当前位置:文档之家› 【数学】培优 易错 难题圆的综合辅导专题训练附详细答案

【数学】培优 易错 难题圆的综合辅导专题训练附详细答案

【数学】培优 易错 难题圆的综合辅导专题训练附详细答案
【数学】培优 易错 难题圆的综合辅导专题训练附详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.

(1)求证:直线DM是⊙O的切线;

(2)若DF=2,且AF=4,求BD和DE的长.

【答案】(1)证明见解析(2)23

【解析】

【分析】

(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;

(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF?DA,据此解答即可.

【详解】

(1)如图所示,连接OD.

∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD

=,∴OD⊥BC.

又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.

又∵OD为⊙O半径,∴直线DM是⊙O的切线.

(2)连接BE.∵E为内心,∴∠ABE=∠CBE.

∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即

∠BED=∠DBE,∴BD=DE.

又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DB

DB DA

=,即DB2=DF?DA.

∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF?DA=12,∴DB=DE=23.

【点睛】

本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.

2.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且

x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.

(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角

为;

(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;

(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.

【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1

【解析】

分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;

(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;

(3)分两种情况:

①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;

②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22

(),∴∠ABO=30°.

223

∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.

∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.

故答案为:60°;

(2)如图2.

∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.

过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;

(3)分两种情况:

①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.

∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,

∴AB=3+2=5.

∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;

②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.

∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,

∴AB=3+2=5.

∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;

综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.

点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P ,Q 的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.

3.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、

CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对

称图形,设点l 为对称轴的交点.

(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;

(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;

(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)

【答案】(1)3π;(2)27π;(3)3. 【解析】

试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;

(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.

试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,

AC BC AB ==,∴AC BC l l ==AB l =

603

180

π?=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;

(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,

由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =

2

1203360

π?=3π,∴图形在运动过

程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;

(3)如图2,连接BI并延长交AC于D.∵I是△ABC的重心也是内心,∴∠DAI=30°,

AD=1

2

AC=

3

2

,∴OI=AI=

3

2

30

AD

cos DAI cos

=

?

=3,∴当它第1次回到起始位置时,点I

所经过的路径是以O为圆心,OI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n?2π?3=23nπ.故答案为23nπ.

点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.

4.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.

(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';

(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).

【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为

﹣2.

【解析】

【分析】

(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;

(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A

=(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';

(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2

为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.

【详解】

解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,

∵OA=2,OB=2,∠AOB=90°,

∴∠ABO=30°,∠BAO=60°,

由旋转得:OA=OA',∠A'=∠BAO=60°,

∴△OAA'是等边三角形,

∴α=∠AOA'=60°,

∵OB=OB'=2,∠COB'=90°﹣60°=30°,

∴B'C=OB’=,

∴OC=3,

∴B'(3,),

(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',

∴∠OBB'=∠OA'A=(180°﹣α),

∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,

∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,

即AA'⊥BB';

(Ⅲ)点P纵坐标的最小值为-2.理由是:

如图,作AB的中点M(1,),连接MP,

∵∠APB=90°,

∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),

∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.

【点睛】

本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.

5..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A 重合),⊙D与AB相切,切点为E,⊙D交射线

..BC于

..DC于点F,过F作FG⊥EF交直线

点G,设⊙D的半径为r.

(1)求证AE=EF;

(2)当⊙D与直线BC相切时,求r的值;

(3)当点G落在⊙D内部时,直接写出r的取值范围.

【答案】(1)见解析,(2)r=3,(3)

63 3r

<<

【解析】

【分析】

(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;

(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;

(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.

【详解】

解:设圆的半径为r;

(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,

而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,

∴AE=EF;

(2)如图2所示,连接DE,当圆与BC相切时,切点为F

∠A=30°,AB=6,则BF=3,AD=2r,

由勾股定理得:(3r)2+9=36,

解得:3

(3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,

333,3933FC r GC FC r =-==-

②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,

333,3339FC r GC FC r ===-

两种情况下GC 符号相反,GC 2相同, 由勾股定理得:DG 2=CD 2+CG 2, 点G 在圆的内部,故:DG2<r2, 即:22(332)(339)2r r r +-< 整理得:25113180r r -+< 63

35

r << 【点睛】

本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.

6.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC 交于点D ,DE ⊥AC ,垂足为E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线;

(2)若∠C =60°,AC =12,求BD 的长. (3)若tan C =2,AE =8,求BF 的长.

