《机械设计基础》知识点汇总.
- 格式:doc
- 大小:31.50 KB
- 文档页数:3
50个机械设计基础知识点1.刚体力学:研究物体在作用力下的平衡和运动。
2.静力学:研究物体在静止状态下的力学性质。
3.动力学:研究物体在运动状态下的力学性质。
4.运动学:研究物体的运动特性,如速度、加速度和位移。
5.力学系统:由若干物体组成,并且相互作用,受到外界力的作用。
6.力的合成:通过矢量相加的方法计算多个力的合力。
7.力的分解:将一个力分解为多个力的合力。
8.平衡:物体受到的合力和合力矩均为零。
9.功:力在物体上产生的位移所做的功。
10.能量:物体的能力做功的量度。
11.弹性力:物体受到变形后,恢复原状的力。
12.摩擦力:物体在运动或静止时受到的阻力。
13.运动学链:由多个刚体连接而成的机构,用来进行运动传递和转换。
14.齿轮传动:利用齿轮的互相啮合实现运动传递和转换。
15.杠杆机构:利用杠杆的原理实现力的放大或缩小的机构。
16.曲柄连杆机构:利用曲柄和连杆的结构实现运动转换。
17.铰链机构:通过铰链连接物体的机构,实现固定、旋转或滑动。
18.滑块机构:由滑块和导轨构成的机构,实现直线运动。
19.传动比:用来衡量运动传递的效率。
20.齿轮比:齿轮传动中两个齿轮的旋转速度比值。
21.离合器:用来连接或分离两个旋转物体的装置。
22.制动器:用来减速、停止或固定运动物体的装置。
23.轴承:用来支撑和减小机械运动中的摩擦力的装置。
24.轴线:用来连接和支撑旋转物体的直线。
25.键连接:通过键连接来实现轴线和轴承的固定。
26.螺纹连接:通过螺纹连接实现两个物体的拧紧或松开。
27.轴承间隙:轴承内外圈之间的间隙,用来调整摩擦力和轴承的转动。
28.轴向力:作用于轴线方向上的力。
29.径向力:作用于轴线垂直方向上的力。
30.弹簧:用来储存和释放能量的装置。
31.拉伸强度:材料抵抗拉伸破坏的能力。
32.压缩强度:材料抵抗压缩破坏的能力。
33.硬度:材料抵抗划伤或穿透的能力。
34.拉伸试验:测试材料的拉伸性能和强度。
机械设计基础》知识点汇总1、具有以下三个特征的实物组合体称为机器。
(1)都是人为的各种实物的组合。
(2)组成机器的各种实物间具有确定的相对运动。
(3)可代替或减轻人的劳动,完成有用的机械功或转换机械能。
2、机构主要用来传递和变换运动。
机器主要用来传递和变换能量。
3、零件是组成机器的最小单元,也是机器的制造单元,机器是由若干个不同的零件组装而成的。
各种机器经常用到的零件称为通用零件。
特定的机器中用到的零件称为专用零件。
4、构件是机器的运动单元,一般由若干个零件刚性联接而成,也可以是单一的零件。
若从运动的角度来讲,可以认为机器是由若干个构件组装而成的。
根据功能的不同,一部完整的机器由以下四部分组成:1. 原动部分:机器的动力来源。
2. 工作部分:完成工作任务的部分。
3. 传动部分:把原动机的运动和动力传递给工作机。
4. 控制部分:使机器的原动部分、传动部分、工作部分按一定的顺序和规律运动,完成给定的工作循环。
5、物体间机械作用的形式是多种多样的,力对物体的效应取决于力的大小、方向和作用点,这三者被称为力的三要素。
公理1 二力平衡公理作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。
对于变形体而言,二力平衡公理只是必要条件,但不是充分条件。
公理2 加减平衡力系公理在已知力系上加上或者减去任意平衡力系,并不改变原力系对刚体的作用。
推论1 力的可传性原理作用在刚体上某点的力,可以沿着它的作用线移动到刚体内任意一点,并不改变该力对刚体的作用效应。
公理 3 力的平行四边形公理作用在刚体上同一点的两个力,可以合成为一个合力。
合力的作用点也在该点,合力的大小、方向,由这两个力为边构成的平行四边形的对角线确定。
推论2 三力平衡汇交原理:作用在刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线通过汇交点。
公理4 作用与反作用公理两物体间的作用力与反作用力总是同时存在,且大小相等、方向相反、沿同一条直线,分别作用在这两个物体上。
机械设计基础知识点1、循环应力下,零件的主要失效形式是疲劳断裂。
疲劳断裂过程:裂纹萌生、裂纹扩展、断裂2、疲劳断裂的特点:▲σmax ≤σB 甚至σ max ≤σS▲疲劳断裂是微观损伤积累到一定程度的结果▲断口通常没有显著的塑性变形。
不论是脆性材料,还是塑性材料,均表现为脆性断裂。
更具突然性,更危险。
▲断裂面累积损伤处表面光滑,而折断区表面粗糙。
3、应力集中产生的主要原因:零件截面形状发生的突然变化。
有效应力集中系数总比理论应力集中系数小4、影响疲劳强度的主要因素一.应力集中的影响1.应力集中产生的主要原因:零件截面形状发生的突然变化2.名义应力σ和实际最大应力σmax3.理论应力集中系数与有效应力集中系数二.尺寸效应1.零件尺寸越大,疲劳强度越低2.尺寸及截面形状系数εα、ετ三.表面状态的影响1.零件的表面粗糙度的影响2.表面质量系数β四.表面处理的影响1.零件表面施行不同的强化处理的影响2.表面质量系数βq五.弯曲疲劳极限综合影响系数5、可能发生的应力变化规律应力比为常数r=C 绝大多数转轴的应力状态平均应力为常数σm=C 振动着的受载弹簧最小应力为常数σmin=C 紧螺栓连接受轴向载荷 6、6、不稳定变应力规律性按疲劳损伤累积假说进行疲劳强度计算非规律性用统计方法进行疲劳强度计算7、提高机械零件疲劳强度的措施▲尽可能降低零件上应力集中的影响▲在不可避免地要产生较大应力集中的结构处,可采用减载槽来降低应力集中的作用▲综合考虑零件的性能要求和经济性,采用具有高疲劳强度的材料及适当的热处理和各种表面强化处理▲适当提高零件的表面质量,特别是提高有应力集中部位的表面加工质量,必要时表面作适当的防护处理▲尽可能地减少或消除零件表面可能发生的初始裂纹的尺寸,对于延长零件的疲劳寿命有着比提高材料性能更为显著的作用(探伤检验)8、在工程实际中,往往会发生工作应力小于许用应力时所发生的突然断裂,这种现象称为低应力脆断。
《机械设计基础》知识点总结1.构件:独立的运动单元/零件:独立的制造单元机构:用来传递运动和力的、有一个构件为机架的、用构件间能有确定相对运动的连接方式组成的构件系统(机构=机架(1个)+原动件(≥1个)+从动件(若干))机器:包含一个或者多个机构的系统注:从力的角度看机构和机器并无差别,故将机构和机器统称为机械2.机构运动简图的要点:1)构件数目与实际数目相同2)运动副的种类和数目与实际数目相同3)运动副之间的相对位置以及构件尺寸与实际机构成比例(该项机构示意图不需要) 3.运动副(两构件组成运动副):1)高副(两构件点或线接触)2)低副(两构件面接触组成),例如转动副、移动副4.自由度(F)=原动件数目,自由度计算公式:求解自由度时需要考虑以下问题:1)复合铰链2)局部自由度3)虚约束5.杆长条件:最短杆+最长杆≤其它两杆之和(满足杆长条件则机构中存在整转副)I)满足杆长条件,若最短杆为机架,则为双曲柄机构II)满足杆长条件,若最短杆为机架的邻边,则为曲柄摇杆机构III)满足杆长条件,若最短杆为机架的对边,则为双摇杆机构IV)不满足杆长条件,则为双摇杆机构6.