人教版九年级数学下二次函数最全的中考二次函数知识点总结
- 格式:doc
- 大小:677.00 KB
- 文档页数:11
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()h k , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a < 向下 ()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b ac AB x x a-=-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少0∆> 抛物线与x 轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x 轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 0∆< 抛物线与x 轴无交点二次三项式的值恒为正 一元二次方程无实数根.y=2(x-4)2-3y=2(x-4)2y=2x 2y=x 22y=2x 2y=x 2y=-2x 2y= -x 2y= -x 22y=2x 2-4y=2x 2+2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
九年级下册人教版数学笔记一、二次函数1. 二次函数的基本形式:$y = ax^2 + bx + c$2. 二次函数的对称轴:$x = -\frac{b}{2a}$3. 二次函数的顶点坐标:$(-\frac{b}{2a}, c - \frac{b^2}{4a})$4. 二次函数的开口方向:当 $a > 0$,开口向上当 $a < 0$,开口向下5. 二次函数的增减性:当 $a > 0$,开口向上,对称轴左侧函数递减,右侧函数递增。
当 $a < 0$,开口向下,对称轴左侧函数递增,右侧函数递减。
二、相似三角形1. 相似三角形的性质:对应角相等,对应边成比例。
2. 相似三角形的判定:两边对应成比例,且夹角相等;三边对应成比例。
3. 相似三角形的应用:测量、绘图、计算等。
三、解直角三角形1. 锐角三角函数定义:锐角$\alpha$的正弦、余弦、正切分别是$\sin\alpha$, $\cos\alpha$, $\tan\alpha$。
2. 特殊角的三角函数值:例如$\sin 30^\circ = \frac{1}{2}$, $\cos 45^\circ = \frac{\sqrt{2}}{2}$等。
3. 解直角三角形的方法:利用三角函数的基本关系式和已知条件求解。
四、圆1. 圆的基本性质:圆心到圆上任一点的距离相等,即半径相等。
2. 圆周长和圆面积的计算公式:圆周长 $C = 2\pi r$圆面积 $S = \pi r^2$3. 圆与直线的位置关系:相切、相交、相离。
4. 圆与圆的位置关系:外离、相交、内含、相切。
初三数学二次函数知识点总结二次项系数a决定二次函数图像的开口方向和大小.当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口.|a|越大,则二次函数图像的开口越小.1、决定对称轴位置的因素一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b 异号时(即ab<0 ),对称轴在y轴右.事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到.2、决定二次函数图像与y轴交点的因素常数项c决定二次函数图像与y轴交点.二次函数图像与y轴交于(0,c)一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
Array 2. 2=+的性质:上加下减。
y ax c3. ()2=-的性质:左加右减。
y a x h Array 4. ()2=-+的性质:y a x h k三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的在联系:二次函数图像参考:2-32y=3(x+4)22y=3x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1、考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是 2、综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是( )y 0 0 -1 x D1、考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
中考复习二次函数知识点总结二次函数是中考数学中的重要知识点之一、下面我将从函数的定义、图像特征、解析式以及一些常见题型进行总结,希望对中考复习有所帮助。
一、函数的定义:函数是数学中最基本的概念之一,它是描述两个集合之间对应关系的规则。
在二次函数中,我们通常用y来表示函数的值,用x表示自变量。
二、图像特征:1.开口方向:二次函数的图像在x轴上开口的方向可以通过二次项的系数(即a的正负性)来判断。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2.对称轴:二次函数的图像总是关于一个垂直于x轴的直线对称。
这条直线称为二次函数的对称轴,它的方程为x=-b/(2a)。
3.顶点坐标:对称轴与二次函数图像的交点称为顶点,它的坐标为:(-b/(2a),f(-b/(2a)))4.单调性:当a>0时,二次函数图像在对称轴左侧递减,在对称轴右侧递增;当a<0时,二次函数图像在对称轴左侧递增,在对称轴右侧递减。