【答案】(1)见解析;(2) 2π;(3)103

. 【解析】

分析:(1)连接OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠C ,

∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD ⊥EF ,即 EF 是⊙O 的切线;

(2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=

1

2

AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可;

(3)连接AD ,根据直角三角形的性质,由在Rt △DEC 中, tan 2DE

C CE

== 设CE=x,则DE=2x ,然后由Rt △ADE 中, tan 2AE

ADE DE

∠== ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可.

详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C ∵OD=OB ∴∠ABC=∠ODB ∴∠C=∠ODB ∴OD ∥AC

又∵DE ⊥AC ∴OD ⊥DE ,即OD ⊥EF ∴EF 是⊙O 的切线 (2) ∵AB=AC=12 ∴OB=OD=1

2

AB =6 由(1)得:∠C=∠ODB=600 ∴△OBD 是等边三角形 ∴∠BOD=600

∴BD =

606

2180

ππ?= 即BD 的长2π (3)连接AD ∵DE ⊥AC ∠DEC=∠DEA=900

在Rt △DEC 中, tan 2DE

C CE

=

= 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900

∴∠ADE+∠CDE=900 在Rt △DEC 中,∠C+∠CDE=900 ∴∠C=∠ADE 在Rt △ADE 中, tan 2AE

ADE DE

∠== ∵ AE=8,∴DE=4 则CE=2

∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5 ∵OD//AE ∴△ODF ∽△AEF ∴

OF OD AF AE = 即:55

108

BF BF +=+ 解得:BF=

103 即BF 的长为10

3

. 点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

7.如图,AB 为⊙O 的直径,且AB =m (m 为常数),点C 为AB 的中点,点D 为圆上一动点,过A 点作⊙O 的切线交BD 的延长线于点P ,弦CD 交AB 于点E . (1)当DC ⊥AB 时,则

DA DB

DC

+= ; (2)①当点D 在AB 上移动时,试探究线段DA ,DB ,DC 之间的数量关系;并说明理由;

②设CD 长为t ,求△ADB 的面积S 与t 的函数关系式; (3)当

92

20

PD AC =

时,求DE OA 的值.

【答案】(12;(2)①DA+DB 2DC ,②S =12t 2﹣14m 2 ;(3)242

35

DE OA =. 【解析】 【分析】

(1)首先证明当DC ⊥AB 时,DC 也为圆的直径,且△ADB 为等腰直角三角形,即可求出结果;

(2)①分别过点A ,B 作CD 的垂线,连接AC ,BC ,分别构造△ADM 和△BDN 两个等腰直角三形及△NBC 和△MCA 两个全等的三角形,容易证出线段DA ,DB ,DC 之间的数量关系;

②通过完全平方公式(DA+DB )2=DA 2+DB 2+2DA?DB 的变形及将已知条件AB =m 代入即可求出结果;

(3)通过设特殊值法,设出PD 的长度,再通过相似及面积法求出相关线段的长度,即可求出结果. 【详解】

解:(1)如图1,∵AB 为⊙O 的直径, ∴∠ADB =90°, ∵C 为AB 的中点, ∴AC BC =, ∴∠ADC =∠BDC =45°, ∵DC ⊥AB ,

∴∠DEA =∠DEB =90°, ∴∠DAE =∠DBE =45°, ∴AE =BE , ∴点E 与点O 重合, ∴DC 为⊙O 的直径, ∴DC =AB ,

在等腰直角三角形DAB 中, DA =DB =

2

AB , ∴DA+DB =2AB =2CD , ∴

DA DB

DC

+=2;

(2)①如图2,过点A 作AM ⊥DC 于M ,过点B 作BN ⊥CD 于N ,连接AC ,BC , 由(1)知AC BC =, ∴AC =BC , ∵AB 为⊙O 的直径,

∴∠ACB =∠BNC =∠CMA =90°,

∴∠NBC+∠BCN =90°,∠BCN+∠MCA =90°,

∴∠NBC =∠MCA , 在△NBC 和△MCA 中,

BNC CMA NBC MCA BC CA ∠=∠??

∠=∠??=?