急回特性:摇杆转过角度均为摆角(摇杆左右极限位置的夹角)的大小,而曲柄转过角度不同,例如:牛头刨床、往复式输送机急回特性可用行程速度变化系数(或称行程速比系数)K表示为极位夹角(连杆与曲柄两次共线时,两线之间的夹角)7.压力角:作用力F方向与作用点绝对速度方向的夹角α8.从动件压力角α=90°(传动角γ=0°)时产生死点,可用飞轮或者构件本身惯性消除9.凸轮机构的分类及其特点:I)按凸轮形状分:盘形、移动、圆柱凸轮(端面)II)按推杆形状分:1)尖顶——构造简单,易磨损,用于仪表机构(只用于受力不大的低速机构)2)滚子——磨损小,应用广3)平底—-受力好,润滑好,用于高速转动,效率高,但是无法进入凹面III)按推杆运动分:直动(对心、偏置)、摆动IV)按保持接触方式分:力封闭(重力、弹簧等)、几何形状封闭(凹槽、等宽、等径、主回凸轮)10.凸轮机构的压力角:从动件运动方向与凸轮给从动件的力的方向之间所夹的锐角α(凸轮给从动件的力的方向沿接触点的法线方向)压力角的大小与凸轮基圆尺寸有关,基圆半径越小,压力角α越大(当压力角过大时可以考虑增大基圆的半径)11.凸轮给从动件的力F可以如图分解为沿从动件的有用分力F’分力F'’(F’’=F'tanα)12.凸轮机构的自锁现象:在α角增大的同时,F’’大于有用分力F'生自锁,【α】在摆动凸轮机构中建议35°—45°,机构中建议30°,【α】在回程凸轮机构中建议70°—80°13.凸轮机构的运动规律与冲击的关系:I)多项式运动规律:1)动规律——刚性冲击2)等加等减速(二次多项式)运动规律--无冲击(适用于高速凸轮机构)II谐)运动规律——柔性冲击2动规律:将集中运动规律组合,以改善运动特性14.凸轮滚子机构半径的确定:I)轮廓内凹时: II)轮廓外凸时:(当时,轮廓变尖,出现失真现象,所以要使机构正常工作,对于外凸轮廓要使)注:平底推杆凸轮机构也会出现失真现象,可以增大凸轮的基圆半径来解决问题15.齿轮啮合基本定律:设P为两啮合齿轮的相对瞬心(啮合齿轮公法线与齿轮连心线交点),(传动比需要恒定,即需要为常数)16.齿轮渐开线(口诀):弧长等于发生线,基圆切线是法线,曲线形状随基圆,基圆内无渐开线啮合线:两啮合齿轮基圆的内公切线啮合角:节圆公切线与啮合线之间的夹角α’(即节圆的压力角)17.齿轮的基本参数:分度圆:人为规定(标准齿轮中分度圆与节圆重合),分度圆参数用r、d、e、s、p=e+s 表示(无下标)轮齿的齿数为z齿轮各项参数的计算公式:18.分度圆压力角α=arcos(/r)(为基圆半径,r为分度圆半径)所以所以19.齿轮重合度:表示同时参加啮合的轮齿的对数,用(≥1才能连续传动)表示,越大,轮齿平均受力越小,传动越平稳标准安装时的中心距20.渐开线齿轮的加工方法:1)成形法(用渐开线齿形的成形刀具直接切出齿形,例如盘铣刀和指状铣刀),成形法的优点:方法简单,不需要专用机床;缺点:生产效率低,精度差,仅适用于单件生产及精度要求不高的齿轮加工2)范成法(利用一对齿轮(或者齿轮与齿条)互相啮合时,其共轭齿阔互为包络线的原理来切齿的),常见的刀具例如齿轮插刀(刀具顶部比正常齿高出,以便切出顶隙部分,刀具模拟啮合旋转并轴向运动,缺点:只能间断地切削、生产效率低)、齿条插刀(顶部比传动用的齿条高出,刀具进行轴向运动,切出的齿轮分度圆齿厚和分度圆齿槽宽相等,缺点:只能间断地切削、生产效率低)、齿轮滚刀(其在工作面上的投影为一齿条,能够进行连续切削)21.最少齿数和根切(根切会削弱齿轮的抗弯强度、使重合度下降):对于α=20°和=1的正常齿制标准渐开线齿轮,当用齿条加工时,其最小齿数为17(若允许略有根切,正常齿标准齿轮的实际最小齿数可取14)如何解决根切?变位齿轮可以制成齿数少于最少齿数而无根切的齿轮,可以实现非标准中心距的无侧隙传动,可以使大小齿轮的抗弯能力比较接近,还可以增大齿厚,提高轮齿的抗弯强度(以切削标准齿轮时的位置为基准,刀具移动的距离xm称为变位量,x称为变为系数,并规定远离轮坯中心时x为正值,称为正变位,反之为负值,称为负变位) 22.轮系的分类:定轴轮系(轴线固定)、周转轮系(轴有公转)、复合轮系(两者混合)一对定轴齿轮的传动比公式:对于(定轴)齿轮系,设输入轴的角速度为,输出轴的角速度为,齿轮系中齿轮转向判断(用箭头表示):两齿轮外啮合时,箭头方向相反,同时指向或者背离啮合点,即头头相对或者尾尾相对;两齿轮内啮合时,箭头方向相同蜗轮蜗杆判断涡轮的转动方向:判断蜗杆的螺纹是左旋还是右旋,左旋用左手,右旋用右手,用手顺着蜗杆的旋转方向把握蜗杆,拇指指向即为涡轮的旋转方向周转轮系(包括只需要一个原动件的行星轮系和需要两个原动件的差动轮系)的传动比:注:不能忘记减去行星架的转速,此外,判断G与K两轮的转向是否相同,如果转向相同,则最后的结果符号取“+”,如果转向相反,则结果的符号取“—”复合轮系的传动比计算,关键在于找出周转轮系,剩下的均为定轴轮系,计算时要先名明确传递的路线是从哪一个轮传向下一个轮23.(周期性)速度波动:当外力作用(周期性)变化时,机械主轴的角速度也作(周期性的)变化,机械的这种(有规律的、周期性的)速度变化称为(周期性)速度波动(在一个整周期中,驱动力所做的输入功和阻力所作的输出功是相等的,这是周期性速度波动的重要特征)24.调节周期性速度波动的常用方法是在机械中加上一个转动惯量很大的回转件——飞轮(选择飞轮的优势在于不仅可以避免机械运转速度发生过大的波动,而且可以选择功率较小的原动机)对于非周期性的速度波动,我们可以采用调速器进行调节(机械式离心调速器,结构简单,成本低廉,但是它的体积庞大,灵敏度低,近代机器多采用电子调速装置)26.飞轮转动惯量的选择:注:1)(为最大功亏,即飞轮的动能极限差值,的确定方法可以参照书本99页)2)(为主轴转动角速度的算数平均值)3)(为不均匀系数)27.(刚性)回转件的平衡:目的是使回转件工作时离心力达到平衡,以消除附加动压力,尽可能减轻有害的机械振动。
1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230—450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。
最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形.确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀.疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。
疲劳点蚀使齿轮。
滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。
机械设计基础常识50条1、机器由原动机部分、传动部分、执行部分、控制部分组成。
2、带传动的主要失效形式:带的疲劳损坏和打滑。
3、机械设计中贯彻标准化、系列化、通用化的意义:①、减轻设计工作量;②、标准零部件是由专业工厂大规模生产的,效率高,成本低、质量可靠;③、便于维护使用,便于更换维修,④、三化是设计应贯彻的原则,也是国家的一项技术政策。
4、联接可分为可拆联接和不可拆联接。
