传感器技术应用论文
- 格式:docx
- 大小:167.23 KB
- 文档页数:12
环境监测及传感器应用论文环境监测及传感器应用是一个广泛的研究领域,涵盖了从空气质量、水质、土壤质量到噪音、光照等多个方面的监测和传感器应用。
本文将重点讨论环境监测及传感器应用的重要性、现有技术和未来发展趋势。
首先,环境监测及传感器应用在许多领域都扮演着重要的角色。
例如,在城市规划和建设领域,对城市空气质量、噪音水平和交通拥堵等进行监测可以帮助提高城市的宜居性和可持续性发展。
在农业领域,通过监测土壤质量、水质和气象因素,可以优化农作物的生长条件,提高农产品的产量和质量。
此外,环境监测及传感器应用还在天气预报、应急响应和自然资源保护等方面起着关键的作用。
现有的环境监测及传感器应用技术主要分为两大类:传统传感器和新兴传感器技术。
传统传感器主要包括气象站、水质分析仪器和土壤检测设备等。
这些传感器通常基于物理原理,通过测量特定参数如温度、湿度、光照强度和化学浓度来监测环境质量。
新兴传感器技术则更加创新和多样化。
例如,基于光纤传感器的监测系统能够实时监测水中的污染物浓度和水质变化,而无线传感网络则可以构建大规模的环境监测系统,实现分布式数据采集和处理。
未来,环境监测及传感器应用将面临多个发展趋势。
首先,随着物联网技术的发展,传感器将逐渐与互联网和云计算相结合,实现环境数据的远程传输、存储和分析。
这将使得环境监测的范围更广泛,并帮助制定更为精准的环境保护政策和措施。
其次,新材料的应用将推动环境传感器的发展。
例如,纳米技术的应用可以制备更小、更敏感的传感器,实现对微观环境的监测。
此外,智能传感器和机器学习等技术的结合,将使得环境监测系统更加智能化和自适应性,提高数据质量和数据分析的准确性。
最后,传感器的成本和能耗也将随着技术的发展而不断下降,从而推动大规模环境监测网络的建设和应用。
总之,环境监测及传感器应用在各个领域都具有重要的作用,并且未来发展前景广阔。
通过传统传感器和新兴传感器技术的结合,利用物联网、智能传感器和机器学习等新技术的应用,可以构建更为精准、可靠的环境监测系统,为环境保护和可持续发展提供支持。
传感器的原理及其应用1. 介绍本文将介绍传感器的原理和其在各个领域的应用。
传感器是一种用于检测和测量环境中各种物理量的设备。
它们广泛应用于工业、医疗、环境保护、军事等领域。
本文将首先介绍传感器的工作原理,然后详细讨论传感器在不同领域的应用。
2. 传感器的工作原理传感器的工作原理基于各种物理现象,如光电效应、热敏效应、压电效应等。
以下是几种常见的传感器工作原理:2.1 光电传感器光电传感器利用光电效应测量光的强度和特性。
当光照射到光电传感器上时,光会激发光电元件内的电子,产生电流。
通过测量电流的大小,可以得知光的强度和特性。
光电传感器广泛应用于自动化控制、安防和光通信等领域。
2.2 温度传感器温度传感器根据物质的热敏性质来测量温度。
常见的温度传感器包括热电偶和热电阻。
热电偶利用两种不同金属的电极在不同温度下产生电势差,从而测量温度。
热电阻则根据电阻值随温度变化的特性来测量温度。
温度传感器广泛应用于气象、工业过程控制和家用电器等领域。
2.3 压力传感器压力传感器用于测量压力的大小。
它们通过将压力转化为力或位移,再测量这些参数来得知压力。
常见的压力传感器包括电阻应变式传感器和压电传感器。
电阻应变式传感器根据压力引起的电阻变化来测量压力。
压电传感器则利用压电效应,将压力转化为电荷来测量压力。
压力传感器广泛应用于工业自动化、汽车、航空航天等领域。
2.4 气体传感器气体传感器用于检测环境中的气体浓度。
常见的气体传感器包括气敏传感器和红外线传感器。
气敏传感器基于物质与气体之间的化学反应来测量气体浓度。
红外线传感器利用气体对红外线的吸收特性来测量气体浓度。
气体传感器广泛应用于空气质量监测、工业过程控制和燃气检测等领域。
3. 传感器的应用传感器在各个领域都有广泛的应用。
以下是几个领域中传感器的应用示例:3.1 工业控制在工业控制中,传感器被用于监测和控制生产过程中的各种参数。
例如,温度传感器可用于监测设备和物料的温度,以确保生产过程的稳定性。
温度传感器应用及发展论文温度传感器是一种用于测量环境温度的设备,广泛应用于工业、农业、医疗、航空航天等领域。
本文将探讨温度传感器的应用及其发展趋势。
首先,温度传感器在工业领域的应用非常广泛。
工业生产过程中,许多设备和材料的性能受温度影响较大,因此需要实时监测和控制温度。
温度传感器可以用于监测炉温、冷却水温度、液体流体温度等,以确保工业生产的稳定性和安全性。
此外,温度传感器还可以用于监测电子设备的温度,防止过热导致设备损坏。
其次,温度传感器在农业领域也有重要的应用。
农作物的生长和发育受温度影响较大,因此需要实时监测和控制温度,以提供适宜的生长环境。
温度传感器可以用于监测温室内外的温度,帮助农民调节温室内的温度,提高农作物的产量和质量。
此外,温度传感器还可以用于监测土壤温度,帮助农民合理安排灌溉和施肥,提高农作物的生长效率。
此外,温度传感器在医疗领域也有重要的应用。
医疗设备和药品的存储和运输过程中,温度的控制非常重要。
温度传感器可以用于监测药品和疫苗的温度,确保其在适宜的温度范围内保存和运输,以保证其有效性和安全性。
此外,温度传感器还可以用于监测患者的体温,帮助医生及时发现和处理患者的疾病。
最后,温度传感器的发展趋势主要体现在以下几个方面。
首先,随着物联网技术的发展,温度传感器将更加智能化和网络化。
传感器可以通过无线网络与其他设备进行通信,实现远程监测和控制。
其次,温度传感器将更加小型化和集成化。
传感器的体积将更小,功耗更低,可以更方便地嵌入到各种设备中。
再次,温度传感器的精度和稳定性将得到进一步提高。
传感器的测量精度将更高,能够更准确地反映温度变化。
此外,传感器的稳定性也将得到提高,能够在恶劣环境下长时间稳定工作。
最后,温度传感器将更加多样化和多功能化。
传感器将具备多种测量模式和功能,以满足不同领域的需求。
综上所述,温度传感器在工业、农业、医疗等领域有着广泛的应用。
随着物联网技术的发展,温度传感器将更加智能化、小型化、精确化和多功能化。
摘要摘要在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。
由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。
这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。
它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。
光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。
关键字:光电元件传感器分类传感器应用摘要ABSTRACTThe photoelectric transducer adopts the photoelectric component as the transducer measuring the component. It changes the change measured into a change of the optical signal at first, then further change the optical signal into an electric signal through the photoelectric component. The photoelectric transducer is generally made up of light source, optical thorough fare and photoelectric component three parts. The photoelectric detection method has precision high, reacts fast, advantage of exposed to ing etc.s, and can examine the parameter more,the transducer is of simple structure, the form is flexible, so, it is very extensive that the photoelectricity type transducer is employed in measuring and controlling. The photoelectric transducer realizes the key component that the photoelectricity changes in various photoelectric detection systems, it change into electric device of signal optical signal (infrared can seeing and purple other ray radiation). The photoelectricity type transducer is regarded photoelectric device as and changed the transducer of the component. It was not electric consumption that it caused the light quantity to change directly that it can be used for measuring, only strong, illuminance, radiation examine warmly, the gas composition is analyzed etc.; Other ones that can also be used and measured and can change into a light quantity and change are not the electric consumption such as part diameter, surface roughness, meets an emergency, the displacement, vibration, pace, acceleration, and the form of object, discernment of working state,etc.. The photoelectricity type transducer is not exposed to, respond the fast, reliable characteristic of performance, so won extensive application in the industrial automation device and machine philtrum. In recent years, new Devices photoelectric constantly emerge, especially CCD picture the births of transducer, transducers photoelectric the further to last chapter innovated to turn on.Keywords:Photoelectric component Transducer classification Application of transducer目录第一章绪论 (1)1.1 传感器发展史 (1)1.2光电传感概述 (2)第二章光电传感器基本原理 (3)2.1 光电效应 (3)2.2 光电元件及特性 (3)2.3 光电传感器 (6)第三章 CCD传感器 (11)3.1 光固态图象传感器 (11)3.1.1 CCD的结构和基本原理 (11)3.1.2 线型CCD图像传感器 (12)3.1.3 面型CCD图像传感器 (13)3.2 C CD图像传感器应用 (15)3.2.1 工件尺寸检测 (15)3.2.2 CCD传感器在公共交通上的应用 (16) 第四章光纤传感器 (17)4.1 光纤传感器的原理和组成 (17)4.2 光纤传感器的类型及特点 (17)4.3 光纤传感器的应用领域 (18)4.4 光纤传感器(FOS)应用原理 (20) 4.5 光纤传感器的实际应用 (21) 4.5.1 光纤液位传感器 (22)4.5.2 电力工业中的应用 (22)第五章其它光电传感器 (25)5.1 高速光电二极管 (25)5.1.1 PIN结光电二极管 (25)5.1.2 雪崩光电二极管(APD) (26) 5.2 色敏光电传感器 (26)5.3 光位置传感器 (27)第六章总结与展望 (29)6.1 总结 (29)6.2 展望 (30)致谢 (31)参考文献 (33)第一章绪论 1第一章绪论1.1 传感器发展史传感技术的发展经历了三个阶段,即结构型传感器、物性型传感器和智能型传感器,其测量技术、方法和特点的发展历程见表1。
传感器原理以及应用1. 介绍传感器是一种能够感知和测量环境中各种物理量和化学量的设备或装置,广泛应用于工业、农业、医疗和消费电子等领域。
