解题的关键.【详解】设正方形EMPQ 的边长为x ,即ME MP PQ EQ x ====,∴2,3,5MN AM AG NG x HG BG BF FH x EF CD ED CF x ============,∵优美长方形ABCD 的周长为52,∴()()2235552BF CF CD x x x ++=++=,解得2x =,故答案为:2.22.在数学创新设计活动中,某创新小组同学设计了一个“回头差”游戏:对依次排列的两个整式,m n 进行操作,第1次操作后得到整式串,,m n n m -;第2次操作后得到整式串,,,m n n m m --;第3次操作后得到整式串,,,,m n n m m n ---;…其规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差.则该“回头差”游戏第2024次操作后得到的整式串中各项之和为______.【答案】0【解析】【分析】本题考查了代数式的规律探索,整式的加减运算,先根据题意写出1至7次操作的整式串,观察可得规律每四次操作为一次循环,据此求解即可,总结规律并能运用规律是解题的关键.【详解】由题意得,第1次操作后得到整式串,,m n n m -;第2次操作后得到整式串,,,m n n m m --;第3次操作后得到整式串,,,,m n n m m n ---;第4次操作后得到整式串,,,,,m n n m m n m n ----;第5次操作后得到整式串,,,,,,m n n m m n m n m ----;第6次操作后得到整式串,,,,,,,m n n m m n m n m n ----;第7次操作后得到整式串,,,,,,,,m n n m m n m n m n n m -----;∴每四次操作为一次循环,∴20244506÷=,∴该“回头差”游戏第2024次操作后得到的整式串中各项之和为前4项的和,这个和为()()0m n n m m n m n ++-+-+-+-=,故答案为:0.23.一个四位正整数,它的千位数字a 比个位数字d 大6,百位数字b 比十位数字c 大2,且满足335a b c d a +++-能被10整除,则这个四位正整数的最大值为______,最小值为______.【答案】①.9313②.6640【解析】【分析】本题考查数的整除,熟练掌握整除的定义,根据所给的条件,逐渐排除不符合题意的数,利用列举法求四位正整数是解题的关键.由a 比d 大6,确定60a d ==,或71a d ==,或82a d ==,或93a d ==,;再由335a b c d a +++-能被10整除,分别验证即可.【详解】解:∵a 比d 大6∴60a d ==,或71a d ==,或82a d ==,或93a d ==,;∵b 比c 大2,∴2b c =+,∴33442455a b c d d c a a +++++=--,∵44245d c a ++-能被10整除,∴当6a =时,64b c ==,,此时四位正整数为6640;当7a =时,53b c ==,,此时四位正整数为7531;当8a =时,97b c ==,,此时四位正整数为8972;当9a =时,31b c ==,,此时四位正整数为9313,∴最大的四位正整数为9313,最小的四位正整数为6640,故答案为:9313,6640.二、解答题(本大题有3个小题,共30分)24.对于有理数,a b ,定义了一种“⊗”的新运算,具体为:()()223a b a b a b a b a b ⎧-≥⎪⊗=⎨-<⎪⎩(1)计算:①()21⊗-;②()()43-⊗-;(2)若2x =是关于x 的一元一次方程313m x ⊗=-+的解,求m 的值.【答案】(1)①5;②2-;(2)m 的值为1【解析】【分析】本题考查了有理数的混合运算,解一元一次方程,准确理解题意,熟练掌握知识点是解题的关键.(1)①根据新定义运算法则列式计算即可;②根据新定义运算法则列式计算即可;(2)根据新定义运算法则列方程计算即可.【小问1详解】解:①21>- ,()()212215∴⊗-=⨯--=,②43-<- ,()()()2434323∴-⊗-=--⨯-=-;【小问2详解】解:分两种情况讨论:①若3m >,则23132m ⨯-=-+⨯,解得1m =;②若3m <,则231323m -=-+⨯,解得3m =-;3m =-不满足3m <,3m =-应舍去,∴综上所述:m 的值为1.25.某市居民的燃气收费,按户为基础、年为周期进行阶梯收费,具体如表所示,请根据表中信息解答下列问题:阶梯年用气量()3m x 收费单价第一阶梯0400x ≤≤的部分 2.67元3/m 第二阶梯4001200x <≤的部分 3.15元3/m 第三阶梯31200m 以上的部分3.63元3/m 备注:若家庭人口超过四人,每增加一人,第一、二阶梯年用气量的上限分别增加33100m 200m 、(1)一户3人家庭,若年用气量为3200m ,则该年此户需缴纳燃气费用为______元;若年用气量为3500m ,则该年此户需缴纳燃气费用为______元;(2)一户不超过4人的家庭,年用气量超过了31200m ,设该年此户需缴纳燃气费用为y 元,请用含x 的代数式表示y ;(3)甲户家庭人口为3人,乙户家庭人口为5人,2023年甲乙两户缴纳的燃气费用均为3855元,请判断甲乙两户年用气量分别达到哪个阶梯?