数字图像处理(基础)教案
- 格式:docx
- 大小:5.67 MB
- 文档页数:47
数字图像处理(基础)教案
一、基础知识
第一节、数字图像获取
一、目的
1掌握使用扫描仪等数字化设备以及计算机获取数字图像的方法;
2修改图像的存储格式。
二、原理
用扫描仪获取图像也是图像的数字化过程的方法之一。
扫描仪按种类可以分为手持扫描仪,台式扫描仪和滚筒式扫描仪(鼓形扫描仪)。
扫描仪的主要性能指标有x、y方向的分辨率、色彩分辨率(色彩位数)、扫描幅面和接口方式等。各类扫描仪都标明了它的光学分辨率和最大分辨率。分辨率的单位是dpi,dpi是英文Dot Per Inch的缩写,意思是每英寸的像素点数。
扫描仪工作时,首先由光源将光线照在欲输入的图稿上,产生表示图像特征的反射光(反射稿)或透射光(透射稿)。光学系统采集这些光线,将其聚焦在CCD上,由CCD将光信号转换为电信号,然后由电路部分对这些信号进行A/D转换及处理,产生对应的数字信号输送给计算机。当机械传动机构在控制电路的控制下,带动装有光学系统和CCD的扫描头与图稿进行相对运动,将图稿全部扫描一遍,一幅完整的图像就输入到计算机中去了。
图1.1扫描仪的工作原理
扫描仪扫描图像的步骤是:首先将欲扫描的原稿正面朝下铺在扫描仪的玻璃板上,原稿可以是文字稿件或者图纸照片;然后启动扫描仪驱动程序后,安装在扫描仪内部的可移动光源开始扫描原稿。为了均匀照亮稿件,扫描仪光源为长条形,并沿y方向扫过整个原稿;照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x方向的光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带分别照到各自的CCD上,CCD将RGB光带转变为模拟电子信号,此信号又被A/D变换器转变为数字电子信号。至此,反映原稿图像的光信号转变为计算机能够接受的二进制数字电子信号,最后通过串行或者并行等接口送至计算机。扫描仪每扫一行就得到原稿x方向一行的图像信息,随着沿y方向的移动,在计算机内部逐步形成原稿的全图。
在扫描仪的工作过程中,有两个元件起到了关键的作用。一个是CCD,它将光信号转换成为电信号;另一个是A/D变换器,它将模拟电信号变为数字电信号。CCD是Charge Couple Device的缩写,称为电荷耦合器件,它是利用微电子技术制成的表面光电器件,可以实现光电转换功能。CCD 在摄像机、数码相机和扫描仪中应用广泛,只不过摄像机中使用的是点阵CCD,即包括x、y两个方向用于摄取平面图像,而扫描仪中使用的是线性CCD,它只有x一个方向,y方向扫描由扫描仪的机械装置来完成。CCD芯片上有许多光敏单元,它们可以将不同的光线转换成不同的电荷,从而形成对应原稿光图像的电荷图像。如果我们想增加图像的分辨率,就必须增加CCD上的光敏单元数量。实际上,CCD的性能决定了扫描仪的x方向的光学分辨率。A/D变换器是将模拟量(Analog)转变为数字量(Digital)的半导体元件。从CCD获取的电信号是对应于图像明暗的模拟信号,就是说图像由暗到亮的变化可以用从低到高的不同电平来表示,它们是连续变化的,即所谓模拟量。A/D变换器的工作是将模拟量数字化,例如将0至1V的线性电压变化表示为0至9的10个等级的方法是:0至小于0.1V 的所有电压都变换为数字0、0.1至小于0.2V的所有电压都变换为数字1……0.9至小于1.0V的所有电压都变换为数字9。实际上,A/D变换器能够表示的范围远远大于10,通常是2^8=256、2^10=1024或者2^12=4096。如果扫描仪说明书上标明的灰度等级是10bit,则说明这个扫描仪能够将图像分成1024个灰度等级,如果标明色彩深度为30bit,则说明红、绿、蓝各个通道都有1024个等级。显然,该等级数越高,表现的彩色越丰富。
步骤
1扫描仪与计算机和打印机的连接;
2打开计算机,安装扫描仪的驱动程序;
3分别相描一幅二值、灰度和彩色因像
4调整彩色图像的色彩。
5将获得的图像的格式转换为“*.gif”的格式,保存或拷贝到MATLAB 程序组根目录的“work”文件夹中,以便后面的实验做为“原图像”利用。
6记录和整理实验报告
仪器
1计算机;
2扫描仪(或数码相机、数字摄象机)及其驱动程序盘;
3图像处理软件(画图,photoshop, Microsoft photo edit等);
4记录用的笔、纸。
实验报告内容
六、思考题
1扫描仪有哪些重要指标?
幅面大小、分辨率、颜色数、接口方式
2你使用过哪些图像获取设备呢?
数码相机、摄相机、扫描仪
第二节、图像压缩
目的
1.理解有损压缩和无损压缩的概念;
2.理解图像压缩的主要原则和目的;
3.了解几种常用的图像压缩编码方式。
4.利用MATLAB程序进行图像压缩。
原理
1.图像压缩原理
图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。
信息的冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。高效编码的主要方法是尽可能去除图像中的冗余成分,从而以最小的码元包含最大的图像信息。
编码压缩方法有许多种,从不同的角度出发有不同的分类方法,从信息论角度出发可分为两大类。
(1).冗余度压缩方法,也称无损压缩、信息保持编码或嫡编码。具体说就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。
(2)信息量压缩方法,也称有损压缩、失真度编码或烟压缩编码。也就是说解码图像和原始图像是有差别的,允许有一定的失真。
应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类:
(1)无损压缩编码种类
哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev
编码。
(2)有损压缩编码种类
预测编码,DPCM,运动补偿;
频率域方法:正交变换编码(如DCT),子带编码;
空间域方法:统计分块编码;
模型方法:分形编码,模型基编码;
基于重要性:滤波,子采样,比特分配,向量量化;
(3)混合编码。
有JBIG,H261,JPEG,MPEG等技术标准。
本实验主要利用MATLAB程序进行离散余弦变换(DCT)压缩和行程编码(Run Length Encoding, RLE)。
1)离散余弦变换(DCT)图像压缩原理