本文将介绍传感器的工作原理以及其在不同领域的应用。
2. 传感器的工作原理传感器的工作原理基于不同的物理效应,常见的工作原理包括电阻、电容、电感、磁阻、热敏、光敏、声敏和化学敏感等。
2.1 电阻传感器电阻传感器是基于材料的电阻随外界物理量变化而变化的原理工作的。
常见的电阻传感器包括压力传感器、温度传感器和光敏电阻等。
2.2 电容传感器电容传感器是基于材料的电容随外界物理量变化而变化的原理工作的。
常见的电容传感器包括湿度传感器和接近传感器等。
2.3 电感传感器电感传感器是基于材料的电感随外界物理量变化而变化的原理工作的。
常见的电感传感器包括接近传感器和速度传感器等。
2.4 磁阻传感器磁阻传感器是基于材料的磁阻随外界物理量变化而变化的原理工作的。
常见的磁阻传感器包括磁力传感器和角度传感器等。
2.5 热敏传感器热敏传感器是基于材料的电阻随温度变化而变化的原理工作的。
常见的热敏传感器包括温度传感器和热流量传感器等。
2.6 光敏传感器光敏传感器是基于材料的电阻或电压随光线强度变化而变化的原理工作的。
常见的光敏传感器包括光电传感器和光纤传感器等。
2.7 声敏传感器声敏传感器是基于材料的电阻或电压随声音强度变化而变化的原理工作的。
常见的声敏传感器包括声压传感器和声音传感器等。
2.8 化学敏感传感器化学敏感传感器是基于材料的电阻或电压随化学物质浓度变化而变化的原理工作的。
常见的化学敏感传感器包括气体传感器和化学传感器等。
3. 传感器的应用传感器在各个领域都有广泛的应用,以下列举了一些常见的应用场景。
3.1 工业自动化•温度传感器用于监测和控制工业过程中的温度变化。
•压力传感器用于测量液体或气体的压力,用于流量控制和工艺控制。
•光电传感器用于检测和计数生产线上的物体,实现自动包装和分拣。
温度传感器论文摘要本论文研究了温度传感器在工业自动化领域中的应用。
首先介绍了温度传感器的原理和分类。
然后详细讨论了温度传感器在自动化控制系统中的作用。
接着探讨了温度传感器的性能指标以及影响温度传感器精度的因素。
最后,通过实验验证了温度传感器的可靠性和精度。
引言温度是一个重要的物理量,在工业生产和实验研究中具有广泛的应用。
温度传感器作为测量温度的主要工具,其在工业自动化领域中起到了至关重要的作用。
本论文旨在研究温度传感器的原理和应用,以及其在自动化控制系统中的作用。
温度传感器的原理和分类温度传感器是一种能够将物理量(温度)转换成电信号的装置。
根据原理的不同,温度传感器可以分为电阻式温度传感器、热电偶和热敏电阻等多种类型。
电阻式温度传感器电阻式温度传感器是利用材料的温度对电阻值产生影响的原理来测量温度的。
常见的电阻式温度传感器有铂电阻温度传感器(PT100)、铜电阻温度传感器(CT100)等。
其中,PT100是一种常用的高精度温度传感器,广泛应用于温度测量领域。
热电偶热电偶是利用两种不同金属的热电效应来测量温度的。
它由两段不同金属的导线组成,两段导线的接触处称为冷端,另一端则称为热端。
当热电偶的热端与被测温度相接触时,产生的温差会在电压表上显示出热电动势,进而推算出温度。
热敏电阻热敏电阻是指在不同温度下电阻值发生变化的电阻。
常见的热敏电阻有二极管热敏电阻和热敏电阻。
热敏电阻的工作原理是基于半导体材料的特性,通过测量电阻值来间接反映温度。
温度传感器在自动化控制系统中的作用温度传感器在自动化控制系统中扮演着非常重要的角色。
它可以实时感知环境温度,并将温度信号转换为电信号输送给控制器。
控制器根据温度传感器的反馈信号来调整系统的工作状态,以达到设定温度的目标。
温度传感器的准确性和稳定性对系统的控制精度至关重要,因此选择合适的温度传感器对系统性能至关重要。
温度传感器的性能指标精度精度是指温度传感器输出值与真实温度之间的误差。
传感器的基本原理及应用领域一、传感器的基本原理传感器是一种能够感知和测量某种物理量并将其转化为可用信号的设备。
传感器的工作原理通常基于不同的物理现象,如电磁感应、压力变化、声波传播等。
以下是几种常见的传感器工作原理:1. 光电传感器光电传感器利用物体对光的反射、散射或吸收的变化来检测物体的存在、位置或其他属性。
光电传感器包括光敏电阻、光电二极管和光电晶体管等。
它们通过光敏元件的电阻、电流或电压的变化来感知光的强度或改变。
2. 温度传感器温度传感器是测量物体的温度变化的设备。
常用的温度传感器有热电偶、热电阻和半导体温度传感器。
热电偶通过两个不同金属的焊接点之间产生的温差来测量温度变化。
热电阻则是通过材料的电阻随温度变化而产生的变化来测量温度。
半导体温度传感器利用半导体材料的电阻随温度的变化来测量温度。
3. 压力传感器压力传感器是测量物体受力或气体液体压力的设备。
它们根据物体受力或压力改变导致的变形或变量来测量压力。
常见的压力传感器有电阻式、电容式和压阻式传感器。
电阻式传感器是将变形或变量转化为电阻改变来测量压力。
电容式传感器则是将变形或变量转化为电容改变来测量压力。
压阻式传感器则是测量物体受力产生的压阻值来获得压力信息。
二、传感器的应用领域传感器在各个领域都有广泛的应用,以下列举了几个常见的应用领域:1. 工业自动化传感器在工业自动化中发挥着关键作用。
例如,温度传感器可以用于监测和控制工业过程中的温度变化。
压力传感器可以用于监测液体或气体管道中的压力变化。
光电传感器可以用于检测物体的存在和位置,实现自动化的装配和分拣。
2. 医疗健康传感器在医疗健康领域的应用越来越广泛。
例如,心率传感器可以测量人体的心跳情况,用于心率监测和心脏疾病检测。
血压传感器可以测量人体的血压水平,用于高血压和低血压的监测和治疗。
体温传感器可以测量人体的体温,用于发热疾病的检测和监测。
3. 环境监测传感器在环境监测中发挥着重要作用。
传感器的原理及其应用论文摘要本论文主要介绍了传感器的原理及其在各个领域中的应用。
首先,论文阐述了传感器的定义和基本原理。
接着,详细讨论了各种类型传感器的工作原理,包括光学传感器、压力传感器、温度传感器等。
随后,论文探讨了传感器在环境监测、医疗领域、智能交通系统、工业生产等领域的应用案例。
最后,论文总结了传感器的发展趋势和未来的研究方向。
1. 引言传感器是一种能够感知环境中各种物理量并将其转化为可用信号的设备。
它是现代科技中不可或缺的一部分,广泛应用于各个领域。
本章将介绍传感器的基本概念,以及其在不同领域中的重要性和应用前景。
2. 传感器的定义和基本原理2.1 定义传感器是一种能够感知并感知环境中某种物理量,并将其转化为可以用来测量、监测或控制的其他形式的信号的设备。
2.2 基本原理传感器的基本原理是通过感受外部物理量的变化,并将其转化为可测量的电信号或其他形式的输出信号。
传感器通常包括感受部件、转换部件、输出部件和电路部分。
