第17讲 定积分及简单应用
- 格式:ppt
- 大小:1.13 MB
- 文档页数:46
平面曲线积分的计算法 1 第一类曲线积分的计算法设 f ( x ,y)在曲线弧L 上连续,L 的参数方程为在[a ,β]上具有一阶连续导数,且如果曲线 L 由方程y =y (x) ( a ≤x ≤b )给出,则有如果曲线由方程ρ=ρ(θ)(α≤θ≤β)给出,则有2 第二类曲线积分的计算法设函数P (x , y ) , Q ( x ,y)在有向曲线弧 L 上连续, L 的参数方程为()()x t y t ϕψ=⎧⎨=⎩.当t 单调地由a 变到β时,点 M 从起点 A 沿 L 运动到终点 B ,(),()t t ϕψ在[ a ,β]或 [ β,α]上具有一阶连续导数,如果有向曲线 L 由方程 y = y (x )给出(x : a → b ) ,则有格林公式定理 设闭区域 D 由分段光滑的曲线 L 围成,函数P ( x ,y )及 Q ( x ,y)在 D 上具有一阶连续偏导数,则有其中 L 是 D 的取正向的边界曲线。
上述公式称格林公式。
这一公式揭示了闭区域 D 上的二重积分与沿闭区域 D 的正向边界曲线 L 上的曲线积分之间的联系,利用这一联系使得两种积分的计算可以相互转化。
(四)例题【例 1- 3 - 22 】计算半径为 R 、中心角为 2a 的圆弧L 对于它的对称轴的转动惯量 I (线密度μ= 1 )。
【解】取圆弧的圆心为原点,对称轴为 x 轴,并使圆弧位于y轴的右侧(图 1 一 36 ) ,则L 的参数方程为于是例题2计算Ly2dx,其中L是半径为 a 、圆心为原点、按逆时针方向绕行的上半圆周(图 1 -3-7 )。
【解】 L 是参数方程为当参数θ从 0 变到π的曲线弧。
因此.积分的应用(一)定积分的应用1 .几何应用( 1 )平面图形的面积1 )直角坐标情形设平面图形由曲线 y = f ( x )、y = g ( x ) (f( x ) ≥g ( x ) )和直线 x = a 、x = b所围成(图 1-3 - 8 ) ,则其面积。
1.7.1定积分在几何中的应用教材分析这一节的教学要求是让学生在充分认识导数与积分的概念、计算、几何意义的基础上,掌握用积分解决实际问题的基本思想和方法.在学习过程中,理解导数与积分的工具性作用,从而进一步认识到数学知识的使用价值以及数学在实际应用中的强大作用.在整个高中数学体系中,这部分内容也是进一步学习高等数学的基础.教学方法是“问题诱导一一启发讨论一一探索结果”、“直观观察一一抽象归纳一一总结规律”的一种研究性教与学的方法,过程中注重“诱、思、探、练”的结合,从而引导学生转变学习方式采用激发兴趣、主动参与、积极体验、自主探究地学习,形成师生互动的教学氛围.探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神;探究过程中对学生进行数学美育的渗透,用哲学的观点指导学生自主探究.课时分配本课时是定积分应用部分的第一课时,主要解决的是平面图形的面积问题教学目标重点:应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值.难点:如何恰当选择积分变量和确定被积函数知识点:应用定积分解决平面图形的面积.能力点:通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法.教育点:在解决问题的过程中体会定积分的价值自主探究点:探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法.考试点:应用定积分解决平面图形的面积.易错易混点:如何恰当选择积分变量和确定被积函数拓展点:链接咼考.教具准备实物投影机和粉笔.课堂模式基于问题驱动的诱思探究.一、创设情境1、求曲边梯形的思想方法是什么?(以直代曲,无限逼近)2、定积分的几何意义是什么?o - - cos 二-(-cosO) =2 , 若f(x)^O则表示面积sin xdx = -cosx=f "sin xdx=—cosx ?=—cos2x —(—cosn) =-2,若f (x)兰0则表示面积相反数3、微积分基本定理是什么?【设计意图】回顾前面所学知识,做到温故而知新,同时加深理解二、探究新知㈠利用定积分求平面图形的面积例1 •计算由两条抛物线 y2= x 和y = X 2所围成的图形的面积.分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到解:由y =x =0及x =1,得两曲线的交点为(0,0) >(1,1),y =x 2面积 S = ° xdx - o x2dx ,所以S= 01(匚/*知2<0已总结:在直角坐标系下平面图形的面积的四个步骤:1. 作图象;2.求交点;3.用定积分表示所求的面积; 练习:计算由曲线 y =x3-6x 和y =x 2所围成的图形的面积例2 •计算由直线y =x -4,曲线莎 以及x 轴所围图形的面积 S .分析:首先画出草图,并设法把所求图形的面积问题转化为求曲边梯形的面积问题•与例 1不同的是,还需把所求图形的面积分成两部分S ,和•为了确定出被积函数和积分的上下限,需要求出直线 y =x -4与曲线y 二2x 的交点的横坐标,直线 y =x -4与x 轴的交点.解法一:作出直线 y = x-4,曲线y 「.丟 的草图,所求面积为图中阴 影部分的面积. 解方程组y = 2x,得直线y=x-4与曲线y 「2x 的交点的坐标为 y = x _4(8,4)4.微积分基本定理求定积分若对称则面积为直线y =x _4与x 轴的交点为(4,0).4--- 8---- 8因此,所求图形的面积为 S =3 • S 2 2xdx • [ 4.2xdx - 4 (x -4)dx]272 号 8 64。