, ∴△NBC ≌△MCA (AAS ), ∴CN =AM ,

由(1)知∠DAE =∠DBE =45°, AM =

2DA ,DN

=2DB , ∴DC =DN+NC =

22DB+22DA =2

2

(DB+DA ), 即DA+DB =2DC ;

②在Rt △DAB 中, DA 2+DB 2=AB 2=m 2,

∵(DA+DB )2=DA 2+DB 2+2DA?DB , 且由①知DA+DB 2DC 2t , ∴2t )2=m 2+2DA?DB , ∴DA?DB =t 2﹣12

m 2, ∴S △ADB =

12DA?DB =12t 2﹣1

4

m 2, ∴△ADB 的面积S 与t 的函数关系式S =12t 2﹣14

m 2

; (3)如图3,过点E 作EH ⊥AD 于H ,EG ⊥DB 于G , 则NE =ME ,四边形DHEG 为正方形,

由(1)知AC BC =, ∴AC =BC ,

∴△ACB 为等腰直角三角形, ∴AB 2AC , ∵

92

PD AC =

, 设PD =2,则AC =20,AB =2,

∵∠DBA =∠DBA ,∠PAB =∠ADB , ∴△ABD ∽△PBA , ∴AB BD AD

PB AB PA

==, ∴

20292202

DB =

+, ∴DB =162, ∴AD =

22AB DB -=122,

设NE =ME =x , ∵S △ABD =12AD?BD =12AD?NE+1

2

BD?ME , ∴

12×122×162=12×122?x+1

2×162?x , ∴x =

482

, ∴DE =2HE =2x =967

, 又∵AO =1

2

AB =102, ∴

96242

7102DE OA =?=

【点睛】

本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.

8.在平面直角坐标系xOy 中,对于点P 和图形W ,如果以P 为端点的任意一条射线与图形W 最多只有一个公共点,那么称点P 独立于图形W .

(1)如图1,已知点A(-2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于

点 B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于AB的点是;

(2)如图2,已知点C(-3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P独立于折线CD-DE,求点P的横坐标x p的取值范围;

(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t>-3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x轴及x轴上方的部分记为图形W.若⊙H上的所有点都独立于图形W,直接写出t的取值范围.

【答案】(1)P2,P3;(2)x P<-5或x P>-5

3

.(3)-3<t<2或2<t<2

【解析】

【分析】

(1)根据点P独立于图形W的定义即可判断;

(2)求出直线DE,直线CD与直线y=2x+8的交点坐标即可判断;

(3)求出三种特殊位置时t的值,结合图象即可解决问题.

【详解】

(1)由题意可知:在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于AB的点是P2,P3.

(2)∵C(-3,0),D(0,3),E(3,0),

∴直线CD的解析式为y=x+3,直线DE的解析式为y=-x+3,

28

3

y x

y x

+

?

?

+

?

,解得

5

2

x

y

-

?

?

-

?

,可得直线l与直线CD的交点的横坐标为-5,

28

3

y x

y x

+

?

?

-+

?

,解得

5

3

14

3

x

y

?

-

??

?

?

??

,可得直线l与直线DE的交点的横坐标为-

5

3

∴满足条件的点P的横坐标x p的取值范围为:x P<-5或x P>-5

3

(3)如图3-1中,当直线KN与⊙H相切于点E时,连接EH,则EH=EK=1,HK=2,

∴OT=KT+HK-OH=3+2-4=2-1,

∴T(0,1-2),此时t=1-2,

∴当-3<t<1-2时,⊙H上的所有点都独立于图形W.

如图3-2中,当线段KN与⊙H相切于点E时,连接EH.

22

∴T(0,22

如图3-3中,当线段MN与⊙H相切于点E时,连接EH.

OT=OM+TM=4-2+3=7-2,

∴T(0,7-2),此时t=7-2,

∴当1+2<t<7-2时,⊙H上的所有点都独立于图形W.

综上所述,满足条件的t的值为-3<t<1-2或1+2<t<7-2.

【点睛】

本题属于圆综合题,考查了切线的性质,一次函数的应用,点P独立于图形W的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决实际问题.

9.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.

(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=2

5

,求出⊙O的半径和BE的

长;

(3)连接CG,在(2)的条件下,求CG

EF

的值.

【答案】(1)见解析;(2)2,6

5

(3)CG:EF=4:7

【解析】

试题分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到

OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;(2)先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到

cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cosA==,求出AE=,然后由BE=AB﹣AE即

可求解.

试题解析:

(1)证明:如图,连结OD.

∵CD=DB,CO=OA,

∴OD是△ABC的中位线,

∴OD∥AB,AB=2OD,

∵DE⊥AB,

∴DE⊥OD,即OD⊥EF,

∴直线EF是⊙O的切线;

(2)解:∵OD∥AB,

∴∠COD=∠A.

在Rt△DOF中,∵∠ODF=90°,

∴cos∠FOD==,

设⊙O的半径为R,则=,

解得R=,

∴AB=2OD=.

在Rt△AEF中,∵∠AEF=90°,

∴cosA===,

∴AE=,

∴BE=AB﹣AE=﹣=2.

【点睛】本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.

10.如图,已知在△ABC中,AB=15,AC=20,tanA=1

2

,点P在AB边上,⊙P的半径为定

长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.

