第3章有机电致发光器件结构和工作原理
- 格式:pdf
- 大小:258.75 KB
- 文档页数:26
有机电致发光器件OLED技术介绍有机电致发光器件OLED(Organic Light Emitting Diode)是一种新型的发光器件技术,由有机材料制成。
OLED技术结合了有机材料的特性和发光器件的的特性,可以在不需要背光的情况下发出颜色丰富、亮度较高的光。
它具有响应快、发光效率高、能耗低等优点,因此在显示技术领域具有广阔的应用前景。
OLED技术是基于有机材料中的发光现象。
有机材料是一种由碳元素构成的化合物,具有很强的光致发光特性。
与传统的LED器件相比,OLED器件不需要外部的背光源,而是利用有机材料自身的特性直接发光,因此OLED器件可以制作得非常薄,达到几个纳米的厚度。
OLED器件由四个不同的部分组成:一层有机发光层、两层电极和一层衬底层。
其中,有机发光层是OLED器件的最关键部分,它薄至仅几纳米,通过在该层中注入电荷,有机分子发生电致发光现象。
电荷分为正电荷和负电荷,它们在有机发光层内重组,释放出能量并发出光。
有机发光层的材料通常采用芳香族化合物以及有机金属配合物等。
OLED的工作原理是由电流经过电极进入有机发光层时,电流携带着电子和正孔进入有机发光层,电子和正孔在该层中相遇并发生复合。
在复合的过程中,电荷之间的能量被释放成光能,发出可见光。
而且,由于电荷可以自由运动,OLED器件具有快速的响应速度,可以实现高频率的图像刷新,扩大了其在电视和显示器领域的应用。
OLED技术具有许多优势。
首先,它可以制造出非常薄、灵活的器件。
由于有机材料可以制造成非常薄的膜,因此OLED显示器可以做到薄如蝉翼,并且可以弯曲、折叠,实现更灵活的设计。
其次,OLED器件具有高亮度和鲜艳的颜色。
由于OLED器件可以直接发光,而不需要背光源,因此可以实现更高的亮度,并且颜色更加鲜艳,对比度更高。
此外,OLED 器件的发光效率也比传统的LED器件高,能耗更低。
最后,OLED器件具有非常快速的响应速度。
由于电荷在有机材料中的运动速度非常快,因此OLED器件可以实现高频率的图像刷新,不会出现拖影现象。
有机电致发光器件OLED技术介绍有机电致发光器件(Organic Light-Emitting Diode, OLED)是一种新型的发光器件技术,由有机材料构成。
与传统的液晶显示技术相比,OLED具有更高的亮度、对比度、响应速度和视角范围。
它也具有更薄、更轻、更柔性以及更低的功耗特性。
因此,OLED被广泛运用于电视、手机、平板电脑和显示屏等各种领域。
以下是OLED技术的介绍。
首先,OLED的工作原理是通过在有机材料中注入电流来激发有机分子发光。
它由四个主要的组成部分构成:有机发光层、电子传输层、空穴传输层和电子注入层。
当电流通过电子传输层和空穴传输层时,电荷载流子在发光层中结合并释放出能量,产生光子。
这一发射光子的过程是受电流调控的,因此可以随时调整亮度。
OLED的一个重要特点是可以实现主动矩阵驱动,这意味着每个像素点都能够独立控制。
这种能力使得OLED在显示领域非常有优势。
与传统的液晶显示技术相比,液晶显示技术需要背光源才能产生光亮的像素。
而OLED每个像素都能够自己发光,因此具有更高的对比度和更广的视角范围。
此外,OLED还具有高亮度和真实色彩的优势。
有机材料可以发射出非常鲜艳和纯净的颜色,而且亮度更高,使得OLED在显示领域表现出色。
在电视和手机等大屏幕设备上,OLED可以提供更丰富、逼真的视觉体验。
另外,OLED的柔性特性也为其应用提供了更多可能。
传统的液晶显示器需要通过切割和粘贴的方式来制作大屏幕设备,而OLED可以在柔性底板上制作,从而实现超薄和弯曲的显示器。
这使得OLED可以应用于可穿戴设备、卷曲屏幕和可折叠设备等领域。
尽管OLED在显示技术中有着许多优势,但也存在一些挑战。
其中之一是有机材料的寿命问题。
有机材料在使用过程中会逐渐降解和失去发光性能,从而影响显示质量和寿命。
为了解决这个问题,研究人员一直在努力开发新的有机材料以提高稳定性。
另一个挑战是制造成本。
目前,OLED 的制造成本相对较高,限制了其在大规模应用中的普及。
有机电致发光材料及器件导论引言:近年来,由于有机电致发光材料及器件的研究和应用取得了巨大的进展,成为光电领域的研究热点之一、有机电致发光材料及器件具有很高的发光效率、易于制备、柔性可折叠等特点,被广泛应用于平板显示、照明、生物传感等领域。