3. 传感器类型及其工作原理3.1 光学传感器光学传感器是一种利用光学原理检测并测量环境物理量的传感器。
它通过感受环境中光线的变化来判断目标物体的位置、颜色、形状等特征。
光学传感器工作原理可分为透射式光电传感器、反射式光电传感器和光纤传感器等。
3.2 压力传感器压力传感器是用于测量系统中气体或液体压力的传感器。
它通过感受被测介质对传感器施加的力来转化为电信号输出。
按其测量原理可分为机械式压力传感器、电阻式压力传感器和微电子压力传感器等。
3.3 温度传感器温度传感器是用于测量环境中温度变化的传感器。
常见的温度传感器有热电偶、热电阻和半导体温度传感器等。
这些传感器通过测量物体的温度并将其转化为电流或电压信号来实现温度测量。
4. 传感器的应用案例4.1 环境监测传感器在环境监测中起着重要的作用。
例如,大气压力传感器可以用于气象学研究和天气预报,土壤温湿度传感器可以用于农业生产监测,水质传感器可以用于水环境监测等。
传感器的主要工作原理及应用论文1. 引言在现代科技的发展中,传感器起着非常重要的作用。
传感器是一种能够将物理量或化学量转化为电信号的装置,用于监测和测量各种物理和化学现象。
本文将介绍传感器的主要工作原理以及一些常见的应用。
2. 传感器的工作原理传感器的工作原理主要分为以下几个方面:2.1 电阻式传感器•电阻式传感器根据物理量的变化改变其电阻值,从而实现对物理量的测量。
•常见的电阻式传感器包括温度传感器、压力传感器以及湿度传感器等。
•电阻式传感器的原理是根据被测物理量对传感器内电阻的影响,从而改变电阻值。
2.2 光电传感器•光电传感器是利用光电效应将光信号转化为电信号的装置。
•光电传感器常用于测量光强、距离以及颜色等参数。
•光电传感器的工作原理是通过光源发出光,被测物体对光的反射或吸收产生光电效应。
2.3 压电传感器•压电传感器是利用压电效应将机械形变转化为电信号的装置。
•压电传感器常用于测量压力、力量和加速度等参数。
•压电传感器的原理是在压力或力作用下,压电材料会产生电荷积累,从而产生电信号。
2.4 磁电传感器•磁电传感器是利用磁电效应将磁场变化转化为电信号的装置。
•磁电传感器常用于测量磁场强度、位置以及速度等参数。
•磁电传感器的工作原理是通过磁场的变化引起传感器内的磁电效应,从而产生电信号。
3. 传感器的应用传感器在各个领域都有广泛的应用,下面列举了一些常见的应用场景:3.1 工业制造•传感器在工业制造中起着至关重要的作用,如温度传感器用于控制和监测工厂内的温度,湿度传感器用于测量空气湿度,以及压力传感器用于监测设备的运行状态等。
3.2 智能家居•在智能家居领域,传感器被广泛应用。
例如,温度传感器用于控制室内温度,光传感器用于控制室内照明,以及门窗传感器用于监测门窗的开关状态等。
3.3 医疗领域•在医疗领域,传感器的应用非常广泛。
例如,心电传感器用于监测心脏的电活动,血压传感器用于测量血压,以及血糖传感器用于监测血糖水平等。
传感器技术论文范文传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。
这是店铺为大家整理的传感器技术论文范文,仅供参考!传感器技术论文范文篇一传感器及其概述摘要传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。
目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。
【关键词】传感器种类新型1 前言传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。
人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。
因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。
通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。
2 传感器的分类按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。
3 常见传感器介绍3.1 电阻应变式传感器电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。
应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成。
敏感元件也叫敏感栅。
其具有体积小、动态响应快、测量精度高、使用简单等优点。
在航空、机械、建筑等各行业获得了广泛应用。
电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。
传感器的发展及应用【摘要】传感器技术作为信息技术的三大基础之一,在信息时代人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。
而传感器是获取自然领域中信息的主要途径与手段。
它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。
传感器处于研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。
本文展望了现代传感器技术的发展和应用前景。
总结了传感器技术的发展方向。
【关键词】传感器技术;传感器发展方向;传感器网络一.传感器技术传感器是指能感受规定的被测量,通常被测量是非电物理量,输出信号一般为电量。
并按照一定的规律转换成可用输出信号的器件或装置。
我国国家标准(GB7665-2005)对传感器的定义是:“能感受被测量并按照一定的规律转换成可用输出信号的器件或装置”。
(一)传感器的发展历史传感技术大体可分3代,第1代是结构型传感器。
它利用结构参量变化来感受和转化信号。
例如:电阻应变式传感器,它是利用金属材料发生弹性形变时电阻的变化来转化电信号的。
第2代传感器是70年代开始发展起来的固体传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成的。
如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器等。
7 0年代后期,随着集成技术、分子合成技术、微电子技术及计算机技术的发展,出现集成传感器。
集成传感器包括2种类型:传感器本身的集成化和传感器与后续电路的集成化。
例如:电荷耦合器件(CCD),集成温度传感器AD590,集成霍尔传感器UGN3501等。
这类传感器主要具有成本低、可靠性高、性能好、接口灵活等特点。