(1)求⊙P的半径;

(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.

【答案】(1)半径为35;(2)相似,理由见解析.

【解析】

【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;

(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出

MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的

长,然后求出AM

MP

PN

NC

的值,得出

AM

MP

=

PN

NC

,利用两边对应成比例且夹角相等的两

三角形相似即可证明.

【详解】(1)如图,作BD⊥AC,垂足为点D,

∵⊙P 与边AC 相切, ∴BD 就是⊙P 的半径, 在Rt △ABD 中,tanA= 1BD 2AD

=, 设BD=x ,则AD=2x , ∴x 2+(2x)2=152, 解得:x=35, ∴半径为35; (2)相似,理由见解析,

如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D , ∴PH 垂直平分MN , ∴PM=PN , 在Rt △AHP 中,tanA=12PH AH

=, 设PH=y ,AH=2y , y 2+(2y )2=(65)2 解得:y=6(取正数), ∴PH=6,AH=12, 在Rt △MPH 中, MH=

()

2

2356-=3,

∴MN=2MH=6, ∴AM=AH-MH=12-3=9, NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35

PN NC =

, ∴

AM MP =PN

NC , 又∵PM=PN ,

∴∠PMN=∠PNM , ∴∠AMP=∠PNC , ∴△AMP ∽△PNC.

【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较

初三数学圆的专项培优练习题含答案

初三数学圆的专项培优练习题(含答案) ?EB 1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成 立的是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 图一图二图三 2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆 的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为() A.4 B.C.6 D. 3.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P(1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1

7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。 9.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA 的平行线与AF相交于点F,CD=,BE=2.

4、圆的培优专题:圆与勾股定理

圆的培优专题4——圆与勾股定理 1、如图,⊙O 是△BCN 的外接圆,弦AC ⊥BC ,点N 是AB 的中点,∠BNC =60?, 求 BN BC 的值. 解:如图,连接AB ,则AB 为直径,∴∠BNA =90? 连接AN ,则BN =AN ,则△ABN 是等腰直角三角形 ∴BN AB ;又∠BAC =∠BNC =60?, ∴BC AB , ∴BN BC (方法2,过点B 作BD ⊥CN ,即可求解) 2、如图,⊙O 的弦AC ⊥BD ,且AC =BD ,若AD =,求⊙O 半径. 解:如图,作直径AE ,连接DE ,则∠ADE =90? 又AC ⊥BD ,则∠ADB +∠DAC =∠ADB +∠EDB =90? ∴∠DAC =∠EDB ,则CD BE =,∴DE BC =, ∵ AC =BD ,∴AC CD =,则AD BC DE == ∴AD =DE ,即△ADE 是等腰直角三角形 ∴AE AD =4,即⊙O 的半径为2 3、如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为CB 延长线上一点,且∠CAD =45?, CE ⊥AB 于点E ,DF ⊥AB 于点F. (1)求证:CE =EF ;(2)若DF =2,EF =4,求AC. (1)证:∵ AB 为⊙O 的直径,∠CAD =45?, 则△ACD 是等腰直角三角形,即AC =DC 又CE ⊥AB ,则∠CAE =∠ECB 如图,过点C 作CG 垂直DF 的延长线于点G 又CE ⊥AB ,DF ⊥AB ,则四边形CEFG 是矩形,∠AEC =∠DGC =90? ∴EF =CG ,CE ∥DG ,则∠ECB =∠CDG =∠CAE ∴△ACE ≌△DCG (AAS ),则CE =CG =EF (2)略解:AC =CD =. 4、如图,AB 为⊙O 的直径,CD ⊥AB 于点D ,CD 交AE 于点F ,AC CE =. (1)求证:AF =CF ; (2)若⊙O 的半径为5,AE =8,求EF 的长

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

(专题精选)初中数学圆的易错题汇编及答案

(专题精选)初中数学圆的易错题汇编及答案 一、选择题 1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定... 是直角的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】 解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角. 选项B 中,AO 为BC 边上的高,则AOB ∠是直角. 选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角. 故应选C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .3 B .36ππ C .312π D .48336ππ 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.

