大学物理——静电场公式.
- 格式:ppt
- 大小:658.00 KB
- 文档页数:6
第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。
2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。
二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。
Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E v ⊥表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
物理公式总结(三)几种典型的静电场公式:1、均匀带电球面: ⎪⎩⎪⎨⎧>⋅<=R r r r q R r E 02040 πε 2、均匀带电球体: ⎪⎪⎩⎪⎪⎨⎧>⋅≤⋅=R r r r q R r r R qr E 02003044 πεπε 3、无限长均匀带电圆柱面:⎪⎩⎪⎨⎧>⋅<=R r r r R r E 0020 πελ 4、无限长均匀带电直线: 002r rE ⋅=πελ 5、无限大均匀带电平面: 02εσ=E ,方向垂直于带电平面。
11.库仑定律:r rQq k F ˆ2= (k=1/4πε0) 12. 高斯定理:⎰⎰=⋅0εq S d E (静电场是有源场)→无穷大平板:E=σ/2ε0 13. 环路定理:⎰=⋅0l d E(静电场无旋,因此是保守场) 14. 毕奥—沙伐尔定律:204ˆr r l Id B d πμ⨯= 直长载流导线:)cos (cos 4210θθπμ-=rI B 无限长载流导线:r I B πμ20= θ2 I r P o R θ1I载流圆圈:R I B 20μ= ,圆弧:πθμ220R I B = 毕奥-沙伐尔定律:2004r r l Id B d ⨯⋅=πμ 磁场叠加原理:⎰⨯=L r r l Id B 2004 πμ 运动电荷的磁场:2004r r v q B ⨯⋅=πμ 磁场的高斯定理:0=⋅⎰⎰S S d B 磁通量:⎰⎰⋅=S m S d B Φ 安培环路定理:∑⎰=⋅I l d B L0μ 载流直导线:()120sin sin 4ββπμ-=aI B 圆电流轴线上任一点:()23222032022R x IR r IR B +==μμ载流螺线管轴线上任一点: ()120cos cos 2ββμ-=nI B安培力:B l Id f d ⨯=, ⎰⨯=L B l Id f 载流线圈在均匀磁场中所受的磁力矩:B P M m ⨯=洛仑兹力:B v q f ⨯= 磁力的功:∆ΦΦΦΦI A Id A I =−−→−==⎰恒量21b IB R U HAA =',nq R H 1= 法拉第电磁感应定律:dt d i Φε-= 动生电动势:⎰⋅⨯=a bab l d )B v ( ε 感生电动势,涡旋电场:S d t B l d E Lk i ⋅∂∂-=⋅=⎰⎰⎰ε自感:IN L Φ=, dt dI L L -=ε,221LI W m = 互感:212112I N M Φ=,121221I N M Φ= 2112M M =dt dI M 21212-=ε, dtdI M 12121-=ε 磁场的能量: μω2212B BH m ==,⎰=Vm m dV W ω 麦克斯韦方程组的积分形式:i Sq S d D ∑=⋅⎰⎰ (1) 0=⋅⎰⎰SS d B (2) ⎰⎰⎰⋅∂∂-=⋅S L S d t B l d E (3)⎰⎰⎰⋅∂∂+=⋅S L S d )t D (l d H δ (4)E D ε=, H B μ=, E γδ=。
大学物理电磁学公式大学物理电磁学是物理学中的一个重要分支,研究电场和磁场以及它们之间的相互作用。
在学习和研究电磁学的过程中,我们经常会接触到一系列重要的公式。
以下是一些常见的大学物理电磁学公式的详细介绍。
1. 库仑定律(Coulomb's Law):库仑定律描述了两个点电荷之间相互作用力的大小和方向。
它的数学表达式为:F = k * |q1 * q2| / r²其中,F为两个电荷所受的力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