集成传感器发展非常迅速,现已占传感器市场的2/3左右,它正向着低价格、多功能和系列化方向发展。
第3代传感器是80年代刚刚发展起来的智能传感器。
传感器的发展及应用 (论文)传感器的发展及应用引言概述:传感器是现代科技中不可或缺的重要组成部分,它们能够将各种物理量转化为可测量的电信号,广泛应用于工业、医疗、农业等领域。
本文将从五个方面详细阐述传感器的发展及应用。
一、传感器的种类及原理1.1 压力传感器:介绍压力传感器的工作原理、应用领域以及常见的型号和特点。
1.2 温度传感器:介绍温度传感器的工作原理、应用领域以及常见的型号和特点。
1.3 光学传感器:介绍光学传感器的工作原理、应用领域以及常见的型号和特点。
二、传感器的发展历程2.1 早期传感器的发展:回顾早期传感器的发展历程,介绍早期传感器的特点和应用情况。
2.2 现代传感器的发展:介绍现代传感器的发展趋势,包括微型化、智能化和多功能化等方面的进展。
2.3 未来传感器的发展:展望未来传感器的发展方向,包括纳米级传感器、无线传感器网络和生物传感器等新兴技术的应用前景。
三、传感器在工业领域的应用3.1 自动化生产:介绍传感器在自动化生产中的应用,包括机器人控制、流水线监测等方面。
3.2 能源管理:探讨传感器在能源管理中的作用,如智能电表、能源监测系统等。
3.3 安全监测:阐述传感器在工业安全监测中的应用,如火灾预警、气体泄漏监测等。
四、传感器在医疗领域的应用4.1 生命体征监测:介绍传感器在生命体征监测中的应用,如心率、血压、体温等的监测。
4.2 医疗设备控制:探讨传感器在医疗设备控制中的作用,如手术机器人、呼吸机等。
4.3 病人定位与追踪:阐述传感器在病人定位与追踪中的应用,如智能医院系统、病房监控等。
五、传感器在农业领域的应用5.1 土壤监测:介绍传感器在土壤监测中的应用,如土壤湿度、养分含量等的检测。
5.2 精准灌溉:探讨传感器在精准灌溉中的作用,如根据土壤湿度自动控制灌溉系统。
5.3 农作物生长监测:阐述传感器在农作物生长监测中的应用,如气象传感器、光照传感器等。
结论:传感器的发展已经取得了巨大的成就,并在各个领域得到了广泛的应用。
传感器设计及应用实例论文引言传感器是一种能够将感知到的物理量转化成电信号或其他可以被人工智能算法处理的工程量的装置。
传感器广泛应用于各个领域,包括农业、医疗、工业等。
本文将重点讨论传感器的设计原理,以及在实际应用中的一些例子。
传感器设计原理传感器的设计原理主要包括传感元件的选择和信号处理电路的设计。
传感元件选择传感元件是传感器的核心局部,用于感知物理量的变化。
根据不同的物理量,我们可以选择不同的传感元件。
•温度传感器:常见的温度传感元件有热敏电阻、热电偶和半导体温度传感器等。
•压力传感器:压力传感元件常见的有电容传感器、压阻传感器和压电传感器等。
•光感传感器:光感传感元件有光敏电阻、光电二极管和光电三极管等。
信号处理电路设计传感器感知到的物理量往往是微小的电信号,这些信号需要经过信号处理电路进行放大、滤波和转换等处理,以便于后续的数据处理和分析。
常见的信号处理电路包括放大电路、滤波电路和模数转换电路等。
传感器应用实例在实际的应用中,传感器被广泛用于各个领域。
以下是一些传感器应用的实例。
农业领域传感器在农业领域中的应用可以提高农作物的产量和质量。
•温度传感器:用于监测土壤温度,以便根据不同的作物需要进行灌溉调控。
•湿度传感器:用于监测土壤湿度,以便根据不同作物的需水量进行合理的灌溉。
•光感传感器:用于监测光照强度,以便优化光合作用,提高作物的养分吸收效率。
医疗领域传感器在医疗领域中的应用可以提高诊断的准确性和治疗的效果。
•血压传感器:用于监测患者的血压变化,以便及时调整药物剂量和治疗方案。
•心率传感器:用于监测患者的心率,以便及时发现和处理心律失常等疾病。
•体温传感器:用于监测患者的体温,以便及时发现并处理感染等情况。
工业领域传感器在工业领域中的应用可以提高生产效率和产品质量。
•压力传感器:用于监测管道和设备的压力,以便保证平安运行。
•流量传感器:用于监测液体或气体的流量,以便控制生产中的流程和调节流量。
传感器的原理应用论文引言传感器是一种能够将物理量转化为可测量电信号的设备。
它们在各个领域中起着重要作用,包括工业自动化、环境监测、医疗诊断等。
本论文旨在介绍传感器的工作原理及其在不同领域中的应用。
传感器的工作原理传感器的工作原理可以分为以下几个步骤:1.感知环境:传感器从其周围环境中接收物理量,例如温度、光强、压力等。
2.转换信号:传感器将感知到的物理量转换成电信号,通常使用电路来实现。
3.放大信号:为了增加测量的准确性和灵敏度,传感器通常会将转换后的信号进行放大处理。
4.输出结果:传感器将放大的信号转化为可读取的形式,例如模拟量或数字量。
传感器在工业自动化中的应用在工业自动化领域中,传感器扮演着关键角色,实现了自动控制和监测。
以下是一些常见的传感器应用:•温度传感器:用于测量工业过程中的温度,帮助实现温度控制和监测。
•压力传感器:用于测量系统中的气体或液体压力,可用于监测管道或容器中的压力变化。
•流量传感器:帮助测量流体或气体的流速和流量,用于管道或设备中的流量监测和控制。
•位移传感器:用于测量物体的位置和运动,可用于机械装置的位置控制和运动监测。
传感器在环境监测中的应用传感器在环境监测中起着至关重要的作用,可以帮助监测环境中的各种物理量和参数。
以下是一些常见的应用:•光照传感器:用于测量光的强度和亮度,可用于室内照明系统的自动调节和室外光照监测。
•湿度传感器:测量环境中的湿度水分含量,常用于农业、温室和室内空气质量监测。
•空气质量传感器:测量环境中的污染物含量,例如二氧化碳、甲醛等,帮助监测和改善室内空气质量。
•声音传感器:用于测量环境中的声音水平,可用于噪音监测和声音控制应用。
传感器在医疗诊断中的应用传感器在医疗领域中的应用越来越广泛,可以用于监测患者的生理信号和提供准确的诊断结果。
以下是一些常见的应用:•心率传感器:用于测量患者的心率,可用于心脏病患者的监测和心率异常的诊断。
•血压传感器:测量患者的血压水平,帮助监测高血压或低血压患者的病情。
传感器论文文章一:传感器在环境监测中的应用摘要:传感器在环境监测中起着重要的作用。
本文将从传感器的分类、原理以及在环境监测中的应用等方面进行综述。
通过对传感器的研究,可以更好地了解环境,保护生态环境。
引言:随着工业化进程的推进,环境问题已经成为全球关注的热点。
为了保护生态环境、预防和解决环境污染问题,传感器被广泛应用于环境监测中。
传感器具有监测范围广、可靠性高以及成本较低等特点,可以实时收集环境信息,为环境保护和治理工作提供数据支持。