【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =×43×12=243,S 扇形= 603616,633933602OEB S ππ?==??=V ∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( ) A .6 B .8 C .10 D .12 【答案】C 【解析】 【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可. 【详解】 设P (x ,y ), ∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2, ∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2, ∵OP 2=x 2+y 2, ∴PA 2+PB 2=2OP 2+2, 当点P 处于OC 与圆的交点上时,OP 取得最值,

圆的培优专题(含解答)

一运用辅助圆求角度 1、 如图,△ ABC 内有一点 D , DA = DB = DC ,若 DAB = 20 , DAC = 30 , 1 贝U 乙 BDC = _______ . ( ? BDC = "2- ■ BAC = 100 ) 2、 如图,AE = BE = DE = BC = DC ,若 C = 100 ,则 BAD = __________________ . ( 50 ) 3、 如图,四边形 ABCD 中,AB = AC = AD ,/ CBD = 20,/ BDC = 30,贝卩 乙 BAD = _________ .(厶 BAD = Z BAC + Z CAD = 40 °+ 60 ° = 100*) 解题策略:通过添加辅助圆,把问题转化成同弧所对的圆周角与圆心角问题,思维更明朗! 4、 如图,口 ABCD 中,点E 为AB 、BC 的垂直平分线的交点,若 ? D = 60 , 贝U AEC = _________ . (/ AEC = 2 ^B = 2 ^D = 120 ) 5、 如图,O 是四边形 ABCD 内一点,OA = OB = OC , ABC = ADC = 70 , 贝U DAO + DCO = ______________ .(所求=360 - Z ADC —乙 AOC = 150 ) A 第1题 第2题 第3题 第5题 第6题 第4题 :第6题有两个直角三角形共斜边,由直角所对的弦为直径,易得到 (ABC = ADC = 25 )

6、如图,四边形ABCD 中,ACB = ■ ADB = 90 , - ADC = 25,则ABC = ___________________ ACBD共圆.

【数学】培优圆的综合辅导专题训练含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°. (1)OC的长为; (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标. 【答案】(1)4;(2)3 5 ;(3)点E的坐标为(1,2)、( 5 3 , 10 3 )、(4,2). 【解析】 分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可. (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则 MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°, ②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题. 详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH. ∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4. ∵∠BHA=90°,∠BAO=45°, ∴tan∠BAH=BH HA =1,∴BH=HA=4,∴OC=BH=4. 故答案为4. (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).

初中数学圆专题训练

初中数学圆专题训练 This model paper was revised by LINDA on December 15, 2012.

初中数学圆专题训练(一) (一)选择题 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()(A)4个(B)3个(C)2个 (D)1个 2.下列判断中正确的是() (A)平分弦的直线垂直于弦(B)平分弦的直线也必平分弦所对的两条弧 (C)弦的垂直平分线必平分弦所对的两条弧(D)平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则()(A)=(B)> (C)的度数=的度数 (D)的长度=的长度 4.如图,已知⊙O的弦AB、CD相交于点E,的度数为60°,的度数为100°,则∠AEC等于()

(A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是 ( ) (A )67.5° (B )135° (C )112.5° (D )110° 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那 么圆P 与OB 的位置关系是 ( ) (A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) (A )21(a +b +c )r (B )2(a +b +c ) (C )3 1(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =2 3,则tan ∠BCG 的值为……( ) (A )33 (B )2 3 (C )1 (D )3

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

初三数学圆的专项培优练习题(含答案)

初三数学圆的专项培优练习题(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初三数学圆的专项培优练习题(含答案) 1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是EB的中点,则下列结论不成立的 是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 图一图二图三2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为() A.4 B.33C.6 D.23 3.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P(1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1

A.19° B.38° C.52° D.76° 图四图五 6.如图五,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE =1:3,则AB= .7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。

圆的培优专题含解答

第4题 第5题 第6题 第1题 第2题 第3题 圆的培优专题1——与圆有关的角度计算 一 运用辅助圆求角度 1、如图,△ABC 内有一点D ,DA =DB =DC ,若∠DAB =20?,∠DAC =30?, 则∠BDC = . (∠BDC = 1 2 ∠BAC =100?) 2、如图,AE =BE =DE =BC =DC ,若∠C =100?,则∠BAD = . (50?) 3、如图,四边形ABCD 中,AB =AC =AD ,∠CBD =20?,∠BDC =30?,则 ∠BAD = . (∠BAD =∠BAC +∠CAD =40?+60?=100?) 解题策略:通过添加辅助圆,把问题转化成同弧所对的圆周角与圆心角问题,思维更明朗! 4、如图,□ABCD 中,点E 为AB 、BC 的垂直平分线的交点,若∠D =60?, 则∠AEC = . (∠AEC =2∠B =2∠D =120?) 5、如图,O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70?, 则∠DAO +∠DCO = . (所求=360?-∠ADC -∠AOC =150?) 6、如图,四边形ABCD 中,∠ACB =∠ADB =90?,∠ADC =25?,则∠ABC = . (∠ABC =∠ADC =25?) 解题策略:第6题有两个直角三角形共斜边,由直角所对的弦为直径,易得到ACBD 共圆.