2. 电场强度(Electric Field Intensity):电场强度描述了电荷在某一点周围的电场的强弱。
对于一个点电荷,其电场强度的数学表达式为:E = k * |q| / r²其中,E为电场强度,k为库仑常数,q为电荷的大小,r为点电荷到被测点之间的距离。
3. 电势能(Electric Potential Energy):电势能描述了电荷由于存在于电场中而具有的能量。
对于一个点电荷,其电势能的数学表达式为:U = k * |q1 * q2| / r其中,U为电势能,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
4. 电势差(Electric Potential Difference):电势差描述了电场中两个点之间的电势能的差异。
对于两个点电荷之间的电势差,其数学表达式为:ΔV = V2 - V1 = -∫(E · dl)其中,ΔV为电势差,V1和V2分别为两个点的电势,E为电场强度,dl为路径元素。
5. 电场线(Electric Field Lines):电场线用于可视化电场的分布情况。
电场线从正电荷流向负电荷,并且密集的电场线表示电场强度较大,稀疏的电场线表示电场强度较小。
6. 电场的高斯定律(Gauss's Law for Electric Fields):电场的高斯定律描述了电场通过一个闭合曲面的总通量与该闭合曲面内的电荷量之间的关系。
第四章 电 场一、常见带电体的场强、电势分布 1)点电荷:2014q E r πε=04q U rπε=2)均匀带电球面(球面半径R )的电场:200()()4r R E qr R r πε≤⎧⎪=⎨>⎪⎩00()4()4qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩3)无限长均匀带电直线(电荷线密度为λ):02E rλπε=,方向:垂直于带电直线。
4)无限长均匀带电圆柱面(电荷线密度为λ): 00()()2r R E r R rλπε≤⎧⎪=⎨>⎪⎩5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。
二、静电场定理 1、高斯定理:0e Sq E dS φε=⋅=∑⎰静电场是有源场。
q ∑指高斯面内所包含电量的代数和;E指高斯面上各处的电场强度,由高斯面内外的全部电荷产生;SE dS ⋅⎰指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理:0lE dl⋅=⎰ 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统:1ni i E E ==∑;连续电荷系统:E dE =⎰2、利用高斯定理求场强 四、求电势的两种方法1、利用电势叠加原理求电势 分离电荷系统:1nii U U==∑;连续电荷系统: U dU =⎰2、利用电势的定义求电势 rU E dl =⋅⎰电势零点五、应用点电荷受力:F qE = 电势差: bab a b aU U U E dr =-=⋅⎰a由a 到b六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E ⊥表表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。
3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。
第四章 电 场一、常见带电体的场强、电势分布 1)点电荷:2014q E r πε=04qU rπε=2)均匀带电球面(球面半径R)的电场:200()()4r R E qr R r πε≤⎧⎪=⎨>⎪⎩00()4()4qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩3)无限长均匀带电直线(电荷线密度为λ):02E rλπε=,方向:垂直于带电直线。
4)无限长均匀带电圆柱面(电荷线密度为λ): 00()()2r R E r R rλπε≤⎧⎪=⎨>⎪⎩5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。