并求出2023年甲乙两户年用气量分别是多少立方米(结果精确到31m )?【答案】(1)534,1383(2) 3.63768y x =-(3)甲户该年的用气量达到了第三阶梯,用气量约为31274m ,乙户该年的用气量达到第二阶梯,用气量为31300m 【解析】【分析】本题考查了一元一次方程的应用,找到相等关系是解题的关键.(1)根据收费标准代入求解;(2)根据收费标准计算求解;(3)根据“2023年甲乙两户缴纳的燃气费用均为3855元”列方程求解.【小问1详解】解:一户3人家庭,若年用气量为3200m ,该年此户需缴纳燃气费用为200 2.67534⨯=元;若年用气量为3500m ,该年此户需缴纳燃气费用为()400 2.67 3.155004001383⨯+⨯-=元;故答案为∶534,1383;【小问2详解】()()2.67400 3.151200400 3.631200 3.63768y x x =⨯+⨯-+-=-,【小问3详解】若甲户年用气量为31200m ,则燃气费用为()2.67400 3.15120040035883855⨯+⨯-=<,∴甲户该年的用气量达到了第三阶梯,由(2)得,当3855y =甲时,3.637683855x -=,解得1274x ≈,∴甲户年用气量约为31274m ,若乙户年用气量为3500m ,则燃气费用为()2.6710040013353855⨯+=<,∴乙户该年的用气量超过第一阶梯,若乙户年用气量为31400m ,则燃气费用为()()2.67100400 3.15120020050041703855⨯++⨯+-=>,。
人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。
2023-2024学年山东省青岛莱西市(五四制)七年级上学期期末考试数学试题1.下列实数中,是无理数的是()A.B.C.D.2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17B.22C.17或22D.133.下列计算正确的是()A.B.C.D.4.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1B.2C.3D.45.如图,兔子的三个洞口构成,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在().A.三条边的垂直平分线的交点B.三个角的角平分线的交点C.三角形三条高的交点D.三角形三条中线的交点6.在平面直角坐标系中,已知点,,则点A与点B()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线对称7.一次函数y=kx﹣6(k<0)的图象大致是()A.B.C.D.8.中,,,,则以边长的正方形的面积为()A.36B.27C.108D.1449.如图,将直角三角形纸片沿AD折叠,使点B落在AC延长线上的点E处.若AC=3,BC=4,则图中阴影部分的面积是()A.B.C.D.10.如图,一次函数与正比例函数的图象交于第三象限内的点A,与y轴交于点B,且,则正比例函数的解析式为()A.B.C.D.11.估算最接近的整数是______.12.点关于x轴的对称点的坐标是______.13.如图,是等边三角形的中线,,则______.14.如图,把直线l向右平移2个单位得到直线,则直线的解析式为______.15.如图,数轴上A点表示的数为﹣2,B点表示的数是1.过点B作BC⊥AB,且BC=2,以点A为圆心,AC的长为半径作弧,弧与数轴的交点D表示的数为___.16.如图,OB,AB分别表示甲乙两名同学运动的一次函数图象,图中s与t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲比乙先跑12米;④8秒钟后,甲超过了乙,其中正确的有_____________.(填写你认为所有正确的答案序号)17.如图,在平面直角坐标系中点的坐标为,点的坐标为.(1)在图中关于轴对称图形为,则(___,___);(2)的面积是______;(3)如果要使以点A、B、D为顶点的三角形与全等,那么点的坐标是______.18.计算(1)(2)19.已知实数a,b满足关系式,求的立方根.20.如图,已知AC和BD相交于点O,且AB DC,OA=OB.求证:OC=OD.21.某数学兴趣小组根据学习一次函数的经验,对函数的图象与性质进行了探究,下面是该小组的探究过程,请补充完整:(1)列表:x…0123…y…b1012…其中,______;(2)描点并连线;在下面平面直角坐标系中画出函数的图象;(3)根据图象直接写出函数图象的两条性质.22.如图,在中,,是的垂直平分线,交于点,交于点.(1)若,求的度数.(2)若,,求的长.23.在我们认识的多边形中,有很多轴对称图形,有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有______条对称轴,非正方形的长方形有______条对称轴,等边三角形有______条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图和图都可以看作由图修改得到的,仿照类似的修改方式,请你在图和图中,分别修改图和图,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.24.