第10题 第11题 第12题 第7题 第8题 第9题 二 运用圆周角和圆心角相互转化求角度 7、如图,AB 为⊙O 的直径,C 为AB 的中点,D 为半圆AB 上一点,则∠ADC = . 8、如图,AB 为⊙O 的直径,CD 过OA 的中点E 并垂直于OA ,则∠ABC = . 9、如图,AB 为⊙O 的直径,3BC AC =,则∠ABC = . 答案:7、45?; 8、30?; 9、22.5?; 10、40?; 11、150?; 12、110? 解题策略:以弧去寻找同弧所对的圆周角与圆心角是解决这类问题的捷径! 10、如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC =50?,则∠ADC = . 11、如图,⊙O 的半径为1,弦AB 2,弦AC 3∠BOC = . 12、如图,PAB 、PCD 是⊙O 的两条割线,PAB 过圆心O ,若AC CD =,∠P =30?, 则∠BDC = . (设∠ADC =x ,即可展开解决问题) 解题策略:在连接半径时,时常会伴随出现特殊三角形——等腰三角形或直角三角形或等腰 直角三角形或等边三角形,是解题的另一个关键点! 圆的四接四边形的外角等于内对角,是一个非常好用的一个重要性质!

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

圆心角圆心角专题培优

圆心角和圆周角 一、经典考题赏析 例1.(成都)如图,ABC 内接于O ,AB=BC ,0120ABC ∠=,AD 为O 的直径,AD=6,那么 BD= 变式题组: 1.(河北)如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形的顶点,O 的半径为1,P 是O 上的点,且位于右上方的小正方形内,则APB ∠= 。 2.(芜湖)如图,已知点E 是O 上的点,B 、C 分别是劣弧AD 上的三等分点,0 46BOC ∠=,则AED ∠的度数为 。 3.如图,量角器外沿上有A 、B 两点,它们的读数分别是0 70、0 40,则1∠的度数为 。 例2.(盐城)如图,A 、B 、C 、D 为O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动。设运动时间为()t s ,()0 APB y ∠=,则下列图象中表示y 与t 之间函数关系最恰 当的是( ) 变式题组: 4.如图所示,在O 内有折线OABC ,其中OA=8,AB=12,0 60A B ∠=∠=,则BC 的长为( ) A.19 B.16 C.18 D.20 5.(威海)如图,AB 是O 的直径,点C 、D 在O 上,OD AC ,下列结论错误的是( ) A.BOD BAC ∠=∠ B.BOD COD ∠=∠ C.BAD CAD ∠=∠ D.C D ∠=∠

6.(青岛)如图,AB 为O 的直径,CD 为O 的弦,0 42ACD ∠=,则BAD ∠= 。 例3.(柳州)如图,AB 为O 的直径,C 为弧BD 的中点,CE AB ⊥,垂足为E ,BD 交CE 于点F 。 (1)求证:CF=BF (2)若AD=2,O 的半径是3,求BC 的长。 变式题组: 7.(广州)如图,在O 中0 60ACB BDC ∠==,23AC =cm. (1)求∠BAC 的度数;(2)求O 的周长 8.(潍坊)如图,O 是ABC 的外接圆,BAC ∠与ABC ∠的平分线相交于点I ,延长AI 交O 于点D ,连接BD 、CD 。 (1)求证:BD DC DI == (2)若O 的半径为10cm ,0120BAC ∠=,求BDC 的面积。 例4.如图,在ABC 中,036B ∠=,0 128ACB ∠=,CAB ∠平分线交BC 于M ,ABC 的外接圆的切线AN 交BC 的延长线于N ,则ANM 的最小角等于 。 变式题组:9.如图,已知点A 、B 、C 、D 顺次在O 上,AB=BD ,BM AC ⊥于M , 求证:AM DC CM =+

初中数学圆的难题汇编附答案解析

初中数学圆的难题汇编附答案解析 一、选择题 1.如图,在Rt ABC △中,90ACB ∠=?,30A ∠=?,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .302, B .602, C .3602 , D .603, 【答案】C 【解析】 试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2, ∴∠B=60°,AC=BC×cot ∠33AB=2BC=4, ∵△EDC 是△ABC 旋转而成, ∴BC=CD=BD= 12AB=2, ∵∠B=60°, ∴△BCD 是等边三角形, ∴∠BCD=60°, ∴∠DCF=30°,∠DFC=90°,即DE ⊥AC , ∴DE ∥BC , ∵BD=12 AB=2, ∴DF 是△ABC 的中位线, ∴DF=12BC=12×2=1,CF=12AC=1233 ∴S 阴影= 12DF×CF=1233