二、静电场定理 1、高斯定理:0e SqE dS φε=⋅=∑⎰v v Ñ 静电场就是有源场。
q ∑指高斯面内所包含电量的代数与;E ϖ指高斯面上各处的电场强度,由高斯面内外的全部电荷产生;S E dS ⋅⎰v v Ñ指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理:0lE dl ⋅=⎰vv Ñ 静电场就是保守场、电场力就是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统:1n i i E E ==∑v v ;连续电荷系统:E dE =⎰v v2、利用高斯定理求场强 四、求电势的两种方法1、利用电势叠加原理求电势 分离电荷系统:1nii U U==∑;连续电荷系统: U dU =⎰2、利用电势的定义求电势 rU E dl =⋅⎰v v 电势零点五、应用点电荷受力:F qE =v v 电势差: bab a b aU U U E dr =-=⋅⎰a 点电势能由a 到b六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为0,导体就是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E ⊥v表表面。
导体表面就是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
静电场小结一、库仑定律(两个点电荷,d>>r)二、电场强度三、场强迭加原理点电荷场强点电荷系场强连续带电体场强四、静电场高斯定理五、几种典型电荷分布的电场强度均匀带电球面均匀带电球体均匀带电长直圆柱面均匀带电长直圆柱体无限大均匀带电平面六、静电场的环流定理七、电势八、电势迭加原理点电荷电势点电荷系电势连续带电体电势九、几种典型电场的电势均匀带电球面均匀带电直线十、导体静电平衡条件(1) 导体内电场强度为零;导体表面附近场强与表面垂直。
(2) 导体是一个等势体,表面是一个等势面。
推论一电荷只分布于导体表面推论二导体表面附近场强与表面电荷密度关系十一、静电屏蔽导体空腔能屏蔽空腔内、外电荷的相互影响。
即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。
十二、电容器的电容平行板电容器圆柱形电容器球形电容器孤立导体球十三、电容器的联接并联电容器串联电容器十四、电场的能量电容器的能量电场的能量密度电场的能量稳恒电流磁场小结一、磁场运动电荷的磁场毕奥——萨伐尔定律二、磁场高斯定理三、安培环路定理四、几种典型磁场有限长载流直导线的磁场无限长载流直导线的磁场圆电流轴线上的磁场圆电流中心的磁场长直载流螺线管内的磁场载流密绕螺绕环内的磁场五、载流平面线圈的磁矩m和S沿电流的右手螺旋方向六、洛伦兹力七、安培力公式八、载流平面线圈在均匀磁场中受到的合磁力载流平面线圈在均匀磁场中受到的磁力矩电磁感应小结一、电动势非静电性场强电源电动势一段电路的电动势闭合电路的电动势当时,电动势沿电路(或回路)l的正方向,时沿反方向。
二、电磁感应的实验定律1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。
楞次定律是能量守恒定律在电磁感应中的表现。
大学物理静电学总结静电学是物理学中的一个重要分支,主要研究静止电荷之间的相互作用和电荷分布规律。
在大学物理课程中,静电学通常是一个重要的章节,涵盖了基本概念、定理、公式和应用。
本文将简要总结大学物理静电学的主要内容。
一、基本概念1、电荷:电荷是物质的基本属性,可以分为正电荷和负电荷。
电荷的量称为电荷量,用符号Q表示,单位为库仑(C)。
2、电场:电场是电荷周围存在的一种特殊物质,它可以对放入其中的电荷施加作用力。
电场强度E是描述电场性质的一个物理量,单位为牛/库仑(N/C)。
3、电势:电势是描述电场中某一点电场强度大小的物理量,用符号V表示,单位为伏特(V)。
4、电容:电容是描述电容器储存电荷能力的物理量,用符号C表示,单位为法拉(F)。