5、螺纹联接又可分为:螺栓联接、双头螺柱联接、螺钉联接。
6、螺纹联接的防松措施:摩擦防松、机械防松、永久防松。
7、销联接分类:定位销、联接销、安全销。
8、键联接分为:平键联接、半圆键联接、花键联接。
9、轴功用分类:传动轴、心轴、转轴。
10、联轴器分两大类:刚性联轴器和挠性联轴器。
11、轴承有:滑动轴承和滚动轴承;滑动轴承按承受载荷分为:向心轴承和推力轴承。
12、①含油轴承定义:一般将青铜、铁或铝等金属粉末与石墨调匀,压形成轴瓦,经高温烧结,即得到类似陶瓷结构的非致密、多孔性轴瓦,把它在润滑油中充分侵润后,微孔中充满了润滑油,故称为含油轴承。
含油轴承用粉末冶金材料制成。
②含油轴承特点:强度较低、不耐冲击,结构简单、价格便宜。
13、滚动轴承: 优点:①、摩擦阻力小,起动灵敏,效率高,发热少温升低;②、轴向尺寸有利于整机机构的紧凑和简化;③、径向间隙小,并且可以用预紧方法调整间隙,因此旋转精度高;④、润滑简单,耗油量小,维护保养方便;⑤、标准件,大批量生产供应市场,性价比高,使用更换也方便。
缺点:径向尺寸较大,承受冲击载荷的能力不高,高速运转时声响较大,工作寿命不长。
14、滚动轴承的组成:外圈、内圈、滚动体和保持架。
15、a、滚动轴承的代号:由前置代号、基本代号、后置代号;b、基本代号由轴承类型代号、尺寸系列代号、内径代号组成。
16、滚动轴承结构形式:双支点单向固定支承、单支点双向固定支承、双支点游动支承。
17、润滑剂分为:润滑油和润滑脂。
《机械设计基础》重点总结机械设计基础是一门研究机械中常用机构和通用零部件工作原理、结构特点、设计方法以及机械传动系统设计的学科。
它是机械工程类专业的重要基础课程,对于我们理解和掌握机械系统的设计与应用具有重要意义。
下面我将为大家总结这门课程的重点内容。
一、平面机构的结构分析1、运动副及其分类运动副是指两构件直接接触并能产生相对运动的活动连接。
根据接触形式的不同,运动副分为低副和高副。
低副包括转动副和移动副,高副则包括齿轮副、凸轮副等。
2、平面机构的运动简图用简单的线条和符号来表示机构的组成和运动情况的图形称为机构运动简图。
绘制机构运动简图时,要准确表示出各构件之间的相对运动关系和运动副的类型。
3、平面机构的自由度计算自由度是指机构具有独立运动的数目。
平面机构的自由度计算公式为:F = 3n 2PL PH,其中 n 为活动构件的数目,PL 为低副的数目,PH 为高副的数目。
机构具有确定运动的条件是自由度等于原动件的数目。
二、平面连杆机构1、铰链四杆机构的基本类型铰链四杆机构包括曲柄摇杆机构、双曲柄机构和双摇杆机构。
其类型取决于各杆的长度关系和机架的选择。
2、铰链四杆机构的演化形式通过改变构件的形状、相对长度以及运动副的尺寸等,可以将铰链四杆机构演化成曲柄滑块机构、导杆机构、摇块机构和定块机构等。
3、平面连杆机构的运动特性包括急回特性、压力角和传动角等。
急回特性可以提高工作效率,压力角越小、传动角越大,机构的传动性能越好。
三、凸轮机构1、凸轮机构的类型按凸轮的形状可分为盘形凸轮、移动凸轮和圆柱凸轮;按从动件的端部形状可分为尖顶从动件、滚子从动件和平底从动件。
2、凸轮机构的运动规律常用的运动规律有等速运动规律、等加速等减速运动规律、余弦加速度运动规律和正弦加速度运动规律等。
不同的运动规律适用于不同的工作场合。
3、凸轮机构的设计设计凸轮机构时,需要根据工作要求确定凸轮的基圆半径、滚子半径、从动件的行程和运动规律等参数。
机械设计基础笔记知识点一、机械设计概论1. 机械设计的定义和作用机械设计是指以人工制作的机械装置为研究对象,通过综合运用机械学、工程力学等知识,进行构思、设计和分析等工作,以满足特定的技术要求和经济要求。
2. 机械设计的基本原则和设计流程机械设计的基本原则包括适应性原则、合理性原则、先进性原则等,并按照设计流程依次进行项目论证、需求分析、方案设计、详细设计、制造和试验等阶段。
二、材料力学基础1. 材料的力学性能指标材料的力学性能指标主要包括强度、刚度、韧性、疲劳性能等。
其中强度是材料在受力时所能承受的最大应力,刚度是材料在受力时所表现出来的抗变形能力,韧性是材料在发生破坏前能吸收的能量,疲劳性能是材料在循环受力下出现破坏的抗性。
2. 应力和应变材料受到外力作用时,内部会产生相应的应力和应变。
应力是单位面积上的力的大小,应变是材料单位长度的变形量。
常见的应力形式包括拉应力、压应力、剪应力等。
三、机械零件设计1. 连接零件的设计连接零件是机械装置中起连接部件间传递力和传递运动的作用。
常见的连接方式有螺栓连接、销连接、键连接等。
在连接零件设计中,需要考虑连接强度、刚度、可拆卸性和工艺性等因素。
2. 轴的设计轴是机械装置上用来传递动力和转动运动的零件。
轴的设计需要考虑强度、刚度、平衡性和传递功率等因素。
轴的材料一般选用高强度的合金钢。
3. 螺纹的设计螺纹是机械装置中常用的连接方式之一。
螺纹的设计需要确定螺纹规格、螺纹传递力、螺纹疲劳寿命和螺纹的配合等参数。
四、机械传动设计1. 齿轮传动的设计齿轮传动是机械装置中常用的传动方式之一。
齿轮传动设计需要确定齿轮的模数、齿轮的参数、齿轮的传动比和齿轮的轴向力等。
2. 带传动的设计带传动是利用带传递动力和运动的方式。
带传动设计需要确定带的类型、传动比和带轮的尺寸等。
3. 链传动的设计链传动是一种静止的链条将动力传递给另一部分。
链传动设计需要确定链条的参数、链轮的尺寸等。
机械设计基础复习资料一、基础知识0、零件(独立的机械制造单元)组成(无相对运动)构件(一个或多个零件、是刚体;独立的运动单元)组成(动连接)机构(构件组合体);两构件直接接触的可动连接称为运动副;运动副要素(点、线、面);平面运动副、空间运动副;转动副、移动副、高副(滚动副);点接触或线接触的运动副称为高副(两个自由度、一个约束)、面接触的运动副称为低副(一个自由度、两个约束,如转动副和移动副)0.1曲柄存在的必要条件:最短杆与最长杆长度之和小于其余两杆长度之和。
连架杆和机架中必有一杆是最短杆。
0.2在四杆机构中,不满足曲柄存在条件的为双摇杆机构,满足后,若以最短杆为机架,则为双曲柄机构;若以最短杆相对的杆为机架则为双摇杆机构;若以最短杆的两邻杆之一为机架,则为曲柄摇杆机构0.3 凸轮从动件作等速运动规律时,速度会突变,在速度突变处有刚性冲击,只能适用于低速凸轮机构;从动件作等加等减速运动规律时,有柔性冲击,适用于中、低速凸轮机构;从动件作简谐运动时,在始末位置加速度也会变化,也有柔性冲击,之适用于中速凸轮,只有当从动件做无停程的升降升连续往复运动时,才可以得到连续的加速度曲线(正弦加速度运动规律),无冲击,可适用于高速传动。
0.4凸轮基圆半径和凸轮机构压力角有关,当基圆半径减小时,压力角增大;反之,当基圆半径增大时,压力角减小。
设计时应适当增大基圆半径,以减小压力角,改善凸轮受力情况。
0.5.机械零件良好的结构工艺性表现为便于生产的性能便于装配的性能制造成本低1.按照工作条件,齿轮传动可分为开式传动两种。
1.1.在一般工作条件下,齿面硬度HB≤350的闭式齿轮传动,通常的主要失效形式为【齿面疲劳点蚀】1.2对于闭式软齿面来说,齿面点蚀,轮齿折断和胶合是主要失效形式,应先按齿面接触疲劳强度进行设计计算,确定齿轮的主要参数和尺寸,然后再按齿面弯曲疲劳强度进行校核。