小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完、小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(千克)与上市时间x(天)的函数关系如图(1)所示,销售价格z(元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)求第10天的销售量和销售价格;(2)试比较第10天与第12天的销售金额哪天更高.25.如图,在四边形中,,点E,F分别在,上,,,判断与的数量关系并加以说明.26.长方形OABC在平面直角坐标系的位置如图所示,OA=3,AB=4,点D的坐标为(-2,0),点P为AB上一点,且PC+PD的值最小.(1)请确定点P的位置,并求点P的坐标;(2)求PC+PD的最小值.27.(1)如图,已知与交于点,,,则与的数量关系是______;(2)如图,已知的延长线与交于点,,,探究与的数量关系,并说明理由.。
北京市朝阳区2023~2024学年度第一学期期末检测七年级数学试卷(选用)(考试时间90分钟满分100分)考生须知1.本试卷共6页.在试卷和答题卡上准确填写学校名称、班级、姓名和考号.2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.3.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.2-的绝对值为()A .2-B .2--C .12-D .22.2023年我国规模以上内容创作生产营业收人累计值前三个季度分别约为6500亿元13000亿元,20000亿元,合计约39500亿元.将39500用科学记数法表示应为()A .239510⨯B .43.9510⨯C .33.9510⨯D .50.39510⨯3.若34x y -与ax y 是同类项,则a 的值为()A .2-B .2C .3D .44.下列图形中可以作为一个正方体的展开图的是()A .B .C .D .5.如果a b =,那么下列等式一定成立的是()A .33a b +=-B .0a b +=C .44a b=D .1ab =6.已知α∠与β∠互为补角,并且α∠的2倍比β∠大30︒,则,αβ∠∠分别为()A .70︒,110︒B .40︒,50︒C .75︒,115︒D .50︒,130︒7.,a b 是有理数,它们在数轴上的对应点的位置如图所示.下列各式正确的是()A .b a a b -<-<<B .a b a b -<-<<C .b a a b <-<<-D .b b a a<-<-<8.对幻方的研究体现了中国古人的智慧.如图1是一个幻方的图案,其中9个格中的点数分别为1,2,3,4,5,6,7,8,9.每一横行、每一竖列、每一斜对角线上的点数的和都是15.如图2是一个没有填完整的幻方,如果它处于同一横行、同一竖列、同一斜对角线上的3个数的和都相等,那么正中间的方格中的数字为()图1图2A .5B .1C .0D .1-二、填空题(共24分,每题3分)9.如果60m 表示向东走60m ,那么80m -表示______.10.请写出一个次数为3,系数是负数的单项式:______.11.计算:2(2)43-÷⨯=______.12.计算:48296021''︒+︒=______.13.北京冬季某一天的温差是10℃,若这天的最高气温是t ℃,则最低气温是______℃.(用含t 的式子表示)14.举例说明“若,a b 是有理数,则a b a +>”是错误的,请写出一个b 的值:b =______.15.如图,一艘快艇S 从灯塔O 南偏东60︒的方向上的某点出发,绕着灯塔O 逆时针方向以每个时间单位3︒的转速旋转1周,当14AOS BOS ∠=∠时,快艇S 旋转了______个时间单位.16.某社区为增强居民体质,体现以人民为中心的理念,准备到一家健身器材专卖店购置一批健身器材供居民健身使用.该专卖店推出两种优惠活动,并规定只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..400元减100元.(如:所购商品原价为400元,可减100元,需付款300元;所购商品原价为900元,可减200元,需付款700元)(1)若购买一件原价为550元的健身器材,更合算的选择方式为活动______;(2)若购买一件原价为(01200)a a <<元的健身器材,选择活动二比选择活动一更合算,则a 的取值范围是______.三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17.如图,已知线段AB 和点,C D 是线段AB 的中点.(1)根据要求画图:①画直线DC ;②画射线BC ;③连接AC 并延长到点E ,使CE AC =;④连接BE .(2)(1)中线段,DC BE 之间的等量关系是______.18.计算:()()81021-+++-.19.计算:()12112236⎛⎫--⨯-⎪⎝⎭.20.当x 取何值时,式子37x +与式子322x -的值相等?21.解方程:21224x x+-=.22.先化简,再求值:()()2222545x x x x ----+,其中2x =-.23.