5、静电荷分布:静电荷分布是指电荷在空间中的分布情况,可以用电荷密度、电荷线密度和电荷面密度来描述。
二、基本定理和公式1、高斯定理:高斯定理表明,穿过一个封闭曲面的电场强度通量等于该曲面内电荷量的代数和除以真空介电常数。
2、静电场基本方程:静电场基本方程表明,电势V和电场强度E之间存在关系▽·E=ρ/ε0和▽×E=0,其中ρ表示电荷密度,ε0表示真空介电常数。
3、静电场中的能量:静电场中的能量可以用电势能EP和电场能量WE来表示。
其中,电势能EP=QV,电场能量WE=1/2ε0E²。
4、电容器的充电和放电:电容器的充电过程是指将电荷加到电容器两极板上,放电过程是指将电荷从电容器两极板上移走。
充电和放电过程中,电流I与电压U之间存在关系I=dQ/dt=U/R和U=dQ/dt=I×R,其中R表示电阻。
5、静电感应:当一个导体置于电场中时,由于静电感应,导体内部会产生相反的电荷分布,使得导体表面出现电荷。
静电感应的原理可以用安培环路定律和法拉第电磁感应定律来解释。
6、静电屏蔽:静电屏蔽是指将一个导体置于电场中时,由于静电感应,导体表面会产生相反的电荷分布,使得外部电场对导体内部的影响减弱。
大学物理(电磁学)参考公式第一章:一段带电直棒中垂线上一点的场强: 21220)4(4L x x LE +=πελ均匀带电细圆环轴线上任一点场强: 23220)(4x R qxE +=πε 电偶极子在匀强电场中所受的力矩:E P M ϖϖρ⨯= 高斯定理:∑⎰=⋅=Φint1qS d E e εϖρ第三章:静电场的环路定理:0d =⋅⎰Lr E ϖϖ; 电势的定义: ⎰⋅=0d P Pr E ϖϖϕ 均匀带电圆环轴线上一点的电势: 2/1220)(4x R q+=πεϕ 静电场的能量: ⎰⎰==VVeV E V w W d 2d 2ε移动电荷时电场力做功: 212112)(W W q A -=-=ϕϕ第五章:各向同性电介质中的电极化强度与电场强度的关系:()E P r ρρ10-=εε 电介质表面的面束缚电荷密度:n e P P ρρ⋅=='θσcos电介质中封闭面内的体束缚电荷:intq P ds '=-⋅⎰v v Ñ 电位移矢量:0D E P ε=+v v v电位移矢量D ρ的高斯定理:∑⎰=⋅int 0q s d D s ρρ 平行板电容器的电容:dSC r εε0=圆柱形电容器的电容:()120ln 2R R L C r επε=球形电容器的电容:122104R R R R C r -=επε电容器并联:∑=i C C 电容器串联:∑=iC C 11 电容器的能量:QU CU C Q W 21212122=== 静电场的总能量:dV E dV W e ⎰⎰==22εω 第七章: 一个运动电荷在另外的运动电荷周围所受的力 B v q E q F ϖϖϖϖ⨯+=霍尔电压 nqbIBU H =载流导线L 在磁场中受的力 ⎰⨯=L B l Id F ϖϖϖ载流线圈在均匀磁场中受的力矩 B e SI B m M n ϖϖϖωϖ⨯=⨯=线圈磁矩在磁场中的势能 B m W m ϖϖ⋅-=第八章:电流元产生的磁场(毕-萨定律)024r Idl e dB rμπ⨯=v vv磁通连续定理 ⎰=⋅S S d B 0ϖϖ 直线电流的磁场 ()210cos cos 4θθπμ-rIB =圆电流轴线上的磁场 ()2322202x R IR B +=μ载流直螺线管轴线上的磁场 ()120cos cos 2θθμ-=nIB运动电荷产生的磁场 204r e v q B rϖϖϖ⨯=πμ 安培环路定理⎰∑=⋅LI r d B int 0μϖϖ推广的安培环路定理 ⎰⎰⎰⋅⎪⎪⎭⎫ ⎝⎛∂∂+=⎪⎭⎫ ⎝⎛⋅+=⋅S c L s c S d t E J S d E dt d I r d B ϖϖϖϖϖϖϖ0000εμεμ 第九章:磁化强度 r 01M rB μμμ-r r= 磁化电流密度n j M e '=⨯r v r磁场强度 00BrB H M μμμ-v vr v == H 的环路定理0int LH dr I ⋅=∑⎰v vÑ第十章: 法拉第电磁感应定律: 动生电动势:感生电场:互感系数:211212M i i ψψ==互感电动势: 两个载流线圈的总磁能:自感系数:L Iψ=自感电动势:L