1.3闭式齿轮传动中的轴承常用的润滑方式为飞溅润滑1.4. 直齿圆锥齿轮的标准模数规定在_大_端的分度圆上。
机械设计基础知识考点以下就是整理的机械设计基础知识考点,一起来看看吧!绪论:机械:机器与机构的总称。
机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。
机构:是具有确定相对运动的构件的组合。
用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。
构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。
是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。
零件:制造的单元。
分为:1、通用零件,2、专用零件。
一:自由度:构件所具有的独立运动的数目动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是: 所谓的机构的“急回运动”特性。
程压力角:作用于C点的力P与C 点绝对速度方向所夹的锐角α。
传动柔等减速段运动方程:称为构件的自由度。
约束:对构件独立运动(1)在机构中安装大质量的飞轮,利用其惯所施加的限制称为约束。
运动副:使两构件性闯过转折点;(2)利用多组机构来消除运直接接触并能产生一定相对运动的可动联动不确定现象。
即连杆BC与摇杆CD所夹锐接。
高副:两构件通过点或线接触组成的运角。
动副称为高副。
低副:两构件通过面接触而三:凸轮:一个具有曲线轮廓或凹槽的构件。
构成的运动副。
根据两构件间的相对运动形从动件:被凸轮直接推动的构件。
机架:固式,可分为转动副和移动副。
F=3n-2PL-PH定不动的构件(导路)。
凸轮类型:(1)盘形回转机构的原动件(主动件)数目必须等于机构凸轮(2)移动凸轮(3)圆柱回转凸轮从动件类的自由度。
复合铰链:三个或三个以上个构型:(1)尖顶从动件(2)滚子从动件(3)平底从动件在同一条轴线上形成的转动副。
由m个构件(1)直动从动件(2)摆动从动件件组成的复合铰链包含的转动副数目应1基圆:以凸轮最小向径为半径作的圆,用为(m-1)个。
虚约束:重复而不起独立限制rmin表示。
2推程:从动件远离中心位置的过作用的约束称为虚约束。
机械设计基础知识总结(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--机械设计基础知识总结关于机械设计基础知识总结第一章绪论1、机械的组成:完整的机械系统由原动机、传动装置、工作机、和控制系统四大基本组成部分2、机械结构组成层次:零件→构件→机构→机器3、机械零件:加工的单元体4、机械构件:运动的单元体5、机械机构:具有确定相对运动的构件组合体第二章机械设计概论1、机械设计的基本要求:使用功能、工艺性、经济性、其他2、机械设计的一般程序:(1)确定设计任务书(2)总体方案设计(3)技术设计(4)编制技术文件(5)技术审定和产品鉴定3、机械零件的失效:机械零件不能正常工作、失去所需的工作效能4、设计计算准则:保证零件不产生失效5、机械零件的结构工艺性:铸造工艺性;模锻工艺性;焊接工艺性;热处理工艺性;切削加工工艺性;装配工艺性;6、工程材料:金属材料、非金属材料7、金属材料的机械性能:强度、刚度、硬度、塑性、韧性和疲劳强度8、金属材料的工艺性能:铸造性、铸造性、焊接性、切削加工性9、钢的热处理方式:退火、正火、淬火与回火、表面淬火、表面化学热处理10、常用金属材料:铸铁、碳素钢、合金钢、有色金属材料11、配合:间隙配合:具有间隙的配合,孔的公差带在轴公差带上过盈配合:具有过盈的配合,孔的公差带在轴公差带下过度配合:可能具有间隙或过盈的配合,孔的公差带与轴的公差带相互交叠12、基准值:基孔制、基轴制(优先选用基孔制)13、运动副:构件与构件之间通过一定的相互接触和制约,构成保持相对运动的可动连接低副:通过面接触构成的运动副,分为回转副和移动副高副:两构件通过电线接触构成的运动副14、机构中的构件:机架、原动件、从动件15、机构具有确定运动的条件:(1)机构的自由度F>0(2)机构的原动件数等于机构的自由度F16、机构自由度的计算:机构自由度计算的注意事项:复合铰链:两个以上的构件同时在一处用转动副相联结就构成复合铰链.由K个构件组成的复合铰链应含有(K-1)个转动副局部自由度:在机构中常会出现一种与输出构件运动无关的自由度,称局部自由度(或多余自由度)。
机械设计基础知识点整理[52页]
一、材料力学
1.应力、应变、杨氏模量、泊松比、屈服强度、延伸率、硬度、断裂韧性等基本概念;
2.各种材料的特性、选材原则;
3.杆件、轴件、皮带悬挂、齿轮传动等常见零部件的强度计算。
二、机械传动
1.基本传动链、链轮、链条等概念;
2.齿轮传动的计算、设计、选型、装配;
3.皮带传动的计算、设计、选型、使用及维护。
三、机械零件
1.机械连接件的种类、用途及计算;
2.机械弹簧的种类、原理、选用及计算;
3.机械密封件的种类、原理及选用;
4.机械减振器的原理、种类及计算。
四、机械制图
1.机械制图的基本知识、图形符号、图形语言和表达方法;
2.机械零件的精度和公差、公差设计原则;
3.常用机械零件的标准化、规范化和统一化图纸的编绘。
五、机械设计基础
1.机械设计的原则、方法、步骤、标准;
2.机械设计中的力学、材料、动力学、工艺、制造等基础知识;
3.机械设计的应用领域、发展趋势和展望。
六、机械加工工艺
1.机械加工工艺的基本概念、种类及基本加工方法;
2.机械加工工艺在机械设计制造中的应用;
3.计算加工余量、过切量、切削速度等加工参数。
以上为机械设计的基础知识点整理,对于学习和掌握机械设计的同学们来说,这些知识点是必须要掌握的基础知识,只有在掌握这些基础知识的基础上,才能够更好地进行机械设计、制造和使用。
1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230-450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。
最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形。
确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀。
疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。
疲劳点蚀使齿轮。
滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。