一、传感器的分类传感器根据应用领域可以分为生物传感器、化学传感器、物理传感器和气体传感器等。
生物传感器主要用于生物领域,如生物医学和生物分析等。
化学传感器常用于环境监测中,可以检测空气中的有害物质。
物理传感器用于测量和监测物理量,如温度、压力和光强等。
气体传感器主要用于检测和测量气体成分和浓度。
二、传感器的原理传感器主要通过感知环境中的信息,并将其转化为电信号输出。
传感器一般由传感器元件和信号处理电路组成。
传感器元件负责感知环境信息,信号处理电路负责处理传感器元件输出的信号。
三、传感器在环境监测中的应用传感器在环境监测中有着广泛的应用。
例如,空气质量监测中常常使用气体传感器,可以监测和测量空气中的有害气体成分和浓度。
水质监测中可以使用化学传感器,检测水中的有毒物质和污染物。
土壤监测中可以使用物理传感器,测量土壤温度、湿度以及土壤中的有害物质含量。
此外,还可以利用传感器监测噪声、振动和辐射等环境参数。
四、传感器的优势和挑战传感器在环境监测中具有许多优势,如监测范围广、精度高、响应速度快等。
然而,传感器也面临着一些挑战,如灵敏度受环境条件影响、寿命有限以及准确度不高等。
结论:传感器在环境监测中发挥着重要的作用。
通过对传感器的分类、原理和应用等方面的综述,可以更好地了解传感器在环境监测中的作用和意义,为环境保护和治理提供数据支持。
文章二:传感器在智能交通系统中的应用摘要:传感器在智能交通系统中的应用,可以提高交通管理的效率和安全性。
传感器原理及应用的小论文1. 引言传感器是一种能够感知和测量物理量的装置,通过将物理量转化为可量化的电信号或其他形式的输出,实现对环境和物体的监测和控制。
传感器已经广泛应用于各个领域,如工业自动化、医疗仪器、环境监测等。
本文将介绍传感器的工作原理及其在不同领域的应用。
2. 传感器的原理传感器的工作原理基于不同的物理效应或现象,常见的原理包括电阻、电容、电感、声波、光学、热敏、压阻等。
下面将介绍几种常见的传感器原理。
2.1 电阻传感器电阻传感器是利用材料的电阻随着温度、应变、光照等物理量的变化而变化的特性。
根据相关的电路设计,通过测量电阻的变化,可以得到需要监测的物理量。
电阻传感器在温度计、应力计、湿度计等方面有广泛的应用。
2.2 电容传感器电容传感器是利用材料或电容结构的电容随着物理量的变化而变化的特性。
当物理量改变时,电容值发生变化,通过测量电容的变化可以得到需要的信息。
电容传感器在接近开关、触摸屏等领域被广泛应用。
2.3 声波传感器声波传感器利用声波的传播和反射原理,通过测量声波的到达时间、强度等参数,来实现对距离、速度、物体检测等信息的监测。
声波传感器在流量计、超声波测距仪等方面有重要应用。
3. 传感器的应用传感器广泛应用于各个领域,下面将介绍几个典型的应用领域和具体案例。
3.1 工业自动化工业自动化是传感器的主要应用领域之一。
传感器可以用于监测生产过程中的温度、压力、流量等参数,实现对机器和设备的自动控制。
例如,在汽车制造业中,温度传感器被广泛应用于发动机、变速器等部件的温度监测和控制。
3.2 医疗仪器传感器在医疗仪器中的应用也非常重要。
例如,血压计中的压力传感器可以实时测量血液的压力变化,帮助医生判断患者的健康状况。
另外,体温计中的温度传感器可以用于测量人体的体温,辅助医生进行诊断。
3.3 环境监测环境监测是传感器应用的另一个重要领域。
传感器可以用于监测大气中的温度、湿度、气体浓度等参数,帮助进行环境污染监测、气象预报等工作。
传感器的发展及应用 (论文)传感器的发展及应用引言概述:传感器是一种能够感知和测量环境中各种物理量的设备,随着科技的发展,传感器的应用范围越来越广泛。
本文将从五个方面详细探讨传感器的发展和应用,包括传感器的基本原理、传感器的分类、传感器的应用领域、传感器的发展趋势以及传感器的未来前景。
一、传感器的基本原理:1.1 传感器的工作原理:传感器通过感知环境中的物理量,并将其转化为电信号进行测量。
常见的工作原理包括电阻、电容、电感、压力、光电等。
1.2 传感器的信号转换:传感器将感知到的物理量转化为电信号,常用的信号转换方式有模拟信号转换和数字信号转换。
1.3 传感器的灵敏度和精度:传感器的灵敏度是指传感器对物理量变化的敏感程度,精度是指传感器测量结果与真实值之间的偏差。
二、传感器的分类:2.1 按测量物理量分类:传感器可以根据测量的物理量进行分类,如温度传感器、湿度传感器、压力传感器等。
2.2 按工作原理分类:传感器还可以按照工作原理进行分类,如电阻传感器、电容传感器、光电传感器等。
2.3 按应用领域分类:传感器还可以根据应用领域进行分类,如工业传感器、医疗传感器、环境传感器等。
三、传感器的应用领域:3.1 工业自动化:传感器在工业自动化中起着至关重要的作用,如温度传感器用于控制工业生产中的温度,压力传感器用于监测工业设备的压力。
3.2 智能家居:随着智能家居的兴起,传感器在家庭中的应用越来越广泛,如光照传感器用于智能灯光控制,湿度传感器用于智能空调控制。
3.3 环境监测:传感器在环境监测中起到了重要的作用,如气体传感器用于检测空气中的有害气体浓度,水质传感器用于监测水质的污染程度。
四、传感器的发展趋势:4.1 小型化和集成化:传感器的发展趋势是朝着小型化和集成化方向发展,以满足现代化设备对传感器的需求。
4.2 多模态传感:多模态传感是未来传感器的发展方向,即一个传感器可以同时感知多种物理量。
4.3 智能化和自适应:传感器未来的发展将更加智能化和自适应,能够根据环境变化自动调整工作参数。
传感器技术论文传感器是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转化为有用信号的器件或装置。
这是店铺为大家整理的传感器技术论文,仅供参考!传感器技术论文篇一常用传感器技术浅析传感器是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转化为有用信号的器件或装置。
传感器的静态特性主要指标有线性度、迟滞、重复性、灵敏度和准确度。
本文将从这些方面对物理传感器、光纤传感器、仿生传感器、红外传感器、电磁传感器等传感器件进行对比浅析,让读者对常用的传感器有简单的认识。
【关键词】传感器器件静态特性传感器是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。
对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。
我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。
传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。