d dI L dt dt εψ=-=- 自感磁能: 磁场能量密度: (非铁磁质) 磁场总磁能: (非铁磁质)d dtεΦ=-()bb ab ne aaE dl v B dlε=⋅=⨯⋅⎰⎰r r r r rd d d d LSd E l B s dt t εΦ=⋅=-==-⋅⎰⎰r r r rÑ感感1221212d dIM dt dtεψ=-=-2112121d dI M dt dtεψ=-=-212m WLI =221122121122m W L I L I M I I =++2122m B BH ωμ==12m m VVW dV BHdVω==⎰⎰。
静电场公式总结静电场是物理学中的一个重要概念,描述了电荷的分布如何影响空间中其他电荷的力和电势分布。
在研究静电场时,我们可以利用一系列的数学公式来计算和描述这个过程。
本文将对常见的静电场公式进行总结,希望能够帮助读者更好地理解和应用这些公式。
1. 库伦定律库伦定律是描述电荷之间相互作用力的基本定律。
它表达了两个电荷间的静电力与它们之间的距离的平方成反比。
库伦定律的公式如下:F = k * |q1 * q2| / r^2其中F代表两个电荷之间的静电力,k为库伦常数,q1和q2分别代表两个电荷的大小,r代表它们之间的距离。
2. 电场强度电场强度描述了一个电荷对于单位试验电荷的作用力。
它是一个矢量,具有大小和方向。
电场强度的公式如下:E =F / q其中E代表电场强度,F代表电荷受到的静电力,q代表单位试验电荷。
这个公式告诉我们,电场强度与电荷受到的力成正比,与单位试验电荷的大小成反比。
3. 电场线密度电场线密度指的是单位长度上电场线的数量。
它可以用来描述电场的分布情况。
电场线密度的公式如下:σ = E / L其中σ代表电场线密度,E代表电场强度,L代表电场线长度。
电场线密度的大小与电场强度成正比,与电场线长度成反比。
4. 电势能电势能描述了一个电荷在电场中由于位置发生改变而产生的能量变化。
电势能的公式如下:U = qV其中U代表电势能,q代表电荷的大小,V代表电势差。
这个公式告诉我们,电势能与电荷的大小成正比,与电势差的大小成正比。
5. 电势差电势差描述了一个电场中两点之间的电势差异。
电势差的公式如下:ΔV = -∫ E · dl其中ΔV代表电势差,E代表电场强度,dl代表路径元素。
这个公式告诉我们,电势差与沿着路径的电场强度的积分成反比。
总结:通过上述公式的总结,我们可以看到静电场的公式体系十分丰富,包含了电荷之间相互作用力、电场强度、电场线密度、电势能和电势差等重要概念。
这些公式在解决电荷、电场相关问题时是非常有用的。
第七章静电场§7.1点电荷库仑定律一、点电荷和狄拉克d 函数❶点电荷:是一个理想模型,忽略带电体本身的大小和形状,而将其抽象成带电荷的质点。
❷电荷连续分布线分布:dl dq =λ面分布:ds dq =σ体分布:vd dq =ρ❸d 函数(),00⎩⎨⎧=∞≠=x x X d ()1=⎰∞∞-dx X d 二、库仑定律❶真空12f 1q 2q 12r 21ff1q 2q12f 21f ,12312211212r r q Kq f f =-=229cNm 100.9-⨯=K设,410πε=K 212120mN C 1085.8---⨯=ε则3120122121124r r q q f f επ =-=电介质312312441221012212112r r q q r r q q f f r πεεεπ ==-=εr 电介质的相对介电常数ε 电介质的介电常数§7.2电场电场强度一、电场电荷周围存在的一种特殊形态的物质,具有能量、动量等。
电场对外表现:其一:电场对引入其中的电荷有力的作用;其二:当电荷在电场中移动时,电场对它要做功。
电荷之间的作用是通过电场实现的。
电荷⇔⇔电荷电场二、电场强度为了描述电场对电荷的施力性质,引入一个基本物理量--电场强度,简称场强,用表示,其定义为EqF E=三、场强迭加原理处于由产生的电场中q 0n q q q ,,,21 ∑∑=====n i in i iE F FE q q 11四、场强的计算点电荷电场,430rrq q F πε =34r r q E πε =点电荷系电场∑∑==i i i ii i r r q E E 34πε任意带电体电场用积分求解.解体步骤:1.将带电体分成无数个电荷元(电荷元不一定是点电荷)电荷元dq 在空间某点的场强:r rdq E d341πε=2.选取适当的坐标系,写出的各个分量的表达式。