小明家经营一家文化创意产品商店,他在课余时间关注了文化创意背包和文化创意摆件两种商品的销售情况,如下表:统计日期售出文化创意背包件数(件)售出文化创意摆件件数(件)总售价12月30日018012月31日124201月1日551700若小明家的文化创意产品商店售出文化创意背包和文化创意摆件共15件,总售价为3000元,那么售出文化创意背包和文化创意摆件各多少件?24.如图,长方形的一组邻边长分别为10,(1015)m m <<,在长方形的内部放置4个完全相同的小长方形纸片(图中阴影所示),这样得到长方形ABCD 和长方形EFGH .(1)线段,FG EF 之间的等量关系是______;(2)记长方形ABCD 的周长为1C ,长方形EFGH 的周长为2C ,对于任意的m 值,12C C +的值是否为一个确定的值?若是一个确定的值,请写出这个值,并说明理由;若不是一个确定的值,请举出反例.25.已知AOB ∠与COD ∠共顶点,,O AOB COD αβ∠=∠=.图1图2(1)如图1,点,,A O C 在一条直线上,若60,30,OM αβ=︒=︒为AOD ∠的平分线,ON 为COB ∠的平分线,求MON ∠的度数;(2)若2,,AOB COD αβ=∠∠绕点O 运动到如图2所示的位置,OE 为BOD ∠的平分线,用等式表示AOD ∠与COE ∠之间的数量关系,并说明理由.26.对于数轴上的两条线段,给出如下定义:若其中一条线段的中点恰好是另一条线段的一个三等分点,则称这两条线段互为友好线段.(1)在数轴上,点A 表示的数为-4,点B 表示的数为2,点1C 表示的数为52-,点2C 表示的数为2-,点3C 表示的数为4,在线段123,,BC BC BC 中,与线段AB 互为友好线段的是______;(2)在数轴上,点,,,A B C D 表示的数分别为39,2,,22x xx x ----,且,A B 不重合.若线段,AB CD 互为友好线段,直接写出x 的值.北京市朝阳区2023~2024学年度第一学期期末检测七年级数学试卷参考答案及评分标准2024.1一、选择题(共24分,每题3分)题号12345678答案DBCBCACB二、填空题(共24分,每题3分)9.向西走80m 10.答案不唯一,如3x-11.312.10850'︒13.10t -14.答案不唯一,如1b =-15.34或5016.(1)一(2)400500a ≤<或8001000a ≤<三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17,解:(1)根据要求所画的图形如图所示:(2)12DC BE =.18.解:原式()()102811293=++-+-=-=.19.解:()121126824236⎛⎫--⨯-=-++=⎪⎝⎭.20.解:根据题意,得37322x x +=-.32327x x +=-.525x =.5x =.所以当5x =时,式子37x +与式子322x -的值相等.21.解:21224x x+=.()2218x x +-=.428x x +-=.36x =.2x =.22.解:原式2222454591x r x x x x =--+++=++.当2x =-时,原式13=-.23.解:根据题意可得每件文化创意背包单价260元,每件文化创意摆件单价80元.设小明家的文化创意产品商店售出文化创意背包x 件.根据题意,得()26080153000x x +-=.解得10x =.所以155x -=.答:小明家的文化创意产品商店售出文化创意背包10件,文化创意摆件5件.24.解:(1)2EF FC =;(2)1240C C +=.说明:设FG a =.根据题意可知2EF a =.所以()226C FG EF a =+=.因为长方形的一组邻边长分别为10,m ,所以102,2,10BC a AB m a m a =-=--=.所以()122028C AB BC m a =+=+-.所以1220286C C m a a+=+-+2022m a =+-()202m a =+-40=.25.解:(1)因为点,,A O C 在一条直线上,所以180AOC ∠=︒.因为60,30αβ=︒=︒,所以150,120AOD COB ∠=︒∠=︒.因为OM 为AOD ∠的平分线,ON 为COB ∠的平分线,所以1175,6022DOM AOD CON COB ∠=∠=︒∠=∠=︒.所以30DON CON COD ∠=∠-∠=︒.所以45MON DOM DON ∠=∠-∠=︒.(2)2AOD COE ∠=∠.说明:如图,因为OE 为BOD ∠的平分线,所以12DOE BOD ∠=∠.因为COE DOE COD ∠=∠-∠,所以12COE BOD COD ∠=∠-∠.因为2αβ=,所以1122COE BOD α∠=∠-.因为AOD DOB AOB DOB α∠=∠-∠=∠-,所以2AOD COE ∠=∠.26.解:(1)12,BC BC .(2)225,7,9,26.。