注意:二次函数的图像开口向上时,在对称轴上有一个最小值,反之开口向下时,在对称轴上有一个最大值。
三、解析式:一般情况下,二次函数的解析式可以写成:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
特殊情况下,二次函数的解析式还有以下两种形式:1.完全平方式:y=a(x-p)^2+q,其中p、q为常数。
此时,二次函数的对称轴的方程为x=p,顶点的坐标为(p,q)。
2.二次项因式可能性:y=a(x-h)(x-k),其中h、k为常数。
此时,二次函数的对称轴的方程为x=(h+k)/2,顶点的坐标为((h+k)/2,a(h+k)/4)。
四、常见题型:1.求顶点坐标:根据二次函数的解析式,可以直接读出顶点的坐标。
2.求对称轴方程:根据二次函数的解析式,可以直接读出对称轴的方程。
3.求图像开口方向:判断二次项的系数a的正负性即可。
4.求单调性:根据图像特征可以判断。
5. 求零点:令y=0,解方程ax^2+bx+c=0即可。
初三的二次函数知识点总结一、二次函数的定义二次函数是一个形如f(x) = ax^2 + bx + c的函数,其中a、b、c是常数且a≠0。
二次函数的图像是一个抛物线,开口方向由a的符号决定,a>0时开口向上,a<0时开口向下。
二、二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,顶点的横坐标可以用公式x=-b/2a来求得,纵坐标可以代入x的值计算得到。
三、二次函数的平移对于一般的二次函数f(x)=ax^2+bx+c,如果f(x)变为f(x)+m或f(x)-m,就是把抛物线上下平移了m个单位。
如果f(x)变为f(x)+m或f(x)-m,就是把抛物线左右平移了m个单位。
四、二次函数的对称轴二次函数的对称轴是与顶点横坐标相等的直线,即x=-b/2a。
五、二次函数的判别式二次函数的判别式Δ=b^2-4ac,当Δ>0时,函数在x轴上有两个不同的实根;当Δ=0时,函数在x轴上有一个重根;当Δ<0时,函数在x轴上没有实根。
六、二次函数的图像二次函数的图像是一条抛物线,它的开口方向和顶点的位置可以通过二次函数的系数来描述。
七、二次函数的性质1. 当a>0时,抛物线开口向上,函数的最小值为y轴的对称轴。
2. 当a<0时,抛物线开口向下,函数的最大值为y轴的对称轴。
3. 当a>0时,函数在对称轴的一侧是单调递增的,另一侧是单调递减的。
4. 当a<0时,函数在对称轴的一侧是单调递减的,另一侧是单调递增的。
八、二次函数的应用二次函数在生活中有很多应用,比如抛物线的运动轨迹、抛物线的优化问题、抛物线的张力问题、抛物线的最大值与最小值等等。
以上就是初三二次函数的知识点总结。
希望同学们能够掌握这些知识,为以后的学习打下坚实的基础。
九下二次函数知识点
二次函数是九年级数学的重要知识点,以下是详细的知识点总结:
- 定义:形如$y=ax^2+bx+c$($a\neq0$)的函数叫做二次函数。
- 解析式的形式:
- 一般式:$y=ax^2+bx+c$($a\neq0$)。
- 顶点式:$y=a(x-h)^2+k$。
- 图像性质:顶点的横坐标即图像的对称轴,纵坐标即函数的极值。
- $a$、$b$、$c$的作用:
- $a$决定图像的开口方向,$a>0$时,开口向上,$a<0$时,开口向下。
- $|a|$决定图像的开口大小,$|a|$越大,开口越小。
- $a$、$b$共同决定对称轴,当$a$、$b$同号时,对称轴在$y$轴的左侧。
学习二次函数需要理解并掌握这些知识点,并通过练习巩固知识。
如果你还有任何疑问,请随时向我提问。
初中九年级二次函数知识点总结初中九年级二次函数知识点总结「篇一」计算方法1.样本平均数:2.样本方差:3.样本标准差:相交线与平行线、三角形、四边形的有关概念、判定、性质。
内容提要一、直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中。
3.三角形的主要线段讨论:①定义②__线的交点—三角形的_心③性质①高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特殊三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。
《二次函数》单元知识梳理与总结一、二次函数的概念1、定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2、注意点:(1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0,而b 、c 为任意实数。
(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。
