5 计算流体力学基础一
- 格式:ppt
- 大小:3.01 MB
- 文档页数:72
计算流体力学基础及其应用计算流体力学(CFD)是计算机运用精确的数学模型和算法来研究流体力学物理过程的一种技术。
它利用计算机模拟方法处理流体流动和相互作用的过程,以更准确、更快捷的方式研究热流体流动、传热、传质和湍流等物理过程的问题。
CFD的基础是数学方面的流体力学,应用计算机模拟的基本方法是数值方法,用于分析各种流体流动问题以及相关热传导、传质等热力学现象。
此外,计算流体力学还集成有计算机动力学,流体动力学,热力学,结构力学,能量方法,计算工程和多物理场的数值模拟技术,可以更加精准地研究流体动力学,热传递,流体机械,复杂流动等问题。
CFD在工程实践中具有重要作用,其应用领域非常广泛,包括空气、液体、气体和粘性流动等各种固体表面及流体体系的运动和相互作用。
例如,可以用来分析大气环境中污染物的扩散,水力学中河流水流的流动性能和可能形成的机械,风能资源的开发利用,以及气体控制元件的设计等。
CFD技术的研究和应用对改善工业和生活的质量起着重要作用,具有重大的经济效益。
它可以帮助工程师进行快速和准确的表征及设计,从而大大缩短研发和评估的周期,并节省大量的研发费用,从而提高产品的质量和可靠性。
例如,可以用CFD模拟来分析火力发电厂泄漏物介质的运动和湍流,从而确定阀门及其参数,进行管道设计,抑制烟气污染,提高系统效率,实现节能减排等。
此外,CFD还可以用于水工工程,海洋工程,气候变化,大气和海洋环境监测,飞机设计,汽车行业和其他工程方面的问题,有助于数字信息的可视化,预测及避免工程问题,提高效率。
因此,CFD既可以用于重要的实际问题的研究,也可以用于开发新产品,从而为工程实践提供可靠的计算技术,有效地改善系统质量和可靠性,提高经济效益。
综上所述,CFD的研究和应用具有重要的实际意义,可以显着提高工程的质量和可靠性,并带来可观的经济收益。
未来,CFD技术将逐步发展壮大,有效地改善人们的生活和工作环境。
第1章流体力学与计算流体力学基础流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律,在生活、环保、科学技术及工程中具有重要的应用价值。
计算流体力学或计算流体动力学(Computational Fluid Dynamics,CFD),是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。
本章先介绍流体力学中支配流体流动的基本物理定律,然后在此基础上介绍用数值方法求解流体力学问题的基本思想,进而阐述计算流体力学的相关基础知识,最后简要介绍常用的计算流体力学商业软件。
学习目标:•学习流体力学的基础知识,包括基本概念和重要理论;•学习计算流体力学的相关理论和方法;•了解CFD软件的构成;•了解常用的商业CFD软件。
1.1 流体力学基础流体力学是连续介质力学的一个分支,是研究流体(包含气体及液体)现象以及相关力学行为的科学。
1.1.1 流体力学概述1738年,伯努利在他的专著中首次采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。
在人们的生活和生产活动中随时随地都可遇到流体,因此流体力学是与人类日常生活和生产事业密切相关的。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。
20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。
航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。
这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采、地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。
计算流体力学及其并行算法一、引言计算流体力学(Computational Fluid Dynamics, CFD)是研究流体运动和相互作用的一门学科,广泛应用于工程、天文、地球科学等领域。
随着计算机技术的发展,CFD的数值模拟方法也得到了极大的发展,其中并行算法在加速CFD计算过程中起到了重要的作用。
二、计算流体力学基础1. 流体力学基本方程计算流体力学的基础是流体力学的基本方程,包括质量守恒方程、动量守恒方程和能量守恒方程。
这些方程描述了流体的运动、力学性质和能量转换。
2. 数值离散化方法为了将流体力学方程转化为计算模型,需要对连续域进行离散化。
常用的数值离散化方法包括有限差分法、有限体积法和有限元法等。
这些方法将连续的流体域离散为网格,通过在网格上的节点上进行数值计算,得到流体的各个物理量。
三、并行算法在计算流体力学中的应用1. 并行计算的需求计算流体力学涉及大规模的计算,需要处理大量的数据和复杂的计算操作。
传统的串行计算方式往往难以满足计算需求,因此并行算法成为加速CFD计算的重要手段。
2. 并行算法分类并行算法根据不同的并行计算方式,可以分为共享内存并行和分布式内存并行两大类。
共享内存并行算法使用多个处理器共享同一块内存,通过线程间的数据共享和同步来实现并行计算;分布式内存并行算法则将计算任务分配到不同的处理器上,通过消息传递来实现并行计算。
3. 并行算法的优势并行算法在加速CFD计算中具有显著的优势。
首先,通过并行计算,可以将计算任务分配到多个处理器上,实现计算资源的充分利用。
其次,并行算法可以处理大规模的计算问题,提高计算效率和精度。
此外,并行算法还可以实现实时计算和交互式计算,提供更好的用户体验。
四、并行算法的挑战和发展方向1. 数据通信和负载均衡在并行计算过程中,处理器之间需要进行数据通信,这涉及到数据传输和同步操作。
数据通信的效率和负载均衡是并行算法面临的挑战之一,需要合理设计算法和优化通信过程。
第二章--计算流体力学的基本知识第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
*流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler 或Navier-Stokes方程)以发现各种流动现象规律的学科。
