作图: 三角形三条边的垂直平分线的交点.
性质: 三角形的外心到三角形三个顶点的距离相等.
判一判:
下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( √ ) (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × )
√
(4)三角形的外心到三角形各顶点的距离相等( )
第三章 圆
确定圆的条件
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点)
导入新课
情境引入
假如旋转木马真如短片所说, 是中国发明的, 你能将旋转木马破碎的圆 形底座还原, 以帮助考古学家画进行深入的研究吗?
7.如图, 在平面直角坐标系xOy中, △ABC外接 圆的圆心坐标(是5,___2_)_____, 半径2 是5 ______.
8.已知正△ABC的边长为6, 那么能够完全覆盖这
个正△ABC的最小圆的半径是_2__3_____.
解析:如图, 能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接
过一点可以作无数个圆 过两点可以作无数个圆
注意:同一直线 上的三个点不能 作圆
不在同一直线上的三个点确定一个圆
概念 外心
经过三角形的三个顶点的圆叫做三 角形的外接圆
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°, ∴∠DAO=30°;
(2)求点A的坐标和△AOB外接圆的面积. (2)∵点D的坐标是(0, 3), ∴OD=3. 在直角△AOD中, OA=OD·tan∠ADO=3 3, AD=2OD=6, ∴点A的坐标是(3 3 , 0). ∵∠AOD=90°, ∴AD是圆的直径, ∴△AOB外接圆的面积是9π. 方法总结:图形中求三角形外接圆的面积时, 圆的直径(或半径)长度.