本文将介绍有机电致发光材料及器件的基本原理、制备方法以及应用前景。
一、有机电致发光材料的基本原理有机电致发光材料是一种能够通过施加电场来实现发光的材料,其基本原理是在有机半导体材料中注入载流子,通过载流子在材料中的扩散和再组合过程中释放出能量,从而产生发光。
一般来说,有机电致发光材料包括发光层、载流子注入层和电极层等。
载流子注入层用于实现载流子从电极注入到发光层,电极层用于提供足够的电场以驱动载流子在发光层中运动。
二、有机电致发光材料的制备方法1.分子设计法:有机电致发光材料的制备通常需要合成复杂的有机分子,具有特殊的分子结构和能级分布。
通过分子设计法,可以设计出具有良好光电性能的有机分子,进而制备出高效的电致发光材料。
2.整体法:整体法是一种将有机分子溶解在溶剂中,通过溶液沉积、旋涂等技术制备电致发光材料的方法。
这种方法制备的电致发光材料结构均匀、制备成本较低,但是光电转换效率较低。
3.蒸发法:蒸发法是一种将有机分子在真空条件下蒸发沉积在基板上的方法。
这种方法制备的电致发光材料具有较高的光电转换效率和较好的膜层质量,但是制备过程较为复杂。
三、有机电致发光器件的制备方法1.有机电致发光二极管(OLED):OLED是一种采用有机电致发光材料制备的光电器件,具有高亮度、广色域、快速响应等特点。
OLED器件由ITO透明导电玻璃基板、有机电致发光层、载流子注入层和金属电极等组成。
制备OLED器件的方法主要有真空蒸发法、旋转涂敷法和喷墨印刷法等。
2.有机电致发光场效应晶体管(OFET):OFET是一种利用有机电致发光材料制备的场效应晶体管。
OFET器件由基底、源极、漏极和门极等组成,其中源极和漏极之间的有机电致发光材料层起到了发光的作用。
摘要OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、低电压直流驱动、工作温度范围宽、易于实现柔性显示和3D 显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。
同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。
本文将系统介绍OLED的发展背景、发展史、制备及应用,介绍了有机电致发光器件(OLED) 的结构和发光机理。
典型的传统OLED是生长在透明的阳极例如ITO玻璃上的,发射出来的光是由最底层衬底透出,这使得它与其他电子元件如硅基显示驱动器的集成变得非常复杂。
因此,理想的做法是研发一种OLED,其光的发射由器件顶部的透明电极透出。
重点介绍一种具有阴极作为底层接触层,阳极ITO薄膜作为顶部电极的表面发射型或者说有机“反转”的LED(OILED)。
介绍了该器件的制备工艺,对该OILED的I一V特性及EL谱进行了测试,发现与传统的OLED相类似,而工作电压有所升高,效率一定程度上降低。
为了进一步改善器件性能,我们对器件增加了保护层(PL),研究了PL对OILED器件性能的影响。
最后概述了器件的技术进展和应用前景, 并展望了未来OLED 发展的方向。
关键词:有机电致发光器件,有机反转电致发光器件,发光机理,保护层(PL),阳极ITO 薄膜AbstractOLED has a solid state, self-luminous, high contrast, ultra-thin, low power consumption, viewing angle, fast response, low-voltage DC drive, the operating temperature range, easy to implement many of the advantages of flexible displays and 3D displays future20 years of the most "money scene" of the newdisplay because OLED has a large-area film, low power consumption, and other fine features, so an ideal plane light source, also has broad application prospects in the future of energy saving lighting in the area. In this