(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)3、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab2- 顶点坐标:( a b ac a b 4422--, ) (2)顶点式:()k h x a y +-=2(a ≠0),对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x 1)(x-x 2)(a ≠0), 对称轴:直线x=22x1x + (其中x 1、x 2是二次函数与x 轴的两个交点的横坐标).二、二次函数的图象1、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.注:二次函数的图象可以通过抛物线的平移得到 3、二次函数c bx ax y ++=2的图像的画法因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:(1)先找出顶点坐标,画出对称轴;(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等); (3)把上述五个点按从左到右的顺序用平滑曲线连结起来.1、增减性:当a>0时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大; 当a<0时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少; 2、最大或最小值:当a>0时,函数有最小值,并且当x=a b2- , y 最小 =a b ac 442-当a<0时,函数有最大值,并且当x=ab2- , y 最大 =a b ac 442-四、.抛物线的三要素:开口方向、对称轴、顶点坐标。
中考复习之二次函数二次函数的一般式为y=ax2+bx+c(a≠0)a控制开口方向a>0,开口向上;a<0,开口向下。
|a|越大,开口越小;|a|越小,开口越大b控制顶点坐标顶点坐标公式24 (,) 24b ac ba a--顶点坐标的横坐标决定对称轴,顶点坐标的纵坐标决定最值对称轴在y轴左边,a、b同号;对称轴在y轴右边,a、b异号,对称轴刚好是y轴,b=0。
口诀:左同右异c控制二次函数与y轴的交点二次函数与y轴一定有一个交点,这个交点坐标为(0,c)当c>0,二次函数与y轴交于正半轴当c<0,二次函数与y轴交于负半轴当c=0,二次函数经过原点(0,0)二次函数x轴的交点由Δ控制Δ>0,二次函数与x轴有2个交点Δ=0,二次函数与x轴有1个交点Δ_____,二次函数与x轴有交点Δ<0,二次函数与x轴无交点求函数与x 轴的交点=>令y=0求函数与y 轴的交点=>令x=01、抛物线y =x 2﹣4x+4的顶点坐标为( )A .(﹣4,4)B .(﹣2,0)C .(2,0)D .(﹣4,0)2、抛物线y =x 2+x ﹣1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =﹣D .直线x =3、抛物线y =x 2+1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =0D .直线y =14、抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)5、把抛物线y =﹣x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .y =﹣(x ﹣1)2+3B .y =﹣(x+1)2+3C .y =﹣(x+1)2﹣3D .y =﹣(x ﹣1)2﹣36、函数y =kx 2﹣4x+2的图象与x 轴有公共点,则k 的取值范围是( )A .k <2B .k <2 且 k ≠0C .k ≤2D .k ≤2 且 k ≠07、二次函数y =kx 2﹣2x ﹣3的图象和x 轴有交点,则k 的取值范围是( )A .k >31- B .k >31-且k ≠0 C .k ≥31- D .k ≥31-且k ≠0例1、二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,给出下列结论:①abc<0 ②b2>4ac ③4a+2b+c<0 ④2a+b=0其中正确的结论有()A.4个B.3个C.2个D.1个例2、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0②b﹣a>c ③4a+2b+c>0 ④3a>﹣c ⑤a+b>m(am+b)(实数m≠1)。
新人教版 初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.2图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
人教版九年级数学下二次函数最全的中考二次函数知识点总结人教版九年级数学下二次函数最全的中考知识点总结相关概念和定义b,c是常数,a?0)?二次函数的概念:一般地,形如y?ax2?bx?c(a,的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项C可以是零。
二次函数的定义域都是实数。
系数a?0和B,?二次函数y?ax2?bx?C.建筑物的结构特点:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数2.b、 C是常数,a是二次项的系数,b是一次项的系数,C是常数项。
⑵ A.各种形式的二次函数之间的变换二?二次函数y?ax2?bx?c用配方法可化成:y?a?x?h??k的形式,其b4ac?H在B2中??,K2a4a?二次函数由特殊到一般,可分为以下几种形式:①y?ax2;②Yax2?K③YA.十、H④YA.十、HK⑤Yax2?bx?C二次函数解析式的表示方法通式:y?ax2?bx?C(a,B,C是常数,a?0);?顶点类型:y?a(x?h)2?K (a,h,K是常数,a?0);两根式:y?a(x?x1)(x?x2)(a?0,x1,x2是抛物线与x轴两交点的横坐(出价)?注:任何二次函数的解析公式都可以转化为通式或顶点公式,但不能全部转化为通式或顶点公式二次函数都可以写成交点式,只有抛物线与x轴有交点,即b2?4ac?0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.二次函数y?ax2?bx?C图像的绘制方法五点绘图法:利用配方法将二次函数y?ax2?bx?c化为顶点式Ya(x?h)2?k、确定开口方向、对称轴和顶点坐标,然后在对称轴两侧对称地绘制点。