七年级数学期末样题(2024年1月)注意事项:1.本试题满分120分,考试时间120分钟 2.请将答案填写在答题卡上一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置)1.-2023的绝对值是A .2023B .-2023C .±2023D .不能确定2.“汽车的雨刷把挡风玻璃上的雨水刷干净”,属于()的实际应用()A .点动成线B .线动成面C .面动成体D .以上都不对3.地球的表面积约为510000000平方千米,把510000000用科学计数法表示为( )A .B .C .D .4.下列运算正确的是( )A .B .C .D .5.下列方程中是一元一次方程的是( )A .B .C .D .6.下列说法中,正确的是( )A .0不是单项式B .调查一批铅笔的使用寿命采用普查的调查方式C .与互为相反数D .一个有理数不是正数就是负数7.下面变形正确的是()A .如果,那么B .如果,那么C .如果,那么D .如果,那么8.漏刻是中国古代的一种计时工具,是古代人民对函数思想的创造性应用.研究发现水位h (cm )与时间t (min )之间满足关系式,当时,时间t 的值为( )A .4B .5C .6D .79.七年级一班共有学生42名,一节美术课上老师组织同学们做圆柱形茶叶筒(一个桶身两个桶底组成一套),每名学生能做桶身20个或桶底30个,为使做的桶身和桶底正好配套.设安排x 名学生做桶身,则下面所列方程正确的是()A .B .C .D .10.点C 在线段AB 上,若三条线段AB 、AC 、BC 中,有其中1条线段是另外1条线段的2倍,则称点C 是线段AB 的“巧点”.若,点C 是线段AB 的巧点,则AC 的长是()75110⨯75.110⨯85.110⨯90.5110⨯23x y xy+=22220m n nm -=()222x y x y -+=-+2232a a -=21x x-=234x x -=23x y -=3123y y -=-23-()23-ac bc =a b =a bc c =-a b =-34x -=34x =-163x -=2x =-0.42h t =+4cm h =()203042x x =-()2203042x x ⨯=-()204230x x-=()2023042x x =⨯-6AB =A .3B .2或3C .2或3或4D .以上都不对二、填空题(每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)11.比较大小:-2______-1.(用“”“”“”连接)12.计算:______.13.若式子与互为相反数,则x 的值是______.14.已知,则代数式______.15.若单项式与的差仍是单项式,则______.16.观察下列单项式:,,,,,…,按此规律,这列单项式中的第9个为______.三、解答题(本题满分72分,把解答过程写在答题卡的相应区域内)17.(5分)计算:18.(6分)先化简,再求值:,其中,.19.(5分)解方程:20.(6分)已知:如图线段,M 是AB 的中点,P 在MB ,N 是PB 的中点,,求PM的长.21.(6分)若关于x 的方程的解与方程的解与互为相反数,求k 的值.22.(6分)已知多项式,.求的值,其中.23.(8分)元旦期间,小颖的妈妈在网上给某品牌服装店,按标价8折拍到一件学生外套,支付了120元,爱思考的小颖进行了下列研究:(1)该学生外套在网上的标价是多少元?(2)妈妈告诉小颖,她在网上买到的学生外套商家可以获得20%的利润,根据妈妈的说法,一件学生外套的进价是多少元?24.(8分)为扎实推进劳动教育,把学生参与劳动教育情况纳入积分考核.学校对部分学生劳动教育积分做了随机抽样分析.设被抽样的每位学生的劳动成绩为x 分(低于60分为不合格),劳动成绩分为四个等级,将分类结果整理得到如下不完整的统计表和扇形统计图.请根据图表信息,解答下列问题:>=<1933⎛⎫-÷⨯-= ⎪⎝⎭58x -3x 2230x x --=2524x x +-=32mx y 223nx y +-()2023n m -=3a -254a 379a -4916a 51125a -()13512346⎛⎫-+⨯-⎪⎝⎭()2215412x xy x xy ⎛⎫+--- ⎪⎝⎭1x =-13y =2121163x x +-=-20cm AB =4cm NB =112kx -=+()211x x -+=2107A x x =+-253B x x =-+-2A B -1x =等级成绩(x )人数A m B 15C n D4(1)共抽取了______名学生进行调查;______;______.(2)求出D 等级所对应的扇形圆心角的度数?(3)根据抽样调查的结果,请你估计该校1800名学生中有多少名学生获得A 等级的分数.25.12分)某公司要印刷产品宣传材料、甲厂收费标准,每份材料收1元印刷费,另收1500元制版费;乙厂收费标准:每份材料收2.5元印刷费,不收制版费.(1)分别写出甲乙两厂的收费y (元)与印制数量x (份)之间的关系式;(2)印制800份时宣传材料时,选哪家印刷厂比较合算?(3)该公司拟拿出3000元用于印制宜传材料,找哪家印刷厂印制宣传材料能多一些?26.(10分)先阅读下面材料,再完成任务:【阅读理解】你知道如何将无限循环小数写成分数形式吗?下面的解答过程会告诉你方法.例题,利用一元一次方程将化为分数,设,则,而所以,化简得,解得.