故选C. 考点:1.旋转的性质2.含30度角的直角三角形. 2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( ) A.1 B.3 2 C.3D. 5 2 【答案】A 【解析】 【分析】 根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得 OE=1 2 AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解. 【详解】 解:连接CE, ∵E点在以CD为直径的圆上, ∴∠CED=90°, ∴∠AEC=180°-∠CED=90°, ∴E点也在以AC为直径的圆上, 设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8, ∴OC=1 2 AC=4, ∵BC=3,∠ACB=90°, ∴22 OC BC ,∵OE=OC=4, ∴BE=OB-OE=5-4=1.

2017中考数学专题复习圆(最新整理)

【基础知识回顾】 第六章圆 第二十三讲圆的有关概念及性质 一、圆的定义及性质: 1、圆的定义: ⑴形成性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转形成的图形叫做圆,固定的端点叫线段OA 叫做 ⑵描述性定义:圆是到定点的距离等于的点的集合 2、弦与弧: 弦:连接圆上任意两点的叫做弦 弧:圆上任意两点间的叫做弧,弧可分为、、三类 3、圆的对称性: ⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的 对称轴 ⑵中心对称性:圆是中心对称图形,对称中心是 【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的 2、直径是圆中的弦,弦不一定是直径; 3、圆不仅是中心对称图形,而且具有旋 转性,即绕圆心旋转任意角度都被与原来的图形重合】 二、垂径定理及推论: 1、垂径定理:垂直于弦的直径,并且平分弦所对的。 2、推论:平分弦()的直径,并且平分弦所对的。 【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分 弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其余三个,注 意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线(即弦心距)。3、垂径定理常用作计算,在半径r、弦a、弦心d 和弓高h 中已知其中两个量可求另外两个量。】 三、圆心角、弧、弦之间的关系: 1、圆心角定义:顶点在的角叫做圆心角 2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对 应的其余各组量也分别 【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】 四、圆周角定理及其推论: 1、圆周角定义:顶点在并且两边都和圆的角叫圆周角 2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的 圆心角的 推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧 推论2、半圆(或直弦)所对的圆周角是,900 的圆周角所对的弦是 【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角 有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的 辅助线】 五、圆内接四边形: 定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

《圆》新定义专题培优训练

《圆》新定义专题培优训练 1.如图,⊙O 的半径为(r >0),若点P ′在射线OP 上(P ′可以和射线端点重合),满足OP ′+OP =2r ,则称点P ′ 是点P 关于⊙O 的“反演点”. (1)当⊙O 的半径为8时, ①若OP 1=17,OP 2=12,OP 3=4, 则P 1,P 2,P 3中存在关于⊙O 的反演点”的是 . ②点O 关于⊙O 的“反演点”的集合是 , 若P 关于⊙O 的“反演点在⊙O 内,则OP 取值范围是 ; (2)如图2,△ABC 中,∠ACB =90°,AC =BC =12,⊙O 的圆心在射线CB 上运动,半径为1.若线段AB 上存在点 P ,使得点P 关于⊙O 的“反演点”P ′在⊙O 的内部,求OC 的取值范围. 2.定义: 对于一个三角形,设其三个内角的度数分别为?x 、?y 和?z ,若x 、y 、z 满足2 22z y x =+, 我们定义这个三角形为和谐三角形. (1)△ABC 中,若 ∠B=50°,∠A=70° ,则△ABC_______(填“是”或“不是” )和谐三角形; (2)如图,锐角△ABC 是⊙O 的内接三角形,∠C=60° ,AC=4 , ⊙O 的直径是24 , 求证:△ABC 是和谐三角形; (3)当△ABC 是和谐三角形,且∠A=30°,则∠C 为 _______°

3.在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0. (1)如图1,⊙O的半径为2, ①点A(0,1),B(4,3),则d(A,⊙O)= ,d(B,⊙O)= . ②已知直线l:y=与⊙O的密距d(l,⊙O)=,求b的值. (2)如图2,C为x轴正半轴上一点,⊙C的半径为1,直线y=﹣与x轴交于点D,与y轴交于点E,线段DE与⊙C的密距d(DE,⊙C)<.请直接写出圆心C的横坐标m的取值范围. 4.在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)以O为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”; (2)点M,N是一对“互换点”,点M的坐标为(m,n),且(m>n),⊙P经过点M,N. ①点M的坐标为(4,0),求圆心P所在直线的表达式; ②⊙P的半径为5,求m-n的取值范围.