通常,我们选择的五个点是:顶点和与y轴的交点c?、以及?0,c?关于对称轴对称的点?2h,c?、与x轴的交点?x1,0?,?0,22?x2,0?(若与x轴没有交点,则取两组关于对称轴对称的点).绘制草图时,应掌握以下几点:开口方向、对称轴、顶点、与X轴的交点以及与y轴的交点?二次函数y?AX2的性质a的符号开口方向向上顶点坐标0??0,对称轴y轴性质x?0时,y随x的增大而增大;x?0时,a?0y随x的增大而减小;x?0时,y有最小a?0向下0??0,y轴值0.x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0.1二次函数y?ax2?C的性质a的符号开口方向顶点坐标对称轴性质x?0时,y随x的增大而增大;x?0时,a?0向上c??0,y轴y随x的增大而减小;x?0时,y有最小值c.x?0时,y随x的增大而减小;x?0时,a?0向下c??0,y轴y随x的增大而增大;x?0时,y有最大值c.?二次函数y?a?x?h?的性质:2A x?符号开口方向上顶点坐标对称轴的性质?H、 y随X的增加而增加;十、H、 a?0上升0??h、 X=hy随X的增大而减小;十、当h,y的最小值为0时。
初三数学二次函数知识点总结二次项系数a决定二次函数图像的开口方向和大小.当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口.|a|越大,那么二次函数图像的开口越小.1、决定对称轴位置的因素一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时〔即ab>0〕,对称轴在y轴左;因为对称轴在左边那么对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时〔即ab>0〕,对称轴在y轴左;当a与b 异号时〔即ab<0 〕,对称轴在y轴右.事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式〔一次函数〕的斜率k的值.可通过对二次函数求导得到.2、决定二次函数图像与y轴交点的因素常数项c决定二次函数图像与y轴交点.二次函数图像与y轴交于〔0,c)一、二次函数概念:1.二次函数的概念:一般地,形如2=++〔a b cy ax bx c,,是常数,0a≠〕的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的构造特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的根本形式1. 二次函数根本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
Array2. 2=+的性质:上加下减。
y ax c3. ()2=-的性质:左加右减。
y a x h Array4. ()2=-+的性质:y a x h k三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕四、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2.当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞总结: 3. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系〔二次函数与x 轴交点情况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提醒二次函数、二次三项式和一元二次方程之间的在联系:二次函数图像参考:十一、函数的应用二次函数应用2-32y=3(x+4)22y=3x 2⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少 二次函数考察重点与常见题型1、考察二次函数的定义、性质,有关试题常出现在选择题中,如:以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 那么m 的值是 2、综合考察正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考察两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是〔 〕y y 0 -1 x D1、考察用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
初中数学二次函数知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学二次函数知识点总结初中数学二次函数知识点总结(精选30篇)初中数学二次函数知识点总结篇11、定义与定义表达式一般地,自变量X和因变量y之间存在如下关系:y=aX^2+bX+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a 二次函数表达式的右边通常为二次三项式。
二次函数(最全的中考二次函数知识点总结二次函数是初中数学中的一个重要内容,下面是关于二次函数的最全的中考知识点总结:1. 定义:二次函数是形如 f(x) = ax^2 + bx + c (a≠0)的函数,其中a、b、c是实数,并且a不等于0。