传感器的动态特性则指的是对于输入量随着时间变化的响应特性。
动态特性通常采用传递函数等自动控制的模型来描述。
通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。
1 物理传感器通过对作用过程中的物理反馈,如对电流的变化、压力的增减、温度的高低等物理量的检测,然后把这些特定的物理量转化为我们方便处理的信号变量,就是我们所说的物理传感器。
常用的物理传感器有光电式传感器、压电传感器、压阻式传感器、热电式传感器、光导纤维传感器等。
我们以常用的光电式传感器为例,它可以把光信号转变成为电信号,也可以把其他的物理信号转变成光信号。
它的原理是利用物质的光电效应:由于光照的作用,物质上的载流子会发生变化,从而导致物质的内部的电位发生变化,改变物质整体的导电性。
物理传感器在现实生活中有着非常广泛的应用,举个简单的使用在生物医学的研究领域的示例。
传感器的发展及应用 (论文)传感器的发展及应用引言概述:传感器是一种能够感知和测量环境中各种物理量和化学量的装置,广泛应用于工业、医疗、农业、交通等领域。
本文将从传感器的发展历程、传感器的分类、传感器在工业领域的应用以及传感器在医疗领域的应用四个方面详细阐述传感器的发展及应用。
一、传感器的发展历程1.1 早期传感器的发展早期传感器主要基于机械原理,如温度计、压力计等。
这些传感器具有简单、可靠的特点,但精度有限,应用范围受限。
1.2 电子传感器的出现随着电子技术的发展,电子传感器逐渐取代了机械传感器。
电子传感器利用电子元件的特性来感知和测量物理量,具有高精度、广泛应用等优点。
1.3 微纳传感器的兴起近年来,微纳技术的发展推动了微纳传感器的兴起。
微纳传感器具有体积小、功耗低、响应速度快等特点,为传感器的应用提供了更多可能性。
二、传感器的分类2.1 按工作原理分类传感器可以按照工作原理分为电阻型传感器、电容型传感器、电感型传感器等。
不同工作原理的传感器适用于不同的物理量测量和应用场景。
2.2 按测量对象分类传感器可以按照测量对象分为温度传感器、压力传感器、湿度传感器等。
不同测量对象的传感器具有不同的测量范围和精度要求。
2.3 按应用领域分类传感器可以按照应用领域分为工业传感器、医疗传感器、农业传感器等。
不同领域的传感器需求各异,需要适应不同的工作环境和应用要求。
三、传感器在工业领域的应用3.1 自动化生产传感器在工业自动化生产中起到了关键作用,可以实时感知设备状态、测量工艺参数,并通过反馈控制系统实现自动化生产,提高生产效率和质量。
3.2 安全监测传感器在工业安全监测中发挥重要作用,可以感知危险物质浓度、温度、压力等参数,及时发出警报并采取措施,保障工作人员和设备的安全。
3.3 资源管理传感器在工业资源管理中发挥重要作用,可以实时监测能源消耗、设备运行状态等,帮助企业进行能源节约和设备维护,提高资源利用效率。
论文关键词:单晶材料多晶材料非晶材料非晶硅非晶磁性材料非晶传感器论文摘要:摘要:对敏感功能材料研究开发所呈现的主要趋势之一就是从单晶材料向多晶材料和非晶材料方向过渡发展。
由于非晶材料具有光吸收系数高、基片材料的限制性小、性能易于扩展、制作工艺简单等优点,因而受到多方面青睐。
本文侧重介绍非晶材料的现状、基本特性及其在传感器中的应用与展望。
一、引言最近,对敏感功能材料的研制开发所呈现的主要趋势之一就是从单晶材料向多晶材料和非晶材料的方向过渡发展。
到目前为止,传感器中应用的敏感功能材料多为单晶材料,特别是物理类传感器更是如此。
例如,光敏传感器一直就是用Si、GaAs 之类的单晶半导体。
另一方面,气敏传感器主要由多晶材料或多孔陶瓷构成。
陶瓷由粉末混合物经模压、烧结而形成。
采用理想特性的原材料并对烧结工艺严加管制,便可制成一种精细陶瓷,使之应用于传感器,从而开辟了陶瓷拓宽应用的新天地。
单晶传感器仅利用了晶体的体性能,而多晶传感器和陶瓷传感器则利用了多孔性和晶粒边界特性,从而开辟了拓宽应用于气敏传感器和热敏传感器的新途径。
非晶材料大致分为非晶磁性材料和非晶半导体材料。
引人注目的非晶合金现已步入实用阶段,特别是近年来又在基础和应用方面作了深入研究,从而了解非晶金属在结晶状态所具有的独特物性,使之拓宽应用于传感器,颇具实用价值。
二、背景材料以及非晶材料的应用现状随着人类认识的发展和技术的进步,从20 世纪50 年代涌现了若干新型非晶态材料,包括非晶合金、非晶半导体、非晶超导体、非晶离子导体和有机高分子玻璃等。
其中非晶合金中原子的混乱排列情况类似于玻璃,故又称为金属玻璃。
金属玻璃可由多种工艺制备,所有工艺都涉及将合金从液态或气态快速凝固,凝固过程非常快以致将原子的液体组态冻结下[1-3]。
它们在热力学上处于亚稳状态,在晶化温度以上即可克服一定大小的能垒而转变成晶态。
研究表明,非晶态结构上与液体相似(见图1) ,原子排列是短程有序的;从总体上来说是长程无序的,宏观上可将其看作均匀、各向同性的。
非晶态结构的另一个特点是热力学的不稳定性,存在向晶态转化的趋势,即原子趋于规则排列。
为了进一步了解非晶态的结构,通常在理论上把非晶态材料中原子的排列情况模型化,其模型归纳起来可分为两大类。
一类是不连续模型,如微晶模型、聚集团模型等;另一类是连续模型,如连续无规则网格模型、硬球无规密堆模型等。
虽然所建立的种种模型[4]于描述非晶态材料的真实结构还不够精确。
但在解释非晶态材料的某些特性如弹性、磁性上,还是取得了一定的成功。
非晶态合金的长程无序、短短有序的特性导致非晶态金属有着良好的机械性能、优良的化学性能以及优异的软磁性能。
图1 气、液、晶态和非晶态双体分布函数[5 ]1、非晶磁性材料非晶磁性材料是杜韦斯(Duwes)1960 年用液体淬火法率先合成的,如今这种敏感功能材料已在传感器中得到日益广泛的应用,而且展望未来还可用于更大的发展。
非晶磁性材料具有下列特性:①缺乏晶体材料所具有的磁各向异性,导磁率高,损耗小。
也就是说,旋转磁化容易,各向磁场灵敏度高,因此,可用来构成高灵敏度磁场计或磁通量传感器。
现已相继开发出应力ˉ磁效应式高灵敏度应力传感器、磁致伸缩效应式机械传感器。
②具有高电阻率(比坡莫合金高几倍),因此,即使是在高频范围内也能得到较小的涡流损耗和极好的磁特性,有效利用此特性便可开发研制出磁性晶体难以实现的快速响应传感器。
③不存在晶粒边界、位错等晶体材料固有的缺陷,因而机械强度高,抗化学性强。
④直到居里温度(近似为200~500K),其组合成分均可随意确定。
因此,可望用于开发研制快速响应温度传感器。
2、非晶硅非晶硅自1976 年由斯皮尔(Spear)通过控制手段对其掺杂以来,在光生伏打方面的应用是人所共知的。
例如,内置非晶硅太阳电池的袖珍计算器现已普及化,比比皆是。