机械设计基础知识点一、 绪论1、机器:用来变换或传递能量、物料、信息的机械装置;2、机构:把一个或几个构件的运动,变换成其他构件所需的具有确定运动的构件系统;3、构件是指组成机械的运动单元;零件指组成机械的制造单元;二、 机械设计基础知识1、 失效:机械零件丧失工作能力或达不到设计要求性能时,称为失效;2、零件失效形式及原因:1) 断裂失效:零件在受拉压弯剪扭等外载荷作用,某一危险截面应力超过零件的强度极限发生的断裂、2) 变形失效:作用于零件上的应力超过材料的屈服极限,则零件将产生塑性变形、3) 表面损伤失效:零件的表面操作破坏主要是腐蚀、磨损和接触疲劳;3、应力和应力循环特性:可用min max /σσ=r 来表示变应力的不对称程度;r=+1为静应力;r=0为脉动循环变应力;r=-1为对称循环变应力,-1<r<+1为不对称循环变应力;4、零件设计准则:强度准则、刚度准则、耐磨性准则、振动稳定性准则、耐热性准则、可靠性准则;5、机械零件材料选择的基本原则:1) 材料的使用性能应满足工作要求力学、物理、化学、2) 材料的工艺性能满足制造要求铸造性、可锻性、焊接性、热处理性、切削加工性、3) 力求零件生产的总成本最低相对价格、资源状况、总成本;6、摩擦类型:按摩擦表面间的润滑状态不同分为:干摩擦、边界摩擦、流体摩擦、混合摩擦;7、磨损:由于机械作用或伴有物理化学作用,运动副表面材料不断损失的现象称为磨损,分类:粘着磨损、磨粒磨损、表面疲劳磨损、腐蚀磨损;8、常用润滑剂:润滑油、润滑脂9、零件结构工艺性的基本要求:毛坯选择合理、结构简单合理、制造精度及表面粗糙度规定适当;三、 平面机构基础知识1、 运动副:两构件直接接触,并保持一定相对运动,则将此两构件可动连接称之为运动副;按照接触形式,通常把运动副分为低副和高副两类;2、平面机构的自由度:机构能产生独立运动的数目称为机构的自由度;设平面机构中共有n 个活动构件,在各构件尚未构成运动副时,它共有3n 个自由度;而当各构件构成运动副后,设共有个低副和个高副,则机构的自由度为F=3n-2-H L P P -;3、机构具有确定运动的条件:机构自由度应大于0,且机构的原动件的数目应等于机构的自由度的数目;当机构不满足这一条件时,如果机构的原动件数小于机构的自由度,机构的运动不能确定;如果原动件数大于机构的自由度,机构不能产生运动,并将导致机构中最薄弱环节的损坏4、复合铰链、局部自由度、虚约束各自的引入5、瞬心:两构件互作平面相对运动时,在任一瞬时都可以认为它们是绕某一点作相对转动;该点即为两构件的速度瞬心;6、三心定理:作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上;四、平面连杆机构1、平面连杆机构基本类型:按两连架杆的运动形式将铰链四杆分为三种:曲柄摇杆机构、双曲柄机构、双摇杆机构;2、平面四杆机构的演化:1)曲柄摇杆机构、2)曲柄滑块机构、3)导杆机构、4)摇块机构、5)定块机构、6)偏心轮机构、7)双滑块机构;3、铰链四杆机构有周转副的条件是:1)最短杆与最长杆的长度之和小于或等于其他两杆的长度之和;2)组成该周转副的两杆中必有一杆为四杆中的最短杆;4、不同形式的获得条件:1)当最短杆为机架时,机架上有两个周转副,故得双曲柄机构;2)当最短杆为连架杆时,机架上有一个周转副,该四杆机构将成为曲柄摇杆机构;3)当最短杆为连杆时,机架上没有周转副,得到双摇杆机构;5、急回动动特性:摇杆在摆去与摆回时的速度不同的性质;6、行程速度变化系数K:K=180°+θ/180°-θ机构在两个极位时,原动件AB所处两个位置之间的锐角θ称为极位夹角θ角越大,K值越大,机构的急回特性也越显着7、压力角:从动件驱动力F与力作用点绝对速度所夹锐角;压力角的余角称为传动角;为了保证机构据传动性能良好,设计通常应使minγ≥40°;在传递力矩较大时,则应使minγ≥50°,对于一些受力很小或不常使用的操作机构,则可允许传动角小些,只要不发生自锁即可;8、死点:设摇杆CD为主动件,则当机构处于图示两个位置之一时,连杆与从动曲柄共线,出现了传动角等于0度的情况;这时主动什CD通过连杆作用于从动件AB 上的力恰好通过其回转中心,所以不能使构件AB转动而出现“顶死”现象;机构的此种位置称为死点;五、凸轮机构1、由于加速度发生无穷大突变而产生的冲击称为刚性冲击,由于加速度的有限值突变产生的冲击称为柔性冲击;2、基圆:以凸轮轮廓曲线的最小向径0r为半径所作的圆称为凸轮的基圆;3、压力角:从动件运动方向与力F之间所夹的锐角即为压力角;4、滚子半径的选择:设理论轮廓曲线外凸部分的最小曲率半径为min ρ,滚子半径为T r ,则相应位置实际轮廓曲线的曲率半径'ρ为'ρ=min ρ-T r ; 且有1) 当min ρ>T r 时,'ρ>0,实际轮廓曲线为一平滑曲线,从动件的运动不会出现失真;2) 当min ρ=T r 时,'ρ=0,实际轮廓曲线出现尖点,尖点极易磨损,磨损后,会使从动件的运动出现失真;3) 当min ρ<T r 时,'ρ<0,实际轮廓曲线出现相交,图中交点以上的轮廓曲线在实际加工时会被切去,使从动件的运动出现严重的失真,这在实际生产中是不允许的;六、 齿轮传动1、齿廓啮合基本定律:一对传动齿轮的瞬时角速比与其连心线被齿廓接触点公法线所分割的两段长度成反比,这个规律称为齿廓啮合基本定律;2、渐开线定义及其性质:当一直线沿某圆作纯滚动时,此直线上任意一点K 的轨迹称为该圆的渐开线,这个圆称为渐开线的基圆,该直线称为渐开线的发生线; 性质:1) 发生线在基圆上滚过的长度等于基圆上被滚过的弧长;2) 渐开线上任意一点的公法线必与基圆相切;3) 渐开线上各点的曲率半径不同,离基圆远,曲率半径越大,渐开线越平缓;4) 渐开线的形状取决于基圆的大小,同一基圆上的渐开线形状相同,不同基圆上的渐开线形状不同,基圆越大,渐开线越平直,基圆半径为无穷大时,渐开线为直线;5) 渐开线是从基圆开始向外展开的,故基圆内无渐开线;6) 渐开线上各点的压力角不相等,离基圆越远,压力角越大;3、渐开线齿廓的啮合特性:1) 四线合一啮合线、过啮合点的公法线、基圆的公切线和正压力作用线四线合一;2) 啮合线为一直线,啮合角为一定值;3) 中心距可调性;4、渐开线标准齿轮正确啮合条件:m1=m2=m,α1=α2=α;5、齿轮连续传动的条件是1/21≥=b p B B εPb 表示基圆齿距,ε越大,表示多对轮齿同时啮合的概率越大,齿轮传动越平稳;6、根切现象:用范成法加工齿轮,当刀具的齿顶线与啮合线的交点超出啮合极限点时,会出现轮齿根部的渐开线齿廓被刀具切去一部分的现象,称为根切;7、最少齿数:根切的产生与齿轮的齿数相关,齿数越少,越容易产生根切;标准齿轮欲避免根切,其齿数必须大于或等于不发生根切时的最少齿数,对于正常齿制的齿轮,最小为17,短齿制齿轮为14,若要求齿轮的齿数小于最少齿数而又不发生根切,则应采用变位齿轮;8、变位齿轮:以切削标准齿轮的位置为基准,将刀具的位置沿径向移动一段距离,这一距离称为刀具的变位量,以xm 表示;其中m 为模数,x 为变位系数;并规定刀具远离轮坯中心的变位系数为正,刀具靠近轮坯中心的变位系数为负;当刀具变位后,与分度圆相切的不是刀具的中线,而是刀具节线,这样切出的齿轮称为变位齿轮;9、轮齿常见的失效形式:1) 轮齿折断 2) 齿面点蚀 3) 齿面胶合 4) 齿面磨损5) 塑性变形;10、斜齿圆柱齿轮传动的正确啮合条件:n n n n n n m m m αααββ====-=212121;;m 、α分别代表两轮的法面模数和法面压力角;11、直齿圆锥齿轮正确啮合的条件:m1=m2=m,α1=α2=αm 、α分别代表两轮的大端模数和压力角;12、蜗杆传动正确啮合的条件是:ααα====2121;t