所以【问题探究】(1)请仿照上述方法把化成分数为分数为______;(直接写出结果)(2)请类比上述方法,把循环小数化为分数,写出解题过程七年级期末数学参考答案(2024年1月)一、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)80100x ≤≤7080x ≤<6070x ≤<60x <m =n =0.60.6x =10 6.6x =6.660.6=+106x x =+96x =23x =20.63=0.70.23题号12345678910答案ABCBDCBBAC二、填空题(本大题有6小题,每小题3分,共18分)11.12.113.114.1115.-116.三、解答题(步骤分仅供参考)17(5分)解:原式18.(6分)解:原式当,时,原式19.(5分)解:去分母,得去括号,得移项,得合并同类项,得系数化1,得20.(6分)解:∵,M 是AB 的中点∴ 又∵N 是PB 的中点,∴∴21.(6分)解:∵ ∴ 解得∵方程的解与关于x 方程的解互为相反数,∴是的解∴解得22.(6分)解:<91981a -()()()135121212346=⨯--⨯-+⨯-4910=-+-5=-225421x xy x xy =+-+-231x xy -=+-1x =-13y =()()21131113=-+⨯-⨯-=-()216221x x +=--21642x x +=-+24621x x +=+-67x =76x =20cm AB =110cm 2AM BM AB ===4cmBN =28cmBP BN ==10cm 8cm 2cmMP BM BP =-=-=()211x x -+=221x x -+=1x =()211x x -+=112kx -=+1x =-112kx -=+1112k-=-+1k =()()222107253A B x x x x -=+---+-221072106x x x x =+-+++∵,∴∴23(8分)(1)150元(2)解:法一:(算术法)(元)答:一件学生外套的进价是100元.法二:(方程法)设一件学生外套的进价是x 元,根据题意,得解这个方程,得经检验,(元)符合题意.答:一件学生外套的进价是100元.24.(8分)(1)60 309(2)解:答:D 等级所对应的扇形圆心角的度数为24°(3)解:(名)答:有960名学生获得A 等级的分数25.(12分)解:(1)由题意,得甲厂:,乙厂:(2)当时,甲厂所需费用为:(元)乙厂所需费用为:(元)∵∴印制800份材料时,选择乙厂更合算.(3)当时,甲厂有:,解得乙厂有:,解得∵∴当印制费为3000元时,甲厂印制的材料更多一些.231x =-1x =1x =±()223112A B -=⨯±-=()120120%100÷+=()120%120x +=100x =100x =410%3602460⨯⨯︒=︒32180096060⨯=1500y x =+2.5y x =800x =150********y =+=2.58002000y =⨯=23002000>3000y =15003000x +=1500x =2.53000x =1200x =15001200>25.(10分)解:(1)(2)设,则而所以解得所以790.23x =10023.23x =23.23230.23=+10023x x ++2399x =230.2399=。
A ...D .3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919储存约186000升燃油,数据186000用科学记数法表示为( )..D 表示南偏西方向,则的度数是50.18610⨯51.8610⨯41.8610⨯318610⨯50︒AOB ∠140︒A.B.A.两直线平行,内错角相等C.两直线平行,同旁内角互补8.我国古代数学著作《九章算术》中有这样一个问题:今有凫起南海,七日至北海.雁起根据统计图提供的信息,下列推断合理的是( )A .若8:00出发,驾车是最快的出行方式B .地铁出行所用时长受出发时刻影响较小C .若选择公交出行且需要30分钟以内到达,则7:30之前出发均可D .同一时刻出发,不同出行方式所用时长的差最长可达30分钟10.如图,取一根长度为1的木棍,第一次操作,将它三等分,去掉中间一段,剩下两段;第二次操作,将剩下的两段各自三等分,各去掉中间一段,剩下更短的四段…将这样的操作重复下去,那么在第四次操作后,剩下的若干木棍长度之和为( )A .B .C .第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分.4271681824315.单项式与的差仍是单项式,则16.如图,一块长4厘米、宽1纸板②与一块正方形纸板③以及另两块长方形纸板正方形的面积是 平方厘米.三、解答题(本大题共17.计算:(1);(2).234n x y 434m x y -()4193-+÷-()14118236⎛⎫-+⨯- ⎪⎝⎭21.如图,点是直线上一点,22.2023年央视兔年春晚的《满庭芳中国传统美学,以中国音、色惊艳观众.某数学兴趣小组想要了解本校学生对四个中国色(桃红、群青、湘叶、凝脂)的喜爱情况,他们随机抽取了部分学生完成调查问卷(如图①),并根据调查结果绘制了两种不完整的统计图(如图(1)本次调查共抽取了______名学生;(2)根据信息将条形统计图补充完整;(3)在扇形统计图中,部分对应的扇形圆心角的度数为______度;(4)若该校共有1200名学生,根据抽样调查的结果,该校最喜欢桃红的学生大约有多少名?23.本学期学校开展以“感悟泉城美”为主题的研学活动,组织200名学生参观趵突泉和千佛山,每名学生只能到其中一个景点参加活动.