paper, the systematic introduction of OLED development background, history of the development, preparation and application, the structure of the organic electroluminescent devices (OLED) and the luminescence mechanism.Typical traditional OLED is growth in transparent anode ITO glass, for example, the light is emitted by bottom gives fully substrate, this makes it and other electronic components such as that the integration of the silica based drive become very complex. Therefore, the ideal way is developing a OLED, its light emission from the top of the device gives fully transparent electrodes. Focuses on a cathode as the bottom contact layer, the anode of ITO films as the top electrode surface emission or organic LED of the "reverse" (OILED). Of the device preparation process, the OILED I-V characteristics and EL spectra of the test, found that similar to the conventional OLED, the working voltage was increased efficiency to a certain extent on the lower. To further improve the device performance of the device to increase the protective layer (PL), PL OILED device performance. Finally an overview of the technical progress and prospects of the device, and looked to the future OLED, the direction of development.Keywords:Organic Electroluminescent Devices,Organic reverse electroluminescent devices, Luminescence mechanism,Protective layer (PL), the anode of ITO films.目录摘要 (I)Abstract........................................................... I I 目录.............................................................. I II 1.绪论.. (1)1.1课题背景 (1)1.2 OLED技术的发展概况 (2)1.2.1 全球OLED发展史 (4)1.2.2 中国OLED发展状况 (5)1.2.3 OLED的应用 (6)1.2.3 OLED的制备 (6)2.有机电致发光器件 (8)2.1 引言 (8)2.2 有机电致发光器件 (8)2.3 有机电致发光器件的结构 (9)2.4 OLED发光机理 (10)2.5 我国发展OLED产业存在的问题及发展趋势 (13)2.5.1 存在的问题 (13)2.5.2 发展趋势 (14)2.6 结论及建议 (14)3.