非晶硅用作传感器敏感功能材料有很大潜力,主要表现在非晶硅具有一般晶体材料难以得到的特性:①可见光范围内非晶硅的光吸收系数高;②使微晶相与非晶相混合,可得到类晶体性能;③淀积温度低(200℃~300℃),可随意选用基片材料,如可用有机膜;④可淀积均匀性良好的大面积薄膜;⑤淀积膜的长期稳定性和可靠性良好;⑥可在曲面和平面上淀积薄膜;⑦可应用光刻工艺;⑧可用非晶材料制作有源和无源元件,可在多种基片材料上生长,可用来制作三维电路。
三、非晶材料的基本特征非晶金属材料具有下述基本特性:1、高透磁率Co 基高透磁率非晶金属由Co、Si、Fe、B 主成分组成,添加Mn、Nb、Mo、Cr 等元素。
图2所示为透磁率—频率特性,并与结晶材料作了比较。
图示表明,非晶材料从低频到高频领域均为高的透磁率。
为了得到高透磁率,须严密控制组合成分,使磁致伸缩常数大致为零,极力减小在制造过程中及热处理过程中容易发生的感应磁各向异性,如此便可获得高透磁率。
再就非晶材料的实用性而言,至关重要的一点就是时效稳定性问题。
非晶是亚稳定物质,因而当升温达结晶温度以上时就起结晶作用。
因此,磁特性、机械特性便随之大幅度降低。
这样即使在结晶温度以下的温度领域,磁特性也呈现缓慢变化现象。
通过精心热处理,可望减小时效变化。
但对使用温度环境下的时效稳定性,须抓住充分斟酌、精心设计这一重要环节。
图2 高透磁率Co基非晶金属的有效透磁率—频率特性2、低铁耗、大仰角组合成分为Co 基材料,与高透磁率为同一系统。
由于转换电源用的饱和扼流圈等的B-H 曲线(磁化曲线)需用大仰角,因而通过热处理使磁心的磁路方向发生感应各向异性,如此便可获得低铁耗、大仰角的磁特性。
表1 低铁耗大仰角非晶金属的磁特性注:*1.片厚20μm *2.片厚100μm3、高饱和磁通密度基本组合成分为Fe、Si、B,以提高耐蚀性、降低铁耗为目的,还可适量添加Cr、Ni、Nb 等元素。
表3 列出高饱和磁通密度Fe 基非晶金属的磁特性,并与方向性硅钢板作了比较。
铁耗要比硅钢小1/3~1/5。
4、高磁通密度由于Fe 基非晶金属无结晶磁各向异性,透磁率大,而且磁致伸缩大,即使是弱磁场也能发生大的磁致伸缩,因而作为磁致伸缩材料的应用开发相当活跃。
非晶材料的k 值显著大于结晶材料。
可用作超声波元件而特别引人注目。
四、应用由于非晶材料具有光吸收系数高、基片材料限制小、性能易于扩展、制作工艺简单等优点,因而作为敏感功能材料倍受青睐,现已日益广泛应用于各种传感器。
图3所示为主要用例。
图3 非晶硅传感器1、光传感器[6]有效利用非晶硅的特性便可研制成高性能的光传感器。
非晶硅光传感器有光导电池式和光敏二极管式2 种。
光敏二极管具有与太阳电池相同的p-i-n 结构,非晶硅光敏二极管的灵敏度和响应时间与单晶硅光敏二极管相近。
①导电池图6 所示为未掺杂非晶硅的一个典型特性—光导性与单色光强度的函数关系。
在1mW/cm2 的光照下非晶硅的光导性增大3 个数量级,衰减时间约为10ms,其时间拖尾长。
②光敏二极管图3 所示为非晶硅pin 型光敏二极管的结构简图。
图4 所示为不同波长时短路电流与单色光强度的函数关系。
在很宽的范围内短路电流与光强度均成线性比例关系。
波长较短时其短路电流比波长较长时大6~9 倍。
图5 所示为非晶硅二极管的响应时间与负载电阻特性的关系曲线。
响应时间依赖于负载电阻,影响响应时间的决定因素是RC常数。
在同样的负载电阻下对绿光的响应时间比对红光的长,绿光时的导通时间为μs,截止时间为μs。
图3 Pin型光敏二极管结构图图4 短路电流与单色光强度的函数关系。
图5 非晶硅响应时间与浮在电阻的特性的关系曲线③色传感器利用非晶硅特性研制成集成型全色传感器。
图6 示出结构不同的3 种集成型色传感器。
用这类传感器至少可识别12 种颜色。
图7 所示为集成型色传感器的光谱响应特性及其与温度的关系。
集成型色传感器由红光传感器、绿光传感器及蓝光传感器3 个光传感器组成。
当其入射光的强度与相对的波长为均匀状态时,红光、绿光和蓝光传感器的灵敏度比为5:3:2。
在20℃~60℃的温度范围内,蓝光传感器和红光传感器的光谱响应变化很小,集成型非晶硅色传感器的响应时间约为1μs。
图6 集成型色传感器的结构图7 集成型色传感器的光谱响应特性及其与温度的关系④单片光耦合器任意类型的基片上可在淀积非晶硅,利用此特性来制作单片光耦合器,将非晶硅光敏二极管直接形成在GaP 发光二极管上。
非晶硅GaP 单片光耦合器的结构简图如图8所示,其电流传输比为%,响应时间为10μs。
通过优化器件结构,可望进一步提高其性能。
单片光耦合器是非晶硅光敏二极管的一个应用实例。
图8 弹片光耦合器的结构简图⑤图像传感器线性光传感器的结构简图如图9 所示,研制成宽度为216mm 的传感器阵列,内含1728 个象素。
图10 示出在单晶硅基片上制作的图象传感器,由MOS 型扫描器和非晶硅光导层组成。
模式识别传感器是图像传感器的另一个应用实例。
图11 示出模式识别传感器的结构简图,由设置在2 块透明板之间的光传感器阵列(16×16,2×2mm)构成。
图9 线性光传感器的结构简图图10 固态图像传感器的结构简图图11 模式识别传感器的结构简图2、温度传感器首先介绍西贝克效应[7]:如下图11所示,所谓西贝克效应就是指当一种材料两端有温度差时,在材料内部将形成电场,相应的存在电动势。
若把材料两端相连成闭合电路,线路中有电流通过。
通常用温差电动势率来表示这一电动势,它是材料两端单位温度差引起的温差电动势,对于晶态半导体,可推出其温差电动势率S为,图12 西贝克效应示意图式中q为电子电荷的绝对值,A-和A+是接近1的常数,可以推出对于n型,QUOTE n<0,Sp>0。
因此,可以通过测量温差电动势的正负的办法来判断半导体的导电类型。
金属温差电动势比晶态半导体要小得多,一般金属的费米能级数量级为几个电子伏特,因此金属的温差电动势绝对值约为几个QUOTE ,而晶态半导体的温差电动势率绝对值在室温时可达几百QUOTE 对于一般的非晶态半导体温差效应,与它的三种导电机制相对应,它的温差电效应也分成三个不同温度讨论。
当温度足够高时,以扩展态中的电子导电为主时,非晶态半导体的温差电动势与晶态半导体很类似,它们的n型和p型半导体具有相同的表达式。
随着温度降低,当以带尾局域态电子导电时,非晶态半导具有1式和2式的形式,只是式中的EC和EV分别换成EA 和EB,A-,A+值更小。
当温度进一步降低,以禁带中的缺陷局域态中的电子导电为主时,非晶态半导体的温差电动势率S有类似于金属的形式,同样S值很小,符号可正可负,取决于对电流做主要贡献的电子能态是位于费米能级EF的上方还是下方。
图13示出非晶硅的热电势与温差的关系。