一、计算流体力学简介1.1 计算流体力学的定义1.2 计算流体力学的研究对象1.3 计算流体力学的发展历史二、有限体积法基础2.1 有限体积法的理论基础2.1.1 有限体积法的基本原理2.1.2 有限体积法的数学模型2.2 有限体积法的数值求解2.2.1 离散化2.2.2 迭代求解三、有限体积法在计算流体力学中的应用3.1 有限体积法在流体流动模拟中的应用 3.1.1 管道流动模拟3.1.2 自由表面流动模拟3.2 有限体积法在传热问题中的应用3.2.1 对流传热3.2.2 辐射传热四、有限体积法在工程领域中的应用4.1 有限体积法在航空航天领域中的应用 4.2 有限体积法在汽车工程中的应用4.3 有限体积法在建筑工程中的应用五、有限体积法的发展趋势5.1 高性能计算技术对有限体积法的影响5.2 多物理场耦合对有限体积法的挑战5.3 人工智能在有限体积法中的应用六、结论一、计算流体力学简介1.1 计算流体力学的定义计算流体力学(Computational Fluid Dynamics, CFD)是利用计算机模拟流体力学问题的一门学科。
它通过对流动流体的数值解,来研究流体在各种情况下的运动规律和性质。
1.2 计算流体力学的研究对象计算流体力学的研究对象包括流体的流动、传热、传质、振动等现象,以及与流体相关的各种工程问题,如飞机、汽车、建筑等的气动特性分析与设计。
1.3 计算流体力学的发展历史计算流体力学的发展可以追溯到20世纪50年代,当时计算机技术的进步为流体力学问题的数值模拟提供了可能。
随着计算机硬件和软件的不断发展,CFD的应用领域不断扩大,成为现代工程领域不可或缺的工具之一。
二、有限体积法基础2.1 有限体积法的理论基础2.1.1 有限体积法的基本原理有限体积法是求解流体动力学问题的数值方法之一,它基于质量、动量和能量守恒的控制方程,将求解域离散化为有限数量的体积单元,通过对控制方程进行积分,将方程转化为代数方程组。
流体计算理论基础讲解(总32页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--流体计算理论基础1 三大基本方程连续性方程连续性方程也称质量守恒方程,任何流动问题都必须满足质量守恒定律,该定律可表示为:单位时间内流体微元中质量的增加等于同一时间间隔内流入该微元体的净质量,其形式如下:()()()0u v w t x y zρρρρ∂∂∂∂+++=∂∂∂∂ 可以写成:()0div u tρρ∂+=∂ 其中ρ密度,t 为时间,u 为速度矢量,u ,v 和w 为速度矢量在x ,y 和z 方向上的分量。
若流体不可压缩,密度为常数,于是:0u v w x y z∂∂∂++=∂∂∂ 若流体处于稳态,则密度不随时间变化,可得出:()()()0u v w x y zρρρ∂∂∂++=∂∂∂ 动量守恒定律该定律可以表述为:微元体中流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和,该定律实际是牛顿第二定律,按照这一定律,可导出x ,y 和z 三个方向上的动量守恒方程:()()()()()()yx xx zx x xy yy zy y yz xz zz z u p div uu F t x x y z u p div uv F t y x y z u p div uw F tz x y z τττρρτττρρτττρρ∂⎧∂∂∂∂+=-++++⎪∂∂∂∂∂⎪⎪∂∂∂∂∂⎪+=-++++⎨∂∂∂∂∂⎪⎪∂∂∂∂∂+=-++++⎪∂∂∂∂∂⎪⎩式中,p 为微元体上的压力,xx τ,xy τ和xz τ等是因分子粘性作用而产生的作用在微元体表面上的粘性应力τ的分量。
x F ,y F 和z F 是微元体上的体力,若体力只有重力,且z 轴竖直向上,则:0,0x y F F ==,z F g ρ=-。
对于牛顿流体,粘性应力τ与流体的变形率成比率,有:x yy x 2();==()2();==()2();==()xx xy y xz z zz yz zy u u v div u x y x v u w div u x z x w v w div u x z y τμλττμτμλττμτμλττμ∂∂∂⎧=++⎪∂∂∂⎪∂∂∂⎪=++⎨∂∂∂⎪∂∂∂⎪=++⎪∂∂∂⎩其中,μ为动力粘度,λ为第二粘度,一般可取23λ=-,将上式代入前式中为:()()()()()()()()()u v w u p div uu div gradu S t x v p div uv div gradv S ty w p div uw div gradw S tz ρρμρρμρρμ⎧∂∂+=-+⎪∂∂⎪∂∂⎪+=-+⎨∂∂⎪⎪∂∂+=-+⎪∂∂⎩ 其中:()()/()/()/grad x y z =∂∂+∂∂+∂∂μ为动力粘度(dynamic viscosity),λ为第二粘度(second viscosity),一般可取:23λ=-(参考文献:,Boundary Layer Theory,8th ed,McGraw Hill, New York,1979)。
For personal use only in study and research; not for commercial use一、计算流体力学的基本介绍一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。
事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。
但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。
实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。
因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。
二、计算流体力学的控制方程计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。
守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。
通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。
式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程( N-S方程)。
N-S方程可以表示成许多不同形式,上面的N-S方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N-S方程求解的变量p、pu、pv、pw、pE是守恒型的,是质量、动量和能量的守恒变量。