2.图像特征:a)抛物线的开口方向与a的正负有关,当a>0时,开口向上;当a<0时,开口向下。
b)顶点是抛物线的最高点或最低点,横坐标为-b/2a,纵坐标为f(-b/2a)。
c)轴对称性:抛物线关于顶点对称。
d)零点是使f(x)=0的x值,可以通过解一元二次方程来求得。
3. 判别式:对于一元二次方程 ax^2 + bx + c = 0,判别式 D =b^2 - 4ac 是一个重要的指标,它可以告诉我们方程的解的情况。
a)当D>0时,方程有两个不相等的实数解。
b)当D=0时,方程有两个相等的实数解。
c)当D<0时,方程无实数解。
4.数轴上的二次函数图像和解的关系:a)当a>0时,函数图像与x轴有两个交点,对应方程有两个不相等的实数解。
b)当a<0时,函数图像与x轴有两个交点,对应方程有两个不相等的实数解。
c)当抛物线与x轴相切时,对应方程有一个重根。
d)当抛物线与x轴没有交点时,对应方程无实数解。
5.平移:a) 左移和右移:对于函数 f(x) = ax^2 + bx + c,当将x的值替换成 x-h 时(h>0),抛物线将向右移动h个单位;当将x的值替换成 x+h 时,抛物线将向左移动h个单位。
b) 上移和下移:对于函数 f(x) = ax^2 + bx + c,当将f(x)的值替换成 f(x)+k 时(k>0),抛物线将向上移动k个单位;当将f(x)的值替换成 f(x)-k 时,抛物线将向下移动k个单位。
6.直线与抛物线的交点:a)当直线与抛物线相交时,方程的解就是交点的横坐标。
b)如果直线与抛物线有两个交点,则方程有两个实数解。
初中二次函数最全知识点总结二次函数是初中数学中的重要知识点,也是高中数学的基础。
下面是对二次函数的最全知识点总结:一、二次函数的定义和表示:1. 定义:二次函数是形如 y = ax^2 + bx + c(a ≠ 0)的函数,其中 a、b、c 是常数,且 a 不等于 0。
2. 一般式:二次函数的一般形式为 y = ax^2 + bx + c。
3.顶点式:二次函数的顶点式为y=a(x-h)^2+k,其中(h,k)是顶点坐标。
4.描述:二次函数的图像为抛物线,开口向上或向下,对称轴为x=-b/(2a),顶点坐标为(-b/(2a),f(-b/(2a)))。
二、二次函数的图像:1.开口方向:当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
2.对称轴:对称轴是垂直于x轴的抛物线的轴线,其方程为x=-b/(2a)。
3. 零点:即二次函数与 x 轴的交点,由二次方程 ax^2 + bx + c =0 求得。
a) 判别式:Δ = b^2 - 4ac,当Δ 大于 0 时,有两个不同实根;当Δ等于 0 时,有一个重根;当Δ 小于 0 时,无实数根。
b)零点公式:x=(-b±√Δ)/(2a)。
4.最值:当a大于0时,抛物线开口向上,最小值为顶点的纵坐标;当a小于0时,抛物线开口向下,最大值为顶点的纵坐标。
5.对称性:二次函数关于顶点对称,即f(x)=f(2h-x)。
6.平移:通过改变顶点坐标可以实现二次函数的平移,顶点坐标为(h,k),则平移后的顶点坐标为(h+p,k+q)。
三、常用二次函数的性质和应用:1.单调性:当a大于0时,抛物线开口向上,函数单调递增;当a小于0时,抛物线开口向下,函数单调递减。
2.单调区间:根据二次函数的开口方向和最值确定函数的单调区间。
3.奇偶性:二次函数一般是奇函数,即f(-x)=-f(x),因为二次项的系数是奇数。
4.零点个数和位置:根据二次函数的开口方向和零点的位置确定零点的个数和位置。
二次函数✧ 相关概念及定义➢ 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. ➢ 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换➢ 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数2ax y =的性质y ax c =+y a x h =-的性质:y a x h k =-+的性质a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 越大开口反而越小。
➢ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴..总结起来 ➢ 常数项c总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,✧ 求抛物线的顶点、对称轴的方法➢ 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式➢ 一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.➢ 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式. ✧ 直线与抛物线的交点➢ y 轴与抛物线c bx ax y ++=2得交点为(0, c ).➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.➢ 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c =+⎧⎨=++⎩的解的数目来确定:(同上)✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; ➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; ➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.✧ 二次函数图象的平移➢ 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:➢【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.二次函数专项训练一、与二次函数有关的填空题21.如图7是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________。