a t a m m m m 、α分别代表蜗杆轴向模数、蜗轮端面模数和蜗杆轴向压力角、蜗轮端面压力角;13、齿轮传动的润滑方式:浸油润滑、喷油润滑七、 轮系1、平面定轴轮系传动比的计算公式:; 周转轮系传动比的计算公式:H n H m H n H m Hmn i ωωωωωω--==齿数连乘积转化轮系中所有主动轮齿数连乘积转化轮系中所有从动轮±= 2、轮系的应用:1) 实现相距较远的两轴之间的传动;2) 实现变速传动;3) 获得大的传动比;4) 实现换向传动;5) 实现运动的合成与分解;八、 带传动与链传动1、打滑现象:当传动的功率P 增大时,有效接力也相应增大,即要求带和带轮接触面上有更大的摩擦力来维持传动;但是,在一定的初拉力下,带和带轮接触面上所能产生的摩擦力有一极限值,称为临界摩擦力或临界有效拉力;当传递的圆周力超过该极限值时,带就在带轮上打滑,即所谓的打滑现象;2、带中最大应力发生在绕入小带轮的点处,其值为:3、带传动的弹性滑动:1) 传动带是弹性体,受力后会产生弹性伸长,带传动工作时,和松边的拉力不等,因而弹性伸长也不同;2) 带在绕过主动轮时,作用在带上的拉力逐渐减小,弹性伸长量也相应减小;3) 因而带在随主动轮前进的同时,沿着主动轮渐渐身后收缩滑动,而在带动从动轮旋转时,情况正好相反,即一边带动从动轮旋转,一边尚其表面向前拉伸滑动;4) 这种由于带的弹性和接力差引起的带在带轮上的滑动,称为带的弹性滑动;4、带的打滑是两个完全不同的概念;弹性滑动是带传动工作时的固有特性,只要主动轮一驱动,紧边和松边就产生拉力差,弹性滑动不可避免;而打滑是因为过载引起的全面滑动,是可以采取措施避免的;5、带传动的包角要求:小带轮包角/a 57.3×﹚d -﹙d ±18012=α,其中d2,d1分别表示大带轮和小带轮的直径,a 表示中心距;6、带传动的最大应力发生在小带轮某一点:其值为c b σσσσ++=11max ,其中1σ=A F /1A 为带的横截面积为紧边拉应力;A qvv A F cc //==σq 为每米长的质量,v 为带速;d YE b /2=σY 表示带截面的节面到最外层的距离;E 为带的弹性模量;d 为带轮直径;7、链传动优缺点:与带传动相比,其主要优点是:1) 能获得准确的平均传动比;2) 所需张紧力小,因而作用在轴上的压力小,3) 结构更为紧凑,传动效率较高,4) 可在高温、油污、潮湿等恶劣环境下工作;与齿轮传动相比较优点:1) 中心距较大而结构较简单,2) 制造与安装精度要求较低;链传动的主要缺点是:1) 瞬时传动比不恒定,2) 传动平稳性差,工作时有一定的冲击和噪声;8、链节距:链条上相邻两销轴的中心距称为链节距,以p 表示,它是链条最主要的参数,滚子链使用时为封闭环形,链条长度以链节数来表示;当链节数为偶数时,链条连接成环形时正好是外链板与内链板相连接,接头处可用开口销和弹簧夹来锁住活动的销轴,当链节数为奇数时,则需要采用过渡链节,链条受力后,过渡链节的链节除受拉力外,还承受附加的弯矩;因此应避免采用奇数链节;九、 连接与弹簧1、螺纹副:外螺纹与内螺纹旋合面组成螺纹副,亦称螺旋副;2、自锁条件:对于矩形螺纹,螺纹副的自锁条件为ρϕ≤,其中ϕ为斜面倾角,ρ为摩擦角;对于非矩形螺纹,其自锁条件为v ρϕ≤,其中v ρ为当量摩擦角,并且有v v f f ρβtan cos /==;3、螺纹的预紧:在一般的螺纹连接中,螺纹装配时都应拧紧,这时螺纹连接受到预紧力的作用,对于重要的螺纹连接,为了保证连接的可靠性、强度和密封性要求,应控制预紧力的大小;4、螺纹的防松:为了保证安全可靠,设计螺纹连接时要采取必要的防松措施;螺纹连接防松的根本问题在于防止螺纹副的相对转动;1) 在静载荷和工作温度变化不大的情况下,拧紧的螺纹连接件因满足自锁性条件一般不会自动松脱;2) 但在冲击、振动和变载的作用下,预紧力可能在某一瞬间消失,连接仍有可能自行松脱而影响正常工作,甚至发生严重事故;3) 当温度变化较大或在高温条件下工作时,连接件与被连接件的温度变形或材料的蠕变,也可能引起松脱;5、防松措施:1) 摩擦防松弹簧垫圈、双螺母、尼龙圈锁紧螺母、2) 机械防松开口销与槽形螺母、止动垫圈与圆螺母、3) 粘合防松6、螺栓的主要失效形式有:1) 螺栓杆拉断;2) 螺纹的压溃和剪断;3) 经常装拆时会因磨损而发生滑扣现象;7、键:平键和半圆键工作面是两侧面;楔键和切向键工作面是上下面;十、 轴承滚动轴承、滑动轴承1、滚动轴承分类:按滚动体形状可以分为球轴承和滚子轴承;按承受载荷的方向或公称接触角的不同,滚动轴承可以分为向心轴承和推力轴承;2、滚动轴承特点:主要优点是:1) 摩擦阻力小、启动灵活、效率高; 2) 轴承单位宽度的承载能力较强; 3) 极大地减少了有色金属的消耗;4) 易于互换,润滑和维护方便; 主要缺点是:1) 接触应力高,抗冲击能力较差,高速重载荷下寿命较低,不适用于有冲击的瞬间过载的高转速场合; 2) 减振能力低,运转时有噪声;3) 径向外廓尺寸大;4) 小批量生产特殊的滚动轴承时成本较高;3、滚动轴承的代号:基本代号中右起12位数字为内径代号,右起第3位表示直径系列代号,右起第4位为宽高度系列代号,当宽度系列为0系列时,可以不标出;4、滚动轴承类型选择:考虑承载能力、速度特性、调心性能、经济性5、滑动轴承的分类:按所受载荷方向的不同,主要分为径向滑动轴承和推力滑动轴承;按滑动表面间摩擦状态的不同,可分为干摩擦滑动轴承、非液体摩擦滑动轴承和液体摩擦滑动轴承;6、滑动轴承轴瓦材料性能:1) 摩擦因数小,有良好的耐磨性、耐腐蚀性、抗胶合能力强;2)热膨胀系数小,有良好的导热性;3)有足够的机械强度和可塑性;十一、轴1、轴的分类:按承载情况不同,轴可以分为以下三类:1)心轴只承受弯矩而不传递转矩的轴、2)传动轴主要传递动力,即主要传递转矩,不承受或承受很小弯矩、3)转轴用于支承传动件和传递动力,既承受弯矩又传递转矩;4)按照轴线的形状还可以分为:直轴、曲轴、钢丝软轴;2、轴的结构设计要求:1)便于轴上零件的装拆和调整;2)对轴上零件进行准确的定位且固定可靠;3)要求轴具有良好的加工工艺性;4)尽量做到受力合理,应力集中小,承载能力强,节约材料和减轻重量;。
机械设计基础知识大全1. 材料力学材料力学是机械设计的基础知识,主要包括材料的弹性、塑性、断裂、疲劳等力学性质。
了解材料的力学性质,有助于选取适宜的材料和确定材料的可靠强度。
2. 静力学静力学是机械设计的重要基础,它包括平面力学、三维力学、力的合成分解、重心和力矩等重要内容。
静力学的应用广泛,可用于设计机械结构和判断结构的稳定性。
3. 动力学动力学是机械设计中不可忽视的重要知识,它包括牛顿定律、功和能量、动量守恒等内容。
了解机械系统的动力学特性,可以帮助设计机械运动控制系统。
4. 机械制图机械制图是机械设计的重要环节,它用于描述机械装配的结构、功能和零件之间的关系。
掌握机械制图的基本要素,有助于绘制出高质量的图纸。
5. 液压传动液压传动是机械设计中广泛应用的技术,它利用液体传递压力和能量,在机械运动控制、能量转换和电控系统中发挥着重要作用。
了解液压控制系统的原理和组成,有助于设计出高效可靠的液压系统。