学校共支付票款3600元,票价信息如下:地点学生票价O AB AOC ∠D(1)求该圆锥侧面展开图的面积;(2)是圆锥的一条母线,过圆锥底面圆心PA旋转一周所得曲面将圆锥分成两部分的体积比.【分析】本题考查了面动成体的过程.通过丰富的空间想象力类比选项中各花瓶的外表即可得出答案.【详解】解:将所给图形绕直线旋转一周后的几何体与A 选项的花瓶外表最为相似,故选:A .3.B【分析】本题考查了把绝对值大于1的数用科学记数法表示,关键是确定 n 与a 的值.科学记数法的表示形式为的形式,其中,为整数,它等于原数的整数数位与1的差.根据科学记数法的表示形式表示此数据即可.【详解】解:,故选:B .4.C【分析】先求出的余角,然后再加上与的和进行计算即可解答.【详解】解:由题意得:∵,∴,∴的度数是.故选:C .【点睛】本题考查方向角,余角,角的和差计算.根据题目的已知条件并结合图形分析是解题的关键.5.D【分析】本题考查了全面调查即普查:指对总体中每个个体都进行的调查,一般适用于总体中个体数量不太多的情况;对总体中的每个个体都进行的调查称为全面调查,对于总体中个体数量比较大、具有破坏性或不可能也没必要时,不适宜采用全面调查,把握这一特点是解题的关键.根据各个选项逐项分析即可.【详解】解:A 、个体数量庞大,不适宜普查;B 、没必要进行普查;C 、具有破坏性的调查不适宜普查;D 、保证“神舟十七号”飞船正常发射并运转,适宜普查;故选:D .10n a ⨯1||10a ≤<n 5186000 1.8610=⨯50︒90︒30︒905040︒-︒=︒409030160AOB ∠=︒+︒+︒=︒AOB ∠160︒故答案为:60.6-15.【分析】本题考查了同类项的概念,求代数式的值类项的概念可求得m与n的值,即可求得代数式的值.(3)解:,故答案为:36;(4)解:(名)即该校最喜欢桃红的学生大约有360名.23.(1)参观趵突泉和千佛山的学生各有(2)节省票款600元53603650⨯︒=︒151********⨯=∴,∵,∴,∴,∴180AEM NME ∠+∠=︒AB CD MN CD ∥180CFM NMF ∠+∠=︒AEM NME NMF CFM ∠+∠+∠+∠∵,∴,∴,∴AB CD ∥PH CD ∥EPH AEP ∠=∠FPH ∠=∠EPF EPH FPH ∠=∠+∠=∠在中,由勾股定理得∵∴;由勾股定理得∵Rt POA △1122PAO S OA OP PA OM =⨯=⨯ 125OP OA OM PA ⨯==2AM OA OM =-11S PM OM OP MF =⨯=⨯。
七 年 级 上 学 期 期 末 考 试
数 学 试 卷
题号 一 二 三 四 五 六
总分
1~10 11~20 21 22 23 24 25 26 27 28 29 30 得分
说明:1。
考试时间:90分钟,总分:100分 2.不能使用计算器。
一、选择题:(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项是正
确的,请把正确的选项的字母填入下列表内。
每题2分,共20分)
题 号 1 2 3
4
5
6
7
8
9
10
答 案
1.下面几组数中,不相等的是 ( )
A 、-3和+(-3)
B 、-5和-(+5)
C 、-7和-(-7)
D 、+2和│-2│
2.下图中哪个图形经过折叠后可以围成一个棱柱 ( )
A B C D 3.用科学计数法表示:361000000= ( )
A 、361×106
B 、36.1×107
C 、3.61×10 8
D 、0.361×10 9
4.下列各式中,正确的是( )
A 、y x y x y x 2
2
2
2-=- B 、2a +3b =5ab C 、7ab -3ab =4 D 、5
23a a a =+
5.下列说法中正确的是( )
A 、最小的整数是O
B 、最大的负有理数数是-1
C 、绝对值较大的数较大
D 、如果两个数互为相反数,那么它们的绝对值相等。
6.下列说法中错误..
的是( ) A 、 平面内,过一点有且只有一条直线与已知直线垂直; B 、两点之间线段最短;
C 、过一点有且只有一条直线与已知直线平行;
D 、经过两点有且只有一条直线;
7、钟表的时针与分针分别指向3时30分时,时针与分针所成的较小的角的度数为( )
(A )30° (B )60° (C )75° (D )90°
8.某工厂原有工人x 人,若现有人数比两年前原有人数减少35%,则该工厂现有人数为( )
题目简单,相信 你会做得很好!
!
(A )
%351+x (B )%
351-x
(C )(1+35%)x (D )x %)-(351
9.一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,正好停在-3的位置,则小
虫的起始位置所表示的数是( )
A 、1
B 、 3
C 、4
D 、-1 10.如果2-=X 是方程X b aX 21--=+- 的根,那么代数式124++b a 的值是( ).
A 、1
B 、4
C 、7
D 、不能确定
二.填空题:(每题2分,共20分)
11.若a 、b 互为倒数,则 - 2
3
a b =___ __;
12.在一个球袋中放有7个红球、3个白球、2个黄球,把球摇匀后摸到 ____球的可能
性最大.