有机反转电致发光器件 (16)3.1 引言 (16)3.2 器件制备工艺 (17)3.2.1 基片的清洗及表面处理 (17)3.2.2 阴极的蒸镀 (17)3.2.3 有机层的成膜 (18)3.2.4 阳极的溅射 (18)/ PVK:TPD/PTCDA/ITO结构的有机反转电致发光器件的研究3.3 Si/Al/Alq3 (19)3.3.1 OILED的I一V特性及亮度测试 (19)3.4 保护层(PL)对器件性能的影响 (26)3.4.1 PL厚度对器件j一V特性的影响 (26)的影响 (28)3.4.2 PL对器件的最大驱动电流Im ax的影响 (28)3.4.3 PL对器件外量子效率qe3.4.4 PL对EL发射谱的影响 (29)3.4.5 顶电极(阳极)面积对载流子注入效率的影响 (30)3.4.6 PL层对器件最表面状态的影响 (31)4.OLED与OILED的特性及存在的问题 (32)4.1 与目前占主流地位的CRT及LCD技术相比,OLED与OILED具有以下更多的优点: (32)4.2 与OLED相比OILED的不同 (34)4.3 OLED与OILED 急待解决的问题和未来发展趋势 (34)结论 (37)5.致谢 (38)6.参考文献: (39)1.绪论1.1课题背景信息显示是信息产业的核心技术之一, 而信息显示技术及显示器件多种多样, 到目前为止,有四种发光物理机制完全不同的固态场致发光形式。
有机电致发光器件工作原理1.1 有机材料的电子跃迁过程有机电致发光的发光机理:在外电场作用下,空穴和电子分别注入到有机材料中,在有机层中相遇复合形成激子,释放出能量,同时将能量传递给有机发光材料的分子,使其从基态跃迁到激发态,由于激发态很不稳定,受激分子发生辐射跃迁从激发态回到基态产生发光现象。
一般将有机物质分子的状态分为基态与激发态。
基态是指分子的稳定态,即能量最低状态,其分子中的电子的排布完全遵从能量最低原理,泡利不相容原理和洪特规则。
激发态是指物质分子受到光或其他的辐射使其能量达到一个更高的值时,变为一个不稳定的状态,被激发后称分子处于激发态。
通常将分子的不稳定的存在状态用单重态S表示,基态单重态用S0表示,三重激发态用T1表示。
当有机分子被激发时,分子处于激发单重态,依据它们能量的高低表示为S1、S2、S3。
在电致发光的过程中,单重态激子和三重态激子被认为是同时产生的。
其中荧光是电子从最低单重激发态到基态的跃迁发光,这种现象又称为电致荧光。
电子从最低三重态回到基态的跃迁产生的发光称为磷光。
但在室温下,从最低三重激发态回到基态的电子跃迁产生的发光是极微弱的,其能量绝大部分以热的形式损失掉了,所以这个过程被认为是无辐射过程。
图1.1为有机材料分子内部电子的主要跃迁过程:a过程:从S0—S1、S2是在外界激励下发生跃迁;f过程:从S1—S0是以辐射的形式发射了光子产生了荧光;P过程:从T1—S0是一个辐射跃迁的磷光发光;从S2—S1是通过内转换过程(IC);从S1—T1是通过系间内转换过程(ISC),且S1发生了自旋反转;从S2—S0是辐射跃迁的荧光发光。
图1.1 电致发光能级图1.2有机电致发光器件的结构有机电致发光器件常见的器件结构:OLED器件多采用夹层式三明治结构:由一薄而透明具有半导体性质的铟锡氧化物(ITO玻璃)透明电极为正极与低功函数的金属为阴极如同三明治般将有机材料层夹在其中,有机材料层包括发光层(EML)、空穴传输层(HTL)、与电子传输层(ETL)。
有机电致发光器件的工作原理
嘿呀!今天咱们来聊聊有机电致发光器件的工作原理,这可真是个超级有趣的话题呢!
首先呀,咱们得知道啥是有机电致发光器件。
哎呀呀,简单说呢,它就是一种能自己发光的神奇玩意儿!
那它到底咋工作的呢?听我慢慢道来!1. 这第一步呢,就是电荷注入!哇,电荷就像一群小调皮,从电极那里跑进来啦!这可不得了,没有电荷的注入,后面的事儿都没法开展呢!
接着呢,2. 电荷传输!哎呀呀,这些注入进来的电荷得动起来呀,它们顺着特定的通道,欢快地奔跑着,去完成它们的使命!
然后啊,3. 激子形成!这可神奇啦!电荷们一相遇,就像魔法一样,形成了激子!
再然后呀,4. 辐射复合发光!哇塞,到了关键时刻啦!激子释放出能量,就有了那迷人的光!这光可美啦,给我们带来了各种各样的惊喜!
你想想,这一系列的过程,是不是像一场精心编排的舞蹈?每个步骤都不能出错,才能跳出那完美的舞姿,展现出绚丽的光芒!
哎呀呀,这有机电致发光器件的工作原理,是不是特别有意思?它的应用也超级广泛呢!比如说在手机屏幕、电视显示上,都能看到它的身影!哇,是不是感觉科技的力量太强大啦?
总之呢,了解有机电致发光器件的工作原理,能让我们更好地感受科技给生活带来的变化!你说呢?。