6. 传动系统传动系统是机械运动和动力传递的重要环节,它包括齿轮传动、皮带传动、链传动等多种形式。
了解每种传动系统的优缺点和适用场合,可以选择适宜的传动方式,优化机械结构。
7. 机械加工机械加工是机械设计中不可或缺的环节,它包括加工工艺、刀具选择和加工精度等内容。
了解机械加工的基本原理和方法,可以提高机械零件的制造精度和质量。
8. 机械设计软件机械设计软件是机械设计中必不可少的工具,它包括CAD、CAM、CAE 等多种类型。
了解常用的机械设计软件的功能和应用,可以提高机械设计的效率和质量。
9. 机械标准机械标准是机械设计的重要参考依据,它规定了机械零件的尺寸、形状、公差和材料等方面的标准化要求。
了解机械标准的内容和应用,可以避免设计中出现不合规范的问题,提高机械产品的质量。
10. 机械维修机械维修是机械设计的延伸,它包括机械设备的故障检测、维修和保养等方面。
了解机械维修的基本原理和方法,可以保持机械设备的正常运转,延长机械产品的使用寿命。
机械设计基础知识点整理1. 机械设计概述机械设计是指通过设计方法和原则,以满足特定需求为目标,创造出适用于特定用途的机械装置的过程。
机械设计过程涉及到各种基础知识点,下面将对其中一些重要的知识点进行整理和概述。
2. 材料选择在机械设计中,材料的选择十分重要。
不同的材料具有不同的性能和特点,直接影响着机械零件的使用寿命和性能。
常见的机械材料有金属材料、聚合物材料和复合材料等。
在选择材料时,需要考虑材料的强度、硬度、韧性、耐腐蚀性等因素。
3. 运动和传动机械装置的运动和传动是机械设计中的重要内容。
通过运动和传动可以实现机械装置的功能。
常见的运动和传动方式有直线运动、旋转运动、齿轮传动、皮带传动等。
在设计中需要考虑运动的平滑性、传动的效率和准确性等因素。
4. 零件设计机械设计中的零件设计是指对机械装置的各个零部件进行设计和布置。
零件设计需要考虑零件的功能要求、结构强度、装配性和易制造性等因素。
在设计中,需要进行零件的尺寸和形状计算,并进行合理的布局和组合。
5. 制图和标注制图和标注是机械设计中的重要环节。
通过制图可以将设计的思路表达出来,使得他人能够理解和制造出符合要求的机械装置。
常见的制图方式有平面图、剖视图、工程图等。
在制图时,需要合理选择图纸比例、标注符号和尺寸标注等。
6. 设计评估和优化在机械设计过程中,设计评估和优化是不可忽视的环节。
通过设计评估可以验证设计方案的合理性和可行性,避免出现设计缺陷和错误。
设计评估可以利用数值计算、仿真分析和实验验证等方法。
同时,在设计过程中还要进行不断的优化,使得设计方案更加合理和优化。
以上是机械设计基础知识点的一些整理和概述。
机械设计是一个广泛而深入的领域,需要不断学习和实践才能提高设计能力。
希望这份文档对你有帮助。
机械设计基础复习总结一、机械制图1.制图常用符号的掌握:如螺纹、齿轮、轴等常用制图符号的画法和要求。
2.视图投影方法的理解:了解各种视图的画法和画布方法,如三视图、正投影、斜投影等。
3.尺寸标注的要求:尺寸标注要精确、清晰、规范,要避免尺寸标注冲突和歧义。
对于特殊形状的零件,还要会选择合适的标注方法。
4.配合标准的理解:掌握基本配合的命名方法和要求,如紧配、松配、过盈配等。
二、机械零件设计1.零件结构设计要求:对于需求提出明确的机械零件,要合理确定零件的结构,满足机械设计的要求,如强度、刚度、耐磨等。
2.零件的材料选择:对于确定了零件的结构后,要根据其工作条件和其它要求选择合适的材料。
3.零件的加工工艺设计:掌握零件加工的基本工艺,如车削、切割、焊接等,了解加工的工序和工艺要求。
4.零件的装配设计:装配设计要保证零件之间的配合精度,避免干涉和间隙过大。
三、机械装配设计1.装配方式的选择:根据机械装置和结构的要求,选择合适的装配方式,如销销装配、螺纹连接等。
2.装配工艺的设计:了解装配的基本工艺,掌握工序和工艺要求。
要注意装配过程中可能出现的问题和解决方法。
3.装配误差和公差的控制:了解装配过程中可能产生的误差和公差的控制要求,明确各零件之间的配合公差。
四、机械设计的重要原则和方法1.机械设计的公差控制原则:明确设计目标,根据设计要求制定合理的公差控制方案,保证产品性能和质量。
2.材料选择的原则:根据机械设计的工作条件、载荷要求和耐磨性等要求,选择合适的材料。
3.设计的创新性和可实施性:要求不只是复制现有的设计,而是要有一定的创新意识,设计出能够实施的方案。
五、机械设计基础常见错误和解决方法1.标注错误:在机械制图中,尺寸标注错误是一种常见问题。
解决方法是仔细检查标注的准确性,并根据标准进行修正。
2.装配设计错误:装配设计中常常会遇到零件干涉、配合间隙过大等问题。
解决方法是进行合理的配合分析和设计,查找并排除问题。
机械基础知识点总结机械设计基础知识点归纳1.材料力学(1)杨氏模量:是材料弹性变形与应力的比值,反映材料的刚度。
(2)应力应变关系:弹性应力应变关系是描述材料在弹性范围内,应变与应力之间的关系。
(3)塑性应变:指材料在一定应力下发生塑性变形的应变。
(4)蠕变:指材料在长时间作用下,温度较高的条件下发生的塑性变形。
(5)疲劳:指在循环应力作用下,材料会发生很小的变形或破裂的现象。
(6)冲击:指材料在突然受到较大应力作用时发生的短暂的变形或破坏。
2.制图和标志(1)有关制图:包括机械零件的投影方法、剖视图、断面图等内容。
(2)机械标志:包括尺寸标注、公差标注等。
3.运动学(1)运动分析:机械运动的分析与描述,包括速度、加速度等。
(2)运动关系:包括直线运动、转动运动的关系,如位移、速度、加速度的计算与关系。
4.动力学(1)动力学分析:机械系统的力学分析方法,包括受力分析、运动方程的建立等。
(2)牛顿定律:牛顿的三大运动定律,描述了物体运动与受力之间的关系。
5.机械设计与结构(1)机械设计:包括机械元件的设计、机械系统的设计等。
(2)机构设计:描述机械元件之间的相对运动关系的设计。
(3)结构设计:机械元件的外形设计、支撑方式、安装方式等。
6.机械零件与加工工艺(1)机械零件:包括轴、轴套、齿轮、联轴器等。
(2)零件加工工艺:包括车削、铣削、磨削、冲压等。
7.机械传动与控制(1)机械传动:包括齿轮传动、带传动、链传动等。
(2)机械控制:包括摇杆、凸轮、连杆机构等。
8.液压与气动传动(1)液压传动:液体作为传动介质的传动方式,包括液压缸、液压马达等。
(2)气动传动:气体作为传动介质的传动方式,包括气缸、气动阀等。
9.机械制造工艺(1)机械制造:包括铸造、锻造、焊接、热处理等。
(2)数控加工:数控机床的操作、编程与加工工艺。
以上是机械设计的一些基础知识点的总结和归纳,对于机械设计师来说,掌握这些知识点是非常重要的基础。
机械设计基础知识点总结机械设计是指根据物体的用途和需求,利用力学、材料学等相关知识,设计出能够满足要求的机械产品或设备。
下面将从机械设计的基本原理、机械零件的设计、机械动力传动等方面进行总结。
1.机械设计基本原理(1)静力学基本原理:包括平衡状态、力的作用点、力的合成与分解、力的分布等。
(2)运动学基本原理:包括平面运动与空间运动、速度与加速度、几何运动与连续运动等。
(3)动力学基本原理:包括质点的运动方程、惯性力、作用力与反作用力、能量守恒定律、动量守恒定律等。