2.如图7是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________。
二、与二次函数有关的选择题型1、对于一元二次方程a c bx ax (02=++≠0),下列说法: ①若1-=+cbc a ,则方程02=++c bx ax 一定有一根是1=x ②若232,a b a c ==,则方程02=++c bx ax 有两个相等的实际上数根③若0,0,0><<c b a ,则方程c bx cx ++2与x 轴必有交点 ④若,0=-bc ab 且1-<ca,则方程02=++a bx cx 的两实数根一定互为相反数其中正确的是( )A 、①②③④B 、①②④C 、①③D 、②④2、一元二次方程02=++c bx ax (a ≠0)的两根为21,x x ,下列说法: ①若原方程有一根为abx 21=,则原方程两根必相等 ②若原方程两根为21,x x ,且21x x <,一元二次不等式)0(02>>++a c bx ax 的解集为1x x <或2x x >③若原方程有一根为ac-,则另一根为-1 ④若042=-ac b ,原方程两根为21、x x ,则abx x =+21其中正确的是( ) A 、①③④ B 、只有② C 、①②③ D 、②④3、对于抛物线a m ax ax y (42++=≠)0与x 轴的交点为A (-1,0)B (x 2,0),则下列说法:①一元二次方程042=++m ax ax 的两根为3,131-=-=x x图7②原抛物线与y 轴交于C 点,CD ∥x 轴交抛物线于D 点,则CD=4 ③点E (1,1y ),点F (-5,2y )在原抛物线上,则12y y > ④抛物线m ax ax y ---=42与原抛物线关于x 轴对称其中正确的是( )A 、①②③④B 、①②④C 、②③D 、①③④4、对于抛物线y=x 2+mx+n,下列说法:(1)当n=4时,不论m 为何值时,抛物线一定过y 轴上一定点(2)若抛物线与x 轴有唯一公共点,则方程x 2+mx+n=0有两个相等的实数根(3)若抛物线与x 轴有两个交点A 、B ,与y 轴交于C 点,n=4,S △ABC =6,则解析式为y=x 2-5x+4(4)若6m 2+n=0,则方程x 2+mx+n=0的两根分别是2m 或-3m 其中正确的是( )A 、①②④B 、只有①②C 、只有①④D 、②③④5、对于抛物线y= ax 2+bx+c (a ≠0),下列说法:①若顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根②若抛物线经过原点,则一元二次方程ax 2+bx+c=0必有一根为0 ③若a-b+c=2,则抛物线必过某一定点④若2b=4a+c ,则一元二次方程ax 2+bx+c=0,必有一根为-2 其中正确的是( )A 、①②④B 、②③C 、③④D 、②③④ 6.对于一元二次方程)0(02≠=++a c bx ax ,下列说法:①c a b +=时,方程02=++c bx ax 一定有实数根;②若a 、c 异号,则方程02=++c bx ax 一定有实数根;③052>-ac b 时,方程02=++c bx ax 一定有两个不相等的实数根;④若方程02=++c bx ax 有两个不相等的实数根,则方程02=++a bx cx 也一定有两个不相等实数根。
其中正确的是A 、①②③④B 、只有①②③C 、只有①②④D 、只有②④ 三、二次函数应用题1、家家乐超市销售某种品牌的纯牛奶,已知进价为每箱45元。
市场调查发现:若每箱以60元销售,平均每天可销售40箱,价格每降低1元,平均每天多销售20箱,但售价不能低于48元,设每箱降价x 元(x 为正整数)(1)写出平均每天销售y (箱)与x (元)之间的函数关系式及自变量x 的取值范围; (2)如何定价才能能使超市平均每天销售这种牛奶的利润最大?最大利润为多少?2、黄陂木兰山宾馆有50个房间可供游客居住,当每个房间定价为每天180元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需每天每间支出20元的各种费用。
(1)设每个房间每天的定价增加x 元,(X 是10的整数倍)已租住的房间数为y ,写出y 与x 的函数关系式。
(2)当每个房间每天的房价定为多少元时,宾馆每天的利润最大,最大利润是多少?3、某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y (件)与销售单价x (元/件)满足下表中的(1)已知每天的销售量y (件)是销售单价x (元)的一次函数,求y 与x 的函数关系式,并写出x 的取值范围。
(2)当销售单价定为多少元时,公司销售该产品每天获得的利润最大?最大利润为多少?4、进价为每件40元的某商品,售价为每件60元,每星期可卖出300件。
市场调查反映:如果每件的售价每下降1元,每星期可多卖出20件,但售价不能低于每件45元。