E dz y x dE dE E d ,,3.求zy x dE dE E d ,,,⎰=E d E x x ,⎰=E d E y y ⎰=E d E z z 此步最好利用电荷分布的对称性判断方向,减少计算.E4. 带电体的场强k E j E i E E z y x++=§7.3 电感强度高斯定理一、电感强度D在各向同性的均匀电介质中,任一点处的电感强度等于该点的电场强度和介电常数的乘积,即:D εEED ε=二、电力线和电感线电力线电力线在电场中任一点处,通过垂直于的单位面积的电力线条数等于该点处的量值。
大学物理上公式定律和定理1.矢量叠加原理:任意一矢量A 可看成其独立的分量i A 的和。
即:A =Σi A (把式中A 换成r、V 、a、F 、E 、B 就分别成了位置、速度、加速度、力、电场强度和磁感应强度的叠加原理)。
2.牛顿定律:F =ma(或F =dtp d );牛顿第三定律:F ′=F ;万有引力定律:rrMm GFˆ2-=动量定理:pI∆=→动量守恒:0=∆p条件∑=0外F1.位置矢量:r,其在直角坐标系中:k z j y i x r ++=;222zy x r ++=角位置:θ2.速度:dtr d V=平均速度:tr V ∆∆=速率:dtds V =(τV V =)角速度:dtd θω=角速度与速度的关系:V=rω3.加速度:dtV d a=或22dtr d a =平均加速度:tV a ∆∆=角加速度:dtd ωβ=在自然坐标系中n a a a n+=ττ其中dtdV a =τ(=rβ),rV n a 2=(=r 2 ω)4.力:F =ma (或F =dtp d) 力矩:F r M⨯=(大小:M=rFcos θ方向:右手螺旋法则)5.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)6.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )7.动能:mV 2/28.势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下: 机械能:E=E K +E P 9.热量:CRTMQμ=其中:摩尔热容量C与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强:ωn tSI SF P32=∆==11. 分子平均平动能:kT 23=ω;理想气体内能:RTs r t ME)2(2++=μ12.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分子数所占比率)mg(重力) → mgh-kx (弹性力) → kx 2/2F= r rMm G ˆ2- (万有引力) →rMm G - =E prrQq ˆ42πε(静电力) →rQq 04πε13. 平均速率:πμRTNdN dV V Vf VV 80)(==⎰⎰∞方均根速率:μRTV 22=;最可几速率:μRTp V 3=14.熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数)电场强度:E =F /q 0 (对点电荷:rrq E ˆ42πε= )毕奥-沙伐尔定律:204r r l Id B d⨯⋅=πμ 磁场叠加原理:⎰⨯=Lr r l Id B 2004πμ 运动电荷的磁场:204r r v q B⨯⋅=πμ 磁场的高斯定理:0=⋅⎰⎰SS d B磁通量:⎰⎰⋅=Sm S d BΦ安培环路定理:∑⎰=⋅I l d B L0μ载流直导线:()120sin sin4ββπμ-=aIB圆电流轴线上任一点:()23222032022RxIR rIR B +==μμ载流螺线管轴线上任一点:()120cos cos2ββμ-=nIB安培力:B l Id f d⨯=, ⎰⨯=LB l Id f载流线圈在均匀磁场中所受的磁力矩:B P M