2.机械零件的设计(1)轴的设计:根据承载工况、传动功率和转速等要求确定轴的材料、直径和长度等。
(2)联接件的设计:包括轴承、齿轮、键、销、螺纹等。
设计时要考虑力的传递效果、零件的寿命和可维修性等。
(3)阀门的设计:根据流体的特性和工作条件,选择适当的阀门类型和材料,以确保流体的控制效果。
(4)弹簧的设计:根据所受载荷、工作环境和弹簧材料等因素,确定弹簧的直径、圈数、螺距和螺纹等参数。
(5)联轴器的设计:根据传动功率、转速和工作环境等要求,选择适当的联轴器类型和材料,以确保传动效果和可靠性。
3.机械动力传动(1)带传动:包括平带传动、V带传动、齿轮带传动等。
设计时要考虑传动效率、速比、中心距等因素。
(2)齿轮传动:根据传动功率、转速比和工作环境等要求,选择适当的齿轮类型和材料,以确保传动效果和可靠性。
常见的齿轮有直齿轮、斜齿轮、蜗杆等。
(3)链传动:包括链条传动、滚子链传动等。
设计时要考虑链条选择、链轮选择和传动效果等因素。
(4)轴承:包括滚动轴承和滑动轴承。
设计时要考虑承载能力、摩擦和磨损等因素。
4.机械工程材料(1)常用金属材料:如钢、铝、铜等。
要根据机械设计的要求,选择合适的材料进行设计。
(2)非金属材料:如塑料、橡胶、陶瓷等。
要根据工作条件和使用要求选择合适的材料。
(3)复合材料:是由两个或多个不同材料按一定比例组合而成。
设计时要考虑材料的强度、重量和成本等因素。
《机械设计基础》重点总结第一篇:《机械设计基础》重点总结《机械设计基础》课程重点总结绪论机器是执行机械运动的装置,用来变换或传递能量、物料、信息。
原动机:将其他形式能量转换为机械能的机器。
工作机:利用机械能去变换或传递能量、物料、信息的机器。
机器主要由动力部分、传动部分、执行部分、控制部分四个基本部分组成,它的主体部分是由机构组成。
机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统。
机构与机器的区别:机构只是一个构件系统,而机器除构件系统外,还含电器、液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量、物料、信息的功能。
零件是制造的单元,构件是运动的单元,一部机器可包含一个或若干个机构,同一个机构可以组成不同的机器。
机械零件可以分为通用零件和专用零件。
机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和计算方法。
第一章平面机构的自由度和速度分析1.平面机构:所有构件都在相互平行的平面内运动的机构;构件相对参考系的独立运动称为自由度;所以一个作平面运动的自由机构具有三个自由度。
2.运动副:两构件直接接触并能产生一定相对运动的连接。
两构件通过面接触组成的运动副称为低副;平面机构中的低副有移动副和转动副;两构件通过点或线接触组成的运动副称为高副;3.绘制平面机构运动简图;P84.机构自由度计算公式:F=3n-2Pl-PH 机构的自由度也是机构相对机架具有的独立运动的数目。
原动件数小于机构自由度,机构不具有确定的相对运动;原动件数大于机构自由度,机构中最弱的构件必将损坏;机构自由度等于零的构件组合,它的各构件之间不可能产生相对运动;机构具有确定的运动的条件是:机构自由度F > 0,且F等于原动件数5.计算平面机构自由度的注意事项:(1)复合铰链:两个以上构件同时在一处用转动副相连接(图1-13)(2)局部自由度:一种与输出构件运动无关的的自由度,如凸轮滚子(3)虚约束:重复而对机构不起限制作用的约束P13(4)两个构件构成多个平面高副,各接触点的公共法线彼此重合时只算一个高副,各接触点的公共法线彼此不重合时相当于两个高副或一个低副,而不是虚约束。
《机械设计基础》知识点汇总
1、具有以下三个特征的实物组合体称为机器。
(1)都是人为的各种实物的组合。
(2)组成机器的各种实物间具有确定的相对运动。
(3)可代替或减轻人的劳动,完成有用的机械功或转换机械能。
2、机构主要用来传递和变换运动。
机器主要用来传递和变换能量。
3、零件是组成机器的最小单元,也是机器的制造单元,机器是由若干个不同的零件组装而成的。
各种机器经常用到的零件称为通用零件。
特定的机器中用到的零件称为专用零件。
4、构件是机器的运动单元,一般由若干个零件刚性联接而成,也可以是单一的零件。
若从运动的角度来讲,可以认为机器是由若干个构件组装而成的。
根据功能的不同,一部完整的机器由以下四部分组成:
1.原动部分:机器的动力来源。
2.工作部分:完成工作任务的部分。
3.传动部分:把原动机的运动和动力传递给工作机。
4.控制部分:使机器的原动部分、传动部分、工作部分按一定的顺序和规律运动,完成给定的工作循环。
5、物体间机械作用的形式是多种多样的,力对物体的效应取决于力的大小、方向和作用点,这三者被称为力的三要素。
公理1 二力平衡公理
作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。
对于变形体而言,二力平衡公理只是必要条件,但不是充分条件。
公理2 加减平衡力系公理
在已知力系上加上或者减去任意平衡力系,并不改变原力系对刚体的作用。
推论1 力的可传性原理
作用在刚体上某点的力,可以沿着它的作用线移动到刚体内任意一点,并不
改变该力对刚体的作用效应。
公理3 力的平行四边形公理
作用在刚体上同一点的两个力,可以合成为一个合力。
合力的作用点也在该点,合力的大小、方向,由这两个力为边构成的平行四边形的对角线确定。
推论 2 三力平衡汇交原理:作用在刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线通过汇交点。
公理4 作用与反作用公理
两物体间的作用力与反作用力总是同时存在,且大小相等、方向相反、沿同一条直线,分别作用在这两个物体上。
作用力与反作用力互相依存、同时出现、同时消失,分别作用在相互作用的两物体上。
作用力与反作用力与二力平衡公理中的两个力有着本质的区别。
公理5 刚化原理
变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,则平衡状态将保持不变。
刚体的平衡条件是变形体平衡的必要条件,而非充分条件。
约束:能限制某些物体运动的其它物体。
约束反力(反力):约束对非自由体的作用。
反力的作用点是约束与非自由体的接触点
反力的方向总是与该约束所能限制的运动方向相反
反力的大小总是未知的。
在静力学中可以利用相关平衡条件求出约束反力。
6、约束的基本类型
柔性约束
光滑面约束
光滑铰链约束
固定端约束
7、光滑铰链约束特点:两非自由体相互联接后,接触处的摩擦忽略不计,只能限制两非自由体的相对移动,而不能限制两非自由体的相对转动的约束,包括中间铰链约束、固定铰链约束和活动铰支座三种类型。
8、约束反力:通过铰链中心,大小、方向均未确定。
一般用一对通过铰链中心,大小未知的正交分力来表示。
但其中二力构件、活动铰支座的反力方向是可以确定的。
9、根据运动副的接触形式,运动副分为两类:
低副:两构件通过面接触组成的运动副。
如转动副、移动副。
两构件通过点或线接触的运动副。
如齿轮副、凸轮副。