13.写出-x 2
y 的同类项:_______。
(只要求写一个)
14.在右边的日历中,任意圈出一竖列上相邻的五个数, 设中间一个数为a ,则这五个数之和为: (用含a 的代数式表示) 15.绝对值不大于2的整数有______个; 16.如图,若C 为线段AB 的中点,D 在线段CB
上,5=DA ,4=DB ,则CD 的长度是___________; 17.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的面的
三种情况,那么2的对面数字是____ ;
18.国家统计局最近公布的《首次中国城市居民家庭财产调查总报告》显示,截止2002年6月底,我国城市居民家庭财产总值户均达22.83万元。
其中户主文化程度为小学、初中、高中、大学毕业的户均财产数值如右图所示:
从图中可以发现户主的文化程度与家庭财产总值的关系是: ,
日 一 二 三 四 五 六
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 A B C D
19.一家商店将成本价为100元的某件服装按成本价提高50%进行标价后,又以8折优惠卖
出,这件服装可获利润 元;
20.观察下面一列数,按某种规律在横线上填上适当的数:1,43-,9
5
, ,167-
则第n 个数为 ;
三.解答题(每题5分,共计25分)
21.33)6(1726----
解:原式=
22.)]4()2
3(16[82
---⨯÷- 解:原式=
23.先化简,后求值:
)(5)3(22
2
m mn m mn +--,其中2,1-==n m 解:原式=
24.解方程:56)4
3(2=--x 解:
25.解方程:3
5
252-=
--x x x 解:
四.画图题(每题6分,共12分)
26. 如图,直线CD 与直线AB 相交于E,根据下列语句画图
(1) 过点P 作PQ ∥CD,交AB 于点Q. (2) 过点P 作PR ⊥CD,垂足为R (3)比较线段大小:PR PE.
27.如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:
主视图 左视图
21
13
五.应用题(每题8分,共16分)
28.学校团委组织80名团员学生为学校建花坛搬砖,初一同学每人搬12块砖,其他年级同学每人搬20块,总共搬了1520块砖,问初一同学有多少人参加搬砖?
可列出方程:__________________________
解得:x = __________;
29.七年级(1)班第一学期的体育成绩:优秀的有20人,良好的有15人,及格的有10人,不及格的有5人。
(1)优秀、不及格的人数各占全班人数的百分之几?
(2)利用右图,制成扇形统计图。
(3)学校规定:班级的体育成绩优良率达到80%以上(包括80%)才有资格参加评选校“优秀班级”。
你认为七年级(1)班有参加评选的资格吗?说明理由。
六.探究题(7分)
30.若干张扑克牌被平均分成三份,分别放在左边,中间,右边。
然后从左边一堆中拿出两张放进中间一堆中;再从右边一堆中拿出一张放进中间一堆;最后,从中间一堆中拿出一些牌放到左边,使左边的张数是最初的2倍,操作完成。
(1) 如果一开始每份都是6张牌,操作完成后中间一堆剩 张牌;
(2) 如果一开始每份都是10张牌,操作完成后中间一堆剩 张牌;如果一开始
每份都是14张牌,操作完成后中间一堆剩 张牌。
(3) 根据(1)、(2),你得到的结论有什么规律?说说你的理由。
七年级(上)数学试卷 参考答案及评分标准
11.3
2
-
; 12. 红 _;13.(略) ; 14.5a ; 15. 5 ;16. 0.5 ; 17. 6 ; 18. 户主的文化程度越高,家庭财产总值 越多(高) 19.20 20。
2
1
1
21n n n -+)
(- 三.解答题(每题5分,共计25分) 21. 解:原式=-18 。
5分 22. 解:原式=408÷- 。
3分=5
1
- 。
5分
23. 解:原式=n m m 3112
-- 。
3分
当2,1-==n m 时,原式=-17 。
5分 24.解:4127
-=x 。
5分 25.解:2
31-=x 。
5分 说明:以上各计算题酌情按步骤给分
26。
(1)过点P 作PQ ∥CD,交AB 于点Q. (略) 。
2分
(2)过点P 作PR ⊥CD,垂足为R (略) 。
4分 (3)比较线段大小:PR < PE. ……………6分 27.主视图、左视图各3分 (图形略) 28.
可列出方程:12x+20(80-x)=1520
解得:x = 10; 。
8分 29.(1)优秀:
%%=401005020⨯ 不及格:%%=1010050
5
⨯ 。
2分 (2) (略)。
5分 (3)优良率是70%,没有资格参加评选 。
8分
30.(1) 1 (2) 1 ; 1 。
。
每空1分 ,共3分 (3)操作完成后中间一堆剩 1 张牌。
4分
理由:设一开始每份有x 张,第一次拿后左边有(x-2),中间有(x+2)张,第二次拿后,中间有(x+3)张,第三次从中间拿[2x-(x-2)], 即(x+2)张给左边,中间还剩[(x+3)-(x+2)],即1。