m ⨯=洛仑兹力:B v q f⨯=磁力的功:∆ΦΦΦΦI A Id A I =−−−→−==⎰恒量21bIB R U H AA =',nqR H 1=法拉第电磁感应定律:dtd i Φε-=动生电动势:⎰⋅⨯=abab l d )B v (ε感生电动势,涡旋电场:S d tB l d E Lk i⋅∂∂-=⋅=⎰⎰⎰ε自感:IN L Φ=, dtdI LL -=ε,221LIW m =互感:212112I N M Φ=,121221I N M Φ=2112M M =dtdI M 21212-=ε, dtdI M12121-=ε磁场的能量:μω2212BBH m ==,⎰=Vm m dV W ω麦克斯韦方程组的积分形式:i Sq S d D ∑=⋅⎰⎰(1) 0=⋅⎰⎰SS d B(2)⎰⎰⎰⋅∂∂-=⋅S L S d t Bl d E(3) ⎰⎰⎰⋅∂∂+=⋅S LS d )tD (l d Hδ(4)E D ε=, H B μ=, Eγδ=平面简谐波方程:)]ur t (cos[H H )]u r t (cos[E E {-=-=ωω00 坡印廷矢量:H E S⨯= 相长干涉和相消干涉的条件:ππϕ∆)k (k {122+±±= 3210,,,k =减弱,相消干涉)加强,相长干涉)((2/)12({λλδ+±±=k k ,(21ϕϕ=)杨氏双缝干涉:(暗纹)(明纹)3,2,12,1,0)4/()12()2/({==-±±=k k a D k a kD x λλ薄膜反射的干涉:2/)12({2sin 222122λλλδ+=+-=k k i n n e劈尖反射的干涉:21222/)k (k {ne λλλδ+=+=空气劈尖:lsin 2λθ=, 玻璃劈尖:nlsin 2λθ=牛顿环:3,2,12/)12(=-=k R k r λ(明环),,,k kR r 210==λ(暗环)迈克尔逊干涉仪:λ∆∆N d =2 单缝的夫琅和费衍射:)3,2,1(2)12()3,2,1(22{sin =+±=±=k k k ka 明暗条纹λλϕaf l λ20=, 20l af l ==λ光栅公式:λϕk b a ±=+sin )( 倾斜入射:,1,0)sin )(sin (=±=++k k b a λϕθ缺级公式:,,k 'k ab a k '21±±=+=最小分辨角:D.min λθ221=分辨率:m in1θ=R布喇格公式:3212,,k k sin d ==λϕ布儒斯特定律:12210n n n tgi ==马吕斯定律:α20cos I I = 洛仑兹变换:2222221111ββββ-+=-+=⎪⎪⎩⎪⎪⎨⎧−−−→−--=--=⎪⎪⎩⎪⎪⎨⎧-→'x c u 't t 'ut 'x x x c u t 't ut x 'x "u "u 狭义相对论动力学:① 201β-=m m② 201β-==v m mv P③ 2mc E =, 2mc E ∆∆=202c m mc E k -=④ 20222E c P E +=斯特藩-玻尔兹曼定律: 4T )T (E B σ=4281067.5---⋅⋅⨯=KmW σ唯恩位移定律:b T m =⋅λ, K m .b ⋅⨯=-3108972普朗克公式: 12),(52-=-T k hcB e hc T e λλπλ爱因斯坦方程:A mvh +=221ν红限频率:hA =0ν康普顿散射公式:)cos 1(ϕλ∆-=cm h e光子: νεh =, λhP =三条基本假设:定态,nh h n L =⋅=π2,m n E E h -=ν两条基本公式:2220men h r n πε=oA n2529.0=2220418nhmeE n ⋅-=εeV n26.13-=,3,2,1=n粒子的能量:νh mcE ==2粒子的动量:λhmv P ==测不准关系 h P x x ≥⋅∆∆ 15.16.电势:⎰∞⋅=aa r d E U(对点电荷rq U4πε=);电势能:W a =qU a (A= –ΔW)17. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 18. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。