初中数学圆专题训练一)

初中数学圆专题训练(一) (一)选择题 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 ( ) (A )4个 (B )3个 (C )2个 (D )1个 2.下列判断中正确的是 ( ) (A )平分弦的直线垂直于弦 (B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧 (D )平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则 ( ) (A )= (B ) > (C )的度数=的度数 (D ) 的长度= 的长度 4.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°, 的度数为100°,则∠AEC 等于 ( ) (A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是( ) (A )67.5° (B )135° (C )112.5° (D )110° 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那么圆P 与OB 的位置关系是 ( ) (A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) (A ) 21(a +b +c )r (B )2(a +b +c ) (C )3 1 (a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM = 2 3 ,则tan ∠BCG 的值为……( ) (A ) 33 (B )2 3 (C )1 (D ) 3 9.在⊙O 中,弦AB 和CD 相交于点P ,若PA =3,PB =4,CD =9,则以PC 、PD 的长为根的一元二次方程为 ( ) (A )x 2 +9 x +12=0 (B )x 2 -9 x +12=0 (C )x 2 +7 x +9=0 (D )x 2 -7 x +9=0 10.已知半径分别为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值范围是 ( ) (A )0<d <3 r (B )r <d <3 r (C )r ≤d <3 r (D )r ≤d ≤3 r 11.两圆半径分别为2和3,两圆相切则圆心距一定为 ( ) (A )1cm (B )5cm (C )1cm 或6cm (D )1cm 或5cm 12.弦切角的度数是30°,则所夹弧所对的圆心角的度数是 ( ) (A )30° (B )15° (C )60° (D )45° 13.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦 ( ) (A )相等 (B )不相等 (C )大小不能确定 (D )由圆的大小确定 14. ∠PAD= ( ) A.10° B.15° C.30° D.25°

九年级数学圆的综合的专项培优练习题(含答案)含详细答案

九年级数学圆的综合的专项培优练习题(含答案)含详细答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED. (1)求证:DE是⊙O的切线; (2)若tan A=1 2 ,探究线段AB和BE之间的数量关系,并证明; (3)在(2)的条件下,若OF=1,求圆O的半径. 【答案】(1)答案见解析;(2)AB=3BE;(3)3. 【解析】 试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;

天津市2020版中考数学专题练习:圆50题_含答案

、选择题: 1. 如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 3. 已知圆内接正三角形的边心距为 1,则这个三角形的面积为( ) A .2 B .3 C .4 D .6 4. 如图,点 A , B , C ,在⊙ O 上,∠ ABO=32°,∠ ACO=38°,则∠ BOC 等于 ( 6.如图, ⊙O 是△ ABC 的外接圆 ,弦AC 的长为 3,sinB=0.75, 则⊙ O 的半径为( ) 圆 50 题 垂直,在测直径时,把 A . O 点靠在圆周上,读得刻度 OE=8个单位, 12 个单位 B . 10 个单位 C CD 是⊙ O 的两条弦,连结 AD 、BC .若∠ BCD=70°, OF=6个单位,则圆的直径为 ( 1 个单位 D . 15 个单位 则∠ BAD 的度数为( 2. 如图, AB 、 A . 40° B .50° C . 60° D . 70° B .70° C .120° D . 140° 5. 如图 , 点 A,B,C 在⊙ O 上, ∠A=36° , ∠ C=28° , 则∠ B=( A.100 B.72 C.64 D.36 OA 、 OB 在 O 点钉在一起,并使它们保持

AD 切⊙ O 于点 A ,点 C 是弧 BE 的中点,则下列结论不成立的是( B . EC=B C C .∠ DAE=∠ABE D .AC ⊥OE 10. 如图 , △ABC 中,AB=5,BC=3,AC=4, 以点 C 为圆心的圆与 AB 相切 ,则⊙ C 半径为( 11. 数学课上,老师让学生尺规作图画 Rt △ABC ,使其斜边 AB=c ,一条直角边 BC=a ,小明的作法如图所 示, 你认为这种作法中判断∠ ACB 是直角的依据是( ) A.4 B.3 C.2 D. OB=6cm,高 OC=8cm 则. 这个圆锥的侧面 积是 7. 如图,圆锥的底面半径 22 A.30cm 2 B.30 π cm 2 C.60 2 π cm D.120cm 9. 如图,AB 是⊙ O 的直径 ,C 、D 是⊙ O 上两点 , 分别连接 AC 、BC 、CD 、OD .∠ DOB=140° A.20° B.30 C.40 D.70 ,则∠ ACD (= B.2.5 C.2.4 D.2.3

相关主题
文本预览
相关文档 最新文档