初中数学教学典型案例分析勾股定理
- 格式:doc
- 大小:73.00 KB
- 文档页数:15
初中数学教学典型案例分析《勾股定理》
我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是:
1.在多样化学习活动中实现三维目标的整合;
2.课堂教学过程中的预设和生成的动态调整;
3.对数学习题课的思考;
4.对课堂提问的思考。
首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合
案例1:《勾股定理》一课的课堂教学
第一个环节:探索勾股定理的教学
师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现?
生:从表中可以看出A、B两个正方形的面积之和等于正方形C 的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。
这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。
第二个环节:证明勾股定理的教学
教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。
学生展示略
通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。
第三个环节:运用勾股定理的教学
师(出示右图):右图是由两个正方形
组成的图形,能否剪拼为一个面积不变的新
的正方形,若能,看谁剪的次数最少。
生(出示右图):可以剪拼成一个面积
不变的新的正方形,设原来的两个正方形的
边长分别是a、b,那么它们的面积和就是
a2+ b2,由于面积不变,所以新正方形的面积
应该是a2+ b2,所以只要是能剪出两个以a、b
为直角边的直角三角形,把它们重新拼成一个
边长为a2+ b2 的正方形就行了。
问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。
第四个环节:挖掘勾股定理文化价值
师:勾股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来。它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。
新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。
2.课堂教学过程中的预设和生成的动态调整
案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题:
例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天平处于平衡状态。为了使第三架天平(图③)也处于平衡状态,则“?”处应放个物体b?
图①图②
?
图③
通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下。
我讲解的设计思路是这样的:
一.引导将图①和图②中的平衡状态,用数学式子(符号语言——数学语言)表示(现实问题数学化——数学建模):
图①:2a=c+b. 图②: a+b=c.
因此,2a=(a+b)+b.
可得:a=2b,c=3b .
所以,a+c = 5b.
答案应填5.
我自以为思维严密,有根有据。然而,在让学生展示自己的想法时,却出乎我的意料。
学生1这样思考的:
假设b=1,a=2,c=3.所以,a+c = 5,答案应填5.
学生这是用特殊值法解决问题的,虽然特殊值法也是一种数学方法,但是存在很大的不确定性,不能让学生仅停留在这种浅显的思维表层上。面对这个教学推进过程的教学“新起点”,我必须深化学生的思维,但是,还不能打击他的自信心,必须保护好学生的思维成果。因此,我立刻放弃了准备好的讲解方案,以学生思维的结果为起点,进行调整。
我先对学生1的方法进行积极地点评,肯定了这种思维方式在探索问题中的积极作用,当那几个同样做法的学生自信心溢于言表时,我随后提出这样一个问题:
“你怎么想到假设b=1, a=2, c=3?a、b、c是不是可以假设为任意的三个数?”
有的学生不假思索,马上回答:“可以是任意的三个数。”也有的学生持否定意见,大多数将信将疑,全体学生被这个问题吊足了胃口,我趁机点拨:
“验证一下吧。”
全班学生立刻开始思考,验证,大约有3分钟的时间,学生们开始回答这个问题:
“b=2,a=3,c=4时不行,不能满足图①、图②中的数量关系。”
“b=2,a=4,c=6时可以。结果也该填5.”
“b=3,a=6,c=9时可以,结果也一样。”
“b=4,a=8,c=12时可以,结果也一样。”
“我发现,只要a是b的2倍,c是b的3倍就能满足图①、图②中的数量关系,结果就一定是5.”
这时,学生的思维已经由特殊上升到一般了,也就是说在这个过程中,学生的归纳推理得到了训练,对特殊值法也有了更深的体会,用字母表示发现的规律,进而得到a=2b,c=3b.所以,a+c = 5b. 答案应填5.
我的目的还没有达到,继续抛出问题: