初中数学教案指数与幂的运算
- 格式:docx
- 大小:37.16 KB
- 文档页数:3
幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律一、教学目标学习指数和幂的乘方、积的乘方规律,掌握指数与幂之间的互相转化方法,培养学生对指数和幂的敏感度,从而提高学生的数学思维能力和应用能力。
二、教学内容1.指数和幂的乘方、积的乘方规律2.指数与幂之间的互相转化方法3.练习与解题三、教学重难点1.指数和幂的乘方、积的乘方规律的应用2.指数与幂之间的互相转化方法的理解和运用四、教学方法1.讲述与演示相结合2.多元素启发式教学方法3.练习与解题五、教学准备1.白板、黑板、笔2.教科书、讲义、试卷3.练习和解题材料4.示范题六、教学过程1.引入从同学们最熟悉的数学公式-乘方式入手,大概介绍指数和幂之间的关系,并且让同学们自己研究一下同底数的幂的乘方有怎样的规律,再加以证明。
2.讲授指数和幂的乘方、积的乘方规律与运用。
2.1.幂的乘方同底数幂的乘方规律:$(a^{m})^{n}$ $=$ $a^{mn}$,即同一底数幂的乘方等于底数不变,指数相乘。
示范题:$(2^{3})^{2}$ $=$ $2^{6}$ $=$ $64$。
2.2.积的乘方如何化简幂的积:$a^{m}$ $\times$ $a^{n}$ $=$ $a^{m+n}$,即相同指数幂的积等于底数不变,指数相加。
示范题:$2^{4}$ $\times$ $2^{3}$ $=$ $2^{7}$。
2.3.指数与幂之间的互相转化方法(1)同底数幂之间的乘和除,可用指数相加、相减:$a^{m} \times a^{n}$ $=$ $a^{m+n}$;$\frac{a^{m}}{a^{n}}$ $=$ $a^{m-n}$。
(2)不同底数幂之间可先化为同底数再变幂:$2^{m}$ $\times$ $3^{m}$ $=$ $(2 \times 3)^{m}$;$\frac{2^{m}}{3^{n}}$ $=$ $\frac{{2^{\left(m-n\right)}}}{3^{n}}$。
初中幂的运算教案教学目标:1. 理解幂的定义和基本性质;2. 掌握幂的运算规则,包括同底数幂的乘法、除法,幂的乘方,积的乘方;3. 能够运用幂的运算性质进行计算,并能够解释每一步的依据;4. 理解零指数幂和负整数指数幂的意义,并能用科学记数法表示绝对值小于1的数。
教学重点:1. 幂的运算规则;2. 零指数幂和负整数指数幂的意义。
教学难点:1. 幂的运算证明规律;2. 运用幂的运算性质进行计算。
教学准备:1. 幂的定义和基本性质的PPT;2. 幂的运算规则的示例和练习题;3. 科学记数法的PPT和练习题。
教学过程:一、导入(5分钟)1. 引入幂的概念,让学生回顾幂的定义和基本性质;2. 提问:我们已经学习了幂的定义和基本性质,那么幂的运算有哪些规则呢?二、新课讲解(15分钟)1. 讲解同底数幂的乘法规则,展示示例并进行解释;2. 讲解同底数幂的除法规则,展示示例并进行解释;3. 讲解幂的乘方规则,展示示例并进行解释;4. 讲解积的乘方规则,展示示例并进行解释;5. 讲解零指数幂和负整数指数幂的意义,并进行解释。
三、练习巩固(15分钟)1. 让学生进行幂的运算练习题,巩固所学的规则;2. 引导学生运用幂的运算性质进行计算,并能够解释每一步的依据;3. 引导学生运用科学记数法表示绝对值小于1的数。
四、课堂小结(5分钟)1. 回顾本节课所学的幂的运算规则;2. 强调零指数幂和负整数指数幂的意义。
五、作业布置(5分钟)1. 布置幂的运算练习题,让学生巩固所学;2. 布置科学记数法的练习题,让学生进一步掌握。
教学反思:本节课通过讲解和练习,让学生掌握了幂的运算规则,包括同底数幂的乘法、除法,幂的乘方,积的乘方。
同时,让学生理解了零指数幂和负整数指数幂的意义,并能用科学记数法表示绝对值小于1的数。
在教学过程中,注意引导学生运用幂的运算性质进行计算,并能够解释每一步的依据。
通过练习题的巩固,让学生进一步提高运算能力。
《指数与指数幕的运算》第一课时
教学目标:
1.理解根式的概念;运用根式的性质进行简单的化简、求值;
2.掌握由特殊到一般的归纳方法,培养学生观察、分析、抽象等认知能力.通过与初中所学的知识进行类比,理解根式的概念,培养学生观察分析,抽象的能力,渗透“转化”的数学思想;
3.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生体验数学的简洁美和统一美.
教学重点难点:
1.重点:根式的概念
2.难点:根式的概念的理解
教法与学法:
1.教法选择:讲授法、类比分析法
2.学法指导:讨论法、发现法
教学过程:
【设置情境,激发探索】
【作法总结,变式演练】
【思维拓展,课堂交流】
【归纳小结,课堂延展】
教学反思
1.教材地位分析:学生在初中己学习了数的开平方、开立方以及二次根式的概念,学习了正整数指数幕、零指数幕、负整数指数幕的概念,以及整数指数幕的运算法则.现是在此基础上,将平方根与立方根的概念扩充到〃次方根,将二次根式的概念扩充到一般根式的概念,将整数指数幕扩充到有理指数幕,进一步将指数的取值范围扩充到实数•“根式”是
“指数与指数幕的运算”第一课时,主要学习根式的概念和性质•根式是后面学习所必备的.
2.学生现实分析:学生在初中己经学习了二次、三次方根的概念和性质,根式的内容是这些内容的推广,方根和根式的概念和性质难以理解•所以要结合已学内容,列举具体实例,设计大量的类比和练习题目加以理解.。
指数与指数幂的运算教案教案标题:指数与指数幂的运算教案概述:本教案旨在帮助学生理解指数与指数幂的概念,并掌握指数与指数幂的运算规则。
通过多种互动教学方法,学生将能够在实际问题中应用指数与指数幂的知识,提高他们的数学思维和解决问题的能力。
教学目标:1. 理解指数和指数幂的概念。
2. 掌握指数与指数幂的运算规则。
3. 能够在实际问题中应用指数与指数幂的知识。
教学重点:1. 指数的定义和性质。
2. 指数幂的定义和性质。
3. 指数与指数幂的运算规则。
教学准备:1. 教师准备:黑板、白板、彩色粉笔或白板笔、教学课件、实物或图片示例。
2. 学生准备:课本、笔记本、铅笔、计算器。
教学过程:步骤一:引入(5分钟)教师通过提问和展示实物或图片示例引入指数与指数幂的概念,激发学生的兴趣和思考。
步骤二:概念讲解(15分钟)教师通过教学课件或黑板白板讲解指数的定义和性质,以及指数幂的定义和性质,并与学生一起解决一些简单的例题。
步骤三:运算规则讲解(15分钟)教师详细讲解指数与指数幂的运算规则,包括同底数相乘、相除、幂的乘方等规则,并通过例题演示运用这些规则进行运算。
步骤四:练习与巩固(20分钟)教师提供一些练习题,让学生在课堂上进行个人或小组练习,并及时给予指导和反馈。
教师还可以设计一些应用题,让学生运用指数与指数幂的知识解决实际问题。
步骤五:总结与拓展(10分钟)教师与学生一起总结本节课的重点内容,并提供一些相关拓展问题,鼓励学生进一步思考和探索。
步骤六:作业布置(5分钟)教师布置相关的作业,要求学生独立完成,并在下节课前交给教师检查。
教学延伸:1. 学生可以通过自主学习,进一步了解指数与指数幂的应用领域,如科学计数法、指数函数等。
2. 教师可以组织学生进行小组讨论或展示,分享他们在实际生活中发现的指数与指数幂的应用案例。
教学评估:1. 教师通过课堂练习和作业的批改,评估学生对指数与指数幂的理解和运用能力。
2. 教师观察学生在课堂上的表现,评估他们的参与度和学习态度。
一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则;(3)运用实数指数幂及运算法则解决实际问题。
2. 教学难点:(1)实数指数幂的运算法则的推导和理解;(2)运用实数指数幂及运算法则解决实际问题。
三、教学准备1. 教师准备:(1)实数指数幂的相关知识;(2)实数指数幂的运算法则的例题和练习题;(3)实数指数幂的实际问题。
2. 学生准备:(1)掌握实数的基本概念;(2)具备一定的数学运算能力。
四、教学过程1. 导入:(1)复习实数的基本概念;(2)引导学生思考实数指数幂的概念。
2. 知识讲解:(1)讲解实数指数幂的概念;(2)推导和讲解实数指数幂的运算法则;(3)运用实际例子解释实数指数幂及运算法则的应用。
3. 课堂练习:(1)让学生独立完成练习题;(2)讲解练习题的解题思路和方法。
4. 课堂小结:(1)回顾本节课所学内容;(2)强调实数指数幂及运算法则的重要性和应用。
五、课后作业1. 复习本节课所学内容;2. 完成课后练习题;3. 思考和解决实际问题。
六、教学评估1. 课堂讲解评估:(1)观察学生对实数指数幂概念的理解程度;(2)评估学生对实数指数幂运算法则的掌握情况;(3)评价学生的课堂参与度和提问回答情况。
2. 课堂练习评估:(1)检查学生练习题的完成情况;(2)分析学生解题思路和方法的正确性;(3)针对学生易错点进行讲解和辅导。
七、教学反思1. 反思教学内容:(1)是否全面讲解了实数指数幂的概念和运算法则;(2)是否结合实际例子让学生更好地理解实数指数幂的应用;(3)是否注重了学生的课堂参与和思维能力的培养。
实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的性质。
2. 掌握实数指数幂的运算法则,能够熟练进行相关计算。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 采用讲授法,讲解实数指数幂的概念、性质和运算法则。
2. 利用例题解析,让学生掌握实数指数幂的运算方法。
3. 开展小组讨论,引导学生探索实数指数幂的运算法则的应用。
四、教学内容1. 实数指数幂的概念2. 有理数指数幂的性质3. 实数指数幂的运算法则4. 实数指数幂的运算法则在实际问题中的应用五、教学安排1. 第一课时:实数指数幂的概念、有理数指数幂的性质2. 第二课时:实数指数幂的运算法则、例题解析3. 第三课时:实数指数幂的运算法则的应用、小组讨论4. 第四课时:课堂小结、作业布置5. 第五课时:作业批改与讲解、课后辅导六、教学过程1. 导入新课:回顾上一节课的内容,引出实数指数幂的运算法则。
2. 讲解实数指数幂的运算法则:引导学生通过观察、分析、归纳实数指数幂的运算法则。
3. 例题解析:讲解典型例题,让学生掌握实数指数幂的运算方法。
4. 小组讨论:让学生探讨实数指数幂的运算法则的应用,分享解题心得。
5. 课堂小结:对本节课的内容进行总结,强调实数指数幂的运算法则的重要性。
七、课后作业1. 复习实数指数幂的运算法则。
2. 完成课后练习题,巩固所学知识。
3. 思考实际问题,运用实数指数幂的运算法则解决问题。
八、作业批改与讲解1. 及时批改学生作业,了解学生掌握情况。
2. 针对学生作业中出现的问题,进行讲解和辅导。
3. 鼓励学生提问,解答学生心中的疑惑。
九、课后辅导1. 针对学习有困难的学生,进行个别辅导。
2. 组织课后讨论小组,帮助学生巩固实数指数幂的运算法则。
2.1.1 指数与指数幂的运算平方根、立方根定义及性质的推广,根式记号是平方根、立方根记号的推广,可以通过类比进行理解.【例1】已知m10=2,则m等于()A.B.C D.解析:∵m10=2,∴m是2的10次方根.又∵10是偶数,∴2的10次方根有两个,且互为相反数.∴m =答案:D2.正数开方要分清,根指奇偶大不同,根指为奇根一个,根指为偶双胞生. 负数只有奇次根,算术方根零或正, 正数若求偶次根,符号相反值相同. 负数开方要慎重,根指为奇才可行, 根指为偶无意义,零取方根仍为零. 【例2-1】求下列各式的值:(1)2;(2)3;;解:(1)2=5.(2)3=-2.(3)==2.=π-3.【例2-2】化简:(x <π,n ∈N *).当n |x -π|=π-x ; 当n x -π.辨误区 a n 的n 次方根,对任意a ∈R a 不一定成立.当n 的值不确定时,应注意分n 为奇数和偶数两种情况对n 进行讨论.n 的区别:①当n 为奇数,且a ∈R 时,n=a ;②当n 为偶数,且a ≥0n =a .3.分数指数幂(1)后,指数的概念就从整数指数推广到了有理数指数;(2)指数幂m na 不可以理解为mn个a 相乘,它是根式的一种新写法.在定义的规定下,根式与分数指数幂是表示相同意义的量,只是形式上不同而已,这种写法更便于指数运算,所以分数指数幂与根式可以相互转化;(3)通常规定分数指数幂的底数a >0,但要注意在像14()a -=中的a ,则需要a ≤0.【例3-1】用根式的形式表示下列各式(a >0):15a ,34a,35a -,23a -.解:15a =34a =35351aa-==23231a a-==.谈重点 分数指数幂与根式互化的易错点 (1)分不清分子、分n ma ;(2)负分数指数幂化简时不注意负号的位置,如m m nnaa =--或者m na-=中幂指数运算法则遵循:乘相加,除相减,幂相乘.【例3-2】求值:(1)438-;(2)3481;(3)323-⎛⎫ ⎪⎝⎭;(4)2327125-⎛⎫ ⎪⎝⎭.解:(1)44433433318(2)2216⎛⎫⨯---⎪-⎝⎭====. (2)33344444(3)3⨯===33=27.(3)332327328-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. (4)22233333273312555⎛⎫--⨯- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫==⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=232559-⎛⎫= ⎪⎝⎭. 【例3-3】用分数指数幂表示下列各式(a >0,b >0):(4)2分析:解决本题的关键是理解分数指数幂的意义,先将根式化为分数指数幂的形式,再运用分数指数幂的运算性质进行化简.解:(1)原式=11117334412a a a a +⋅==. (2)原式=11117118248824a a a a a ++⋅⋅==.(3)原式=22313333262a a aa +⋅==.(4)原式=1221711333233332622222()()a ab a a b a b a b +⋅=⋅==.根式化为分数指数幂的方法将根式化为分数指数幂的依据是m na =(a >0,m ,n ∈N *,且n >1).当要变化的根式含有多重根号时,要搞清被开方数,由里向外用分数指数幂写出,然后再利用性质进行合并.4.无理数指数幂(1)一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数;(2)有理数指数幂的运算性质同样适用于无理数指数幂,即:①a α·a β=a α+β(a >0,α,β是无理数);②(a α)β=a α·β(a >0,α,β是无理数); ③(ab )α=a αb α(a >0,b >0,α是无理数).【例4】求值:(1)213328--⋅⋅;(2)12+解:(1)原式=221333(22(2)--⋅⋅=2322322222--+-⋅==23=8.(2)原式=12+52+21=27.5.指数幂(根式)的化简与计算化简、计算指数幂(根式)时,应注意以下几点:(1)运算顺序:先进行幂的运算,再进行乘除运算,最后进行加减运算,有括号的先算括号内的.(2)如果指数是小数,那么通常化为分数指数,这样可以随时检验运算的正确性,是常用的化简技巧.比如,(-3)2.1=2110(3)-=10(-3)21,由于(-3) 21是一个负数,所以(-3)2.1无意义,这说明化简中出现了错误.(3)将其中的根式化为分数指数幂,利用指数幂的运算性质进行计算.比如,化简a a ,如果不将根式a 化为指数幂,就很难完成化简:a a =a ·12a =112a +=32a . (4)计算或化简的结果尽量最简,对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示.如果有特殊要求,则按要求给出结果,但结果中不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,即结果必须化为最简形式.综上所述:进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.【例5-1】计算下列各式:(1)0325⎛⎫ ⎪⎝⎭+2-2×12124-⎛⎫ ⎪⎝⎭-(0.01)0.5; (2)0.5729⎛⎫ ⎪⎝⎭+(0.1)-2+2310227-⎛⎫ ⎪⎝⎭-3π0+3748; (3)13(0.064)--078⎛⎫- ⎪⎝⎭+433[(2)]--+16-0.75+12|0.01|-.解:(1)原式=1+1122141111614910061015⎛⎫⎛⎫⨯-=+-= ⎪ ⎪⎝⎭⎝⎭. (2)原式=12232251643759373100390.1274831648-⎛⎫⎛⎫++-+=++-+⎪ ⎪⎝⎭⎝⎭=100. (3)原式=0.4-1-1+(-2)-4+2-3+0.1=5111143121681080-+++=.【例5-2】化简:a >0,b >0);(2)1111a b a b ----+⋅(ab ≠0);(3)1113332112133333(8)2142a a b b a b a b a a ⎛⎫- ⎪÷-⋅ ⎪ ⎪++⎝⎭(a ·b ≠0,且a ≠8b ). 解:(1)原式=1311315520552441154a baba b ab--⋅=⋅==.(2)原式=1111a b a b ab ab ab++==a +b .(3)原式=111333211211333333(8)422a a b aa b a b aa b-⋅⋅++-=a .6.条件求值问题利用指数幂的运算性质解决带有附加条件的求值问题,一般有三种思路:(1)将条件用结论表示,直接解出结论;(2)有些时候,直接代入求值不方便,可以从总体上把握已知式和所求式的特点,常用整体代入法来求值.要求同学们熟练掌握平方差、立方和(差)以及完全平方公式,如a +b =112112333333()()a b a a b b +-+,a -b =11112222()()a b a b +⋅-等等,运用这些公式的变形,可快速巧妙求解.(3)有时适当地选用换元法,能使公式的使用更清晰,过程更简洁.所以在解题时要先审题,比较各种思路的优劣,然后再动手做题,养成良好的思维习惯.例如:已知2x +2-x =a (常数),求8x +8-x 的值.解:(方法一)8x +8-x =23x +2-3x =(2x )3+(2-x )3=(2x +2-x )[(2x )2-2x ·2-x +(2-x )2]=(2x +2-x )[(2x +2-x )2-3·2x ·2-x ]=(2x +2-x )[(2x +2-x )2-3]=a (a 2-3)=a 3-3a .(方法二)令2x =t ,则2-x =t -1,所以t +t -1=a ,两边平方整理得t 2+t -2=a 2-2,则8x +8-x =t 3+t -3=(t +t -1)(t 2-t ·t -1+t -2)=a 3-3a .【例6】(1)已知12x =,23y =的值;(2)已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,的值.解:==, 将12x =,3y =代入,236=--=-=-.(2)∵a ,b 是方程x 2-6x +4=0的根, ∴由根与系数关系得6,4.a b ab +=⎧⎨=又∵a >b >0,.∵221105====,5==析规律 条件求值问题的处理方法 对于条件求值问题,常采用“整体代换”或“求值后代换”的方法求解.要注意运用恰当的变形,如分解因式等.用乘法公式时,还要注意开方时正负号的选取,如本题第(2)小题.7.二次根式与完全平方公式的综合问题由于乘方和开方互为逆运算,则完全平方公式(m ±n )2=m 2±2mn +n 2与二次根式的关系也是互逆运算.在化简a ±k b 时,可设⎩⎪⎨⎪⎧x 2+y 2=a ,2xy =k b ,解得x ,y ,则a ±k b =x 2±2xy +y 2=(x ±y )2=|x ±y |. 因此,只要把a ±k b 凑成完全平方公式的形式,利用c2=|c |即可完成化简.【例7】=__________. 解析:== 答案:点技巧 a ±k b 的处理有技巧 将a ±k b 化为a ±2c ·d 的形式,然后观察求出满足(c )2+(d )2=a 的c ,d 的值,则a ±k b =(c ±d )2.例如本题中的5+26=5+22·3,则5+26=(2+3)2.。
指数与指数幂的运算教案一、教学目标:知识与技能目标:1. 理解指数与指数幂的概念。
2. 掌握指数幂的运算性质和运算法则。
3. 能够运用指数幂的运算性质解决实际问题。
过程与方法目标:1. 通过观察、分析和归纳,培养学生发现和提出问题的能力。
2. 利用同底数幂的乘法、除法、乘方和积的乘方等运算法则,提高学生的逻辑思维能力。
情感态度与价值观目标:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于探索、合作的科学精神。
二、教学重点与难点:重点:1. 指数与指数幂的概念。
2. 指数幂的运算性质和运算法则。
难点:1. 理解指数幂的运算性质和运算法则。
2. 运用指数幂的运算性质解决实际问题。
三、教学准备:教师准备:1. 指数与指数幂的相关教学素材。
2. 教学课件或板书设计。
学生准备:1. 预习指数与指数幂的相关知识。
2. 准备好笔记本,用于记录重点知识和练习。
四、教学过程:1. 导入:教师通过引入日常生活中的实际问题,如“银行的复利计算”,引导学生思考指数与指数幂的概念。
2. 新课讲解:教师讲解指数与指数幂的概念,通过示例和图示,帮助学生理解指数幂的运算性质和运算法则。
3. 课堂练习:教师给出一些指数幂的运算题目,要求学生独立完成,并及时给予指导和反馈。
4. 应用拓展:教师提出一些实际问题,引导学生运用指数幂的运算性质解决,培养学生的应用能力。
五、课后作业:教师布置一些有关指数与指数幂的练习题目,要求学生在课后完成,巩固所学知识。
教学反思:教师在课后对自己的教学进行反思,了解学生的学习情况,针对存在的问题,调整教学方法和策略,以提高教学效果。
六、教学评估1. 课堂提问:教师通过提问了解学生对指数与指数幂概念的理解程度,以及学生对指数幂运算性质和运算法则的掌握情况。
2. 课堂练习:教师观察学生在练习过程中的表现,评估学生对指数幂运算的熟练程度。
3. 课后作业:教师批改课后作业,了解学生对课堂所学知识的掌握情况,发现问题及时给予反馈。
课题:指数与指数幂的运算第课时总序第个教案课型:新授课编写时间:年月日执行时间:年月日批注教学目标:1.知识与技能理解n次方根和根式的概念;理解有理数指数幂的意义,通过具体事例了解实数指数幂的意义,掌握幂的运算;培养学生观察、分析、抽象等认知能力。
2.过程与方法通过师生共同讨论和探究的方法,使得学生参与到指数范围的扩充和完善的过程中,从而领会类比、从特殊到一般、分类讨论等数学思想方法的运用和提高分析解决问题的能力。
3.情感态度与价值观体会数学模型与实际问题之间的关系,从而感受数学的应用价值;让学生体验数学的简洁美和统一美。
让学生学会用联系的观点看待问题。
教学重点: 本节的教学重点是理解有理数指数幂的意义、掌握幂的运算.教学难点:本节的教学难点是理解根式的概念、掌握根式与分数指数幂之间的转化、理解无理数指数幂的意义。
教学用具:黑板教学方法:根据本节课的特点,采用问题探究、引导发现和归纳概括相结合的教学方法。
教学过程:(一)导入新课1、引导学生回忆函数的概念,说明学习函数的必要性,引出实例。
2、以实例引入,让学生体会其中的函数模型的同时,激发学生探究分数指数幂的兴趣与欲望。
问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。
根据此规律,人们想获得了生物体内碳14含量P与死亡年数t的关系。
引导学生得出关系式:573012t P ⎛⎫= ⎪⎝⎭总结关系式能解决实际问题,让学生体会数学的应用价值,同时指出为了更好地解决实际问题必须进一步深入学习函数。
基于时间的连续性和死亡生物体碳14含量变化的连续性,说明引进分数指数幂必要性,如6000573012P ⎛⎫= ⎪⎝⎭。
不断提出新问题,打开心理缺口,造成认知冲突,激起求知欲望,调动学生思维的活跃性。
(二)讲授新课2.1.1 指数与指数幂的运算1、根式回忆平方根与立方根的定义,引入n 次方根的定义,从已知到未知,符合认知规律。
2.1.1 指数与指数幂的运算( 2 课时)第一课时根式教案目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
教案重点:根式的概念、分数指数幂的概念和运算性质教案难点:根式概念和分数指数幂概念的理解教案方法:学导式教案过程:(I)复习回顾引例:填空(1)0=1(a 0) ;0=1(a0) ;n * )a a a n N(; an a个a n1na(a 0, n N *)(2) m n m n m nmn n n na a a (m,n∈Z);(a ) a(m,n∈Z);(ab ) a b (n∈Z)(3)9 _____ ;- 9 _____ ;0 ______ (4)( a)2 _____( a 0) ;a2 ________(II )讲授新课1 / 151.引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m na a可看作m na a ,所以m n m na a a 可以归入性质m n m na a a ;又因为an( ) 可看作bm na a ,所以na an n n n( ) 可以归入性质( ab) a b (n∈Z)),这是为下面学习分nb b数指数幂的概念和性质做准备。
为了学习分数指数幂,先要学习n 次根式(n N* )的概念。
(2)填空(3),(4)复习了平方根、立方根这两个概念。
如:22=4 ,(-2)2=4 2,-2 叫4 的平方根23=8 2 叫8 的立方根;(-2)3=-8 -2 叫-8 的立方根25=32 2 叫32 的 5 次方根⋯2n=a 2 叫 a 的 n 次方根2=4,则2叫4 的平方根;若23=8,2 叫做 8 的立方根;若25=32,则分析:若 22 叫做 32 的 5次方根,类似地,若2n=a,则2叫a 的n 次方根。
由此,可有:2.n次方根的定义:(板书)一般地,如果nx a ,那么 x 叫做 a的 n 次方根(n th root),其中n 1,且n N 。
指数与指数幂的运算(一)课题:指数与指数幂的运算课型:新授课教学方法:讲授法与探究法教学媒体选择:多媒体教学教学目标:1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.教学流程图:教学过程设计:一.新课引入:(一)本章知识结构介绍(二)问题引入1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系:(1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为(3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为2.回顾整数指数幂的运算性质 整数指数幂的运算性质:3.思考:这些运算性质对分数指数幂是否适用呢?12212⎛⎫ ⎪⎝⎭6000573012⎛⎫⎪⎝⎭10000573012⎛⎫ ⎪⎝⎭【师】这就是我们今天所要学习的内容《指数与指数幂的运算》【板书】2.1.1 指数与指数幂的运算二.根式的概念:【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.【师】现在我们请同学来总结n次方根的概念..1.根式的概念【板书】概念即如果一个数的n次方等于a(n>1,且n∈N*),那么这个数叫做a 的n次方根.【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.【板书】表格n n是奇数n是偶数a的符号a<0 a>0 a<0 a>0 a的n次方无意义根【师】通过这个表格,我们知道负数没有偶次方根.那么0的n 次方根是什么?【学生】0的n 次方根是0.【师】现在我们来对 这个符号作一说明.例1.求下列各式的值【注】本题较为简单,由学生口答即可,此处过程省略. 三.n 次方根的性质【注】对于1提问学生a 的取值范围,让学生思考便能得出结论. 【注】对于2,少举几个例子让学生观察,并起来说他们的结论.44(3)(3);π-2(2)(10);-2(4)()().a b a b ->33(8);-(1)根指数被开方数根式1.n次方根的性质四.分数指数幂例:【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗?【师】如果成立那么它的意义是什么,我们有这样的规定.(一)分数指数幂的意义:1.我们规定正数的正分数指数幂的意义是:2.我们规定正数的负分数指数幂的意义是:3.0的正分数指数幂等于0,0的负分数指数幂没有意义.(二)指数幂运算性质的推广:五.例题例2.求值例3.用分数指数幂的形式表示下列各式(其中a>0)例4.计算下列各式(式中字母都是正数)【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.六.课堂小结1.根式的定义;2.n次方根的性质;3.分数指数幂.七.课后作业P59习题2.1 A组1.2.4. 八.课后反思。
§2.1.1 指数与指数幂的运算第1课时 根式对于指数与指数幂的运算这节课,分两个课时讲解. 一.教学目标:1.知识与技能:理解n 次方根和根式的概念; 2.过程与方法:(1)通过与初中所学的知识进行类比,掌握n 次方根及根式的概念. (2)正确运用根式运算性质进行运算,体验分类讨论思想的应用. 3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点1.教学重点:(1)根式概念的理解; (2)掌握根式的运算性质; 2.教学难点:根式概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体 教学过程 一、复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零. 二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n 次方根中,表示,如果是负数,用叫做根式.n 为奇数时,a 的nn 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?,,:,,n a n a n a n ⎧⎪⎨±⎪⎩为奇数 的次方根有一个为正数为偶数 的次方根有两个为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的次方根为2±,275-的27-的4次方根不存在. 小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况. 例1 求下列各式的值:(1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a >b ).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a -b (a >b ).点评:不注意n 的奇偶性对式子nna 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用. 变式训练求出下列各式的值: (1)77)2(-; (2)33)33(-a (a ≤1); (3)44)33(-a . 解:(1)77)2(-=-2, (2)33)33(-a (a ≤1)=3a -3, (3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解. 例2223++223-=_________活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.解:223+=2)2(221++=2)21(+=2+1.223-=122)2(2+-=2)12(-=2-1.所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式. 思考:上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x =223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x =22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解. 变式训练a -1,求a 的取值范围.解:a -12)1(-a =|a -1|=a -1, 即a -1≥0, 所以a ≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键. 知能训练(教师用多媒体显示在屏幕上) 1.以下说法正确的是( ) A.正数的n 次方根是一个正数 B.负数的n 次方根是一个负数 C.0的任何次方根都是零D.a 的n 次方根用n a 表示(以上n >1且n ∈N *). 答案:C 2.化简下列各式:(1)664;(2)42)3(-;(3)48x ;(4)636y x答案:(1)2;(2)9;(3)x 2;(4)|x |y ;(5)|x -y |.3.计算407407-++=__________.解:407407-++=2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++=5+2+5-2- =25. 答案:25 拓展提升问题:n na =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论. 解答:①(n a )n =a (n >1,n ∈N ).如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x =n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立.例如:(43)4=3,33)5(-=-5.②n na =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a ∈R ,nna =a 恒成立.例如:552=2,55)2(-=-2.当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a ≥0,那么n na =a .例如443=3,40=0;如果a <0,那么n n a =|a |=-a ,如2(-3)=23=3.即(n a )n =a (n >1,n ∈N )是恒等式,nn a =a (n >1,n ∈N )是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时四.作业:P 69习题2.1 A 组 第1题第2课时 有理指数幂的运算一.教学目标:1.知识与技能:(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力. 2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质. 3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点1.教学重点:(1)分数指数幂概念的理解;(2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体四、教学过程: 提问:1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅== (),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a >0 ①1025a a === ②842a a ===③1234a a ===1025a a ===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a ==>12(0)b b ==>54(0)c c ==>*(0,,1)m na a n N n =>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)m na a m n N =>∈正数的定负分数指数幂的意义与负整数幂的意义相同. 即:*1(0,,)m nm naa m n N a-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n mm m maa a a a =⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)rsr sa a aa r s Q +⋅=>∈(2)()(0,,)r S rsa a a r s Q =>∈ (3)()(0,0,)rr ra b a b Q b r Q ⋅=>>∈若a >0,P 是一个无理数,则(0,)pa a p >是一个无理数该如何理解?为了解决这个问题,引导学生先阅读课本P 62——P 62.的不足近似值,的.所以,的方向逼近时,的过剩似值从大于时,(如课本图所示)所以,.一般来说,无理数指数幂(0,)pa a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32; ④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4.例2用分数指数幂的形式表示下列各式.a 3·a ;a 2·32a ;3a a (a >0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a=a 3·a 21=a213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a ·a 31)21=(a 34)21=a 32.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8.活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤. 解:(1)原式=[2×(-6)÷(-3)]a 612132-+b653121-+=4ab 0=4a ;(2)(m 41n83-)8=(m 41)8(n 83-)8=m841⨯n 883⨯-=m 2n -3=32n m . 点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63;(2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(nm =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259n m =42259-n m . 例4求值或化简. (1)3224ab ba -(a >0,b >0);(2)(41)21-213321)()1.0()4(---b a ab (a >0,b >0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律. 解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254. 点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数. (3)246347625---+-=222)22()32()23(---+- =3-2+2-3-2+2 =0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例5化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a -a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流.解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a -a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a +a -1. 点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m ·a 21a 21-=m ,需认真对待,要在做题中不断地提高灵活运用这些公式的能力. 知能训练课本P 59习题2.1A 组 3. 利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1 B.(1-2321-)-1 C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a ≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a ≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a >0,x =21(a n 1-a n 1-),则(x +2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x =21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x +2x 1+)n =[21(a n 1-a n 1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n1-)+21(a n 1+a n 1-)]n=a .答案:a 课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r ,s ,均有下面的运算性质: ①a r ·a s =a r +s (a >0,r ,s ∈R ). ②(a r )s =a rs (a >0,r ,s ∈R ). ③(a ·b )r =a r b r (a >0,b >0,r ∈R ). (3)逼近的思想,体会无限接近的含义. 作业课本P60习题2.1 B组 2.。
实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念及性质。
2. 掌握实数指数幂的运算法则。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点:重点:实数指数幂的概念、性质及运算法则。
难点:实数指数幂在实际问题中的应用。
三、教学准备:1. 教学课件或黑板。
2. 教学素材(例如:数学题、实际问题等)。
四、教学过程:1. 引入:通过生活中的实际例子(如电话号码、楼层等)引出实数指数幂的概念。
2. 讲解:讲解实数指数幂的定义、性质及运算法则。
3. 练习:让学生通过练习题巩固所学知识。
4. 应用:结合实际问题,让学生运用实数指数幂及运算法则解决问题。
五、课后作业:1. 完成练习册相关题目。
2. 举出生活中的实际例子,运用实数指数幂及运算法则进行解释。
六、教学评价:1. 课堂讲解:评价学生对实数指数幂概念、性质及运算法则的理解程度。
2. 课后作业:评价学生运用实数指数幂及运算法则解决实际问题的能力。
3. 单元测试:评价学生对实数指数幂及运算法则的掌握程度。
七、教学反思:在教学过程中,要注重让学生理解实数指数幂的概念,引导学生掌握运算法则,并通过实际问题激发学生的学习兴趣。
在课后,要关注学生的学习情况,及时解答学生的疑问,提高学生运用知识解决实际问题的能力。
八、教学拓展:1. 研究其他数的指数幂及其运算法则。
2. 探索实数指数幂在科学、工程等领域的应用。
九、教学时间安排:1. 课时:本节课计划用2课时完成。
2. 教学进程:第一课时讲解实数指数幂的概念、性质及运算法则;第二课时进行练习、应用及课后作业布置。
十、教学素材来源:1. 人教版《数学》教材。
2. 网络资源。
3. 教师自编练习题。
六、教学活动设计:1. 导入:通过回顾上一节课的内容,引导学生进入本节课的学习。
2. 新课导入:讲解实数指数幂的运算法则,包括同底数幂的乘法、除法、幂的乘方与积的乘方等。
3. 案例分析:分析实际问题,运用实数指数幂的运算法则进行解答。
初中数学幂的教案教学目标:1. 理解幂的概念,掌握幂的运算性质。
2. 能够进行幂的运算,解决实际问题。
教学重点:1. 幂的概念和运算性质。
2. 幂的运算方法。
教学难点:1. 幂的运算性质的理解和应用。
2. 复杂幂的运算。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入幂的概念,让学生回顾已学的指数知识。
2. 提问:什么是幂?幂的运算是怎样的?二、讲解幂的运算性质(15分钟)1. 讲解幂的运算性质,包括同底数幂的乘法、除法、幂的乘方和积的乘方等。
2. 通过示例和练习,让学生理解和掌握幂的运算性质。
三、幂的运算方法(15分钟)1. 讲解幂的运算方法,包括同底数幂的加减法、乘除法等。
2. 通过示例和练习,让学生掌握幂的运算方法。
四、练习和巩固(15分钟)1. 让学生进行幂的运算练习,包括简单的和复杂的幂的运算。
2. 引导学生总结幂的运算规律,巩固所学知识。
五、应用和拓展(10分钟)1. 通过实际问题,让学生运用幂的运算解决实际问题。
2. 引导学生思考幂的运算在实际生活中的应用。
六、总结和反思(5分钟)1. 让学生总结幂的运算的知识和技巧。
2. 引导学生反思自己在学习幂的运算过程中的优点和不足,提出改进措施。
教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生练习的正确率和熟练程度。
3. 学生应用和拓展的能力。
以上是一篇关于初中数学幂的教案,希望对您的教学有所帮助。
初中数学指数幂教案教学目标:1. 理解指数幂的概念,掌握整数指数幂的运算规则;2. 理解指数幂的性质,能够应用指数幂解决实际问题;3. 培养学生的逻辑思维能力,提高学生的数学素养。
教学内容:1. 指数幂的定义和性质;2. 整数指数幂的运算规则;3. 指数幂在实际问题中的应用。
教学步骤:一、导入(5分钟)1. 引入:复习幂的概念,让学生回顾幂的定义和运算规则;2. 提问:什么是指数幂?指数幂有哪些性质?二、新课讲解(15分钟)1. 讲解指数幂的定义:指数幂是一个数乘以自己的幂次方,例如a^n表示a乘以自己n次;2. 讲解指数幂的性质:指数幂的底数相同,指数相加等于两个指数的乘积;指数幂的底数相同,指数相减等于两个指数的除积;指数幂的底数相同,指数相乘等于两个指数的乘积;指数幂的底数相同,指数相除等于两个指数的除积;3. 讲解整数指数幂的运算规则:同底数幂相乘,指数相加;同底数幂相除,指数相减;幂的乘方,指数相乘;幂的除方,指数相除。
三、例题讲解(15分钟)1. 讲解例题:求解a^3 * a^4;2. 讲解例题:求解(a^2)^3;3. 讲解例题:求解a^5 / a^2。
四、巩固练习(15分钟)1. 让学生自主完成练习题:求解a^3 * a^4;2. 让学生自主完成练习题:求解(a^2)^3;3. 让学生自主完成练习题:求解a^5 / a^2。
五、课堂小结(5分钟)1. 总结指数幂的概念和性质;2. 总结整数指数幂的运算规则。
六、作业布置(5分钟)1. 布置作业:求解一些指数幂的运算题目;2. 布置作业:应用指数幂解决实际问题。
教学反思:本节课通过讲解和练习,让学生掌握了指数幂的概念和性质,以及整数指数幂的运算规则。
在教学过程中,要注意引导学生理解指数幂的定义和性质,通过例题和练习题让学生熟练掌握整数指数幂的运算规则。
同时,要注重培养学生的逻辑思维能力,提高学生的数学素养。
在下一节课中,将继续讲解分数指数幂的概念和运算规则,让学生全面掌握指数幂的知识。
《指数与指数幂的运算》从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。
进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。
【知识与能力目标】1、掌握n次方根及根式的概念,正确运用根式的运算性质进行根式的运算;2、了解分式指数幂的含义,学会根式与分数指数幂之间的相互转化;3、理解有理数指数幂和无理数指数幂的含义及其运算性质。
【过程与方法目标】具体习题,灵活运用根式运算。
由整数指数幂的运算性质理解有理数指数幂的运算性质。
【情感态度价值观目标】1、通过学习n次方根的概念及根式的运算,提高学生的运算能力和逻辑思维。
2、通过分数指数幂的学习,让学生体会严谨的求学态度。
【教学重点】根式与分数指数幂之间的互相转化。
【教学难点】根式运算与有理数指数幂的运算。
通过本节导学案的使用,引导学生复习回顾初中相关知识,做好衔接,为新知识的学习奠定基础。
(一)创设情景,揭示课题1、以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性。
2、由实例引入,了解指数概念提出的背景,体会引入指数的必要性;(1)据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%。
那么在2010年, 我国的GDP 可望为2000年的多少倍?(2)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的系573012tp⎛⎫= ⎪⎝⎭,那么当生物体死亡了1万年后,它体内碳14的含量为多少?(3)对1.07310,10000573012p⎛⎫= ⎪⎝⎭这两个数的意义如何?怎样运算?3、初中根式的概念思考1:4的平方根是什么?任何一个实数都有平方根吗?一个数的平方根有几个?思考2:-27的立方根是什么?任何一个实数都有立方根吗?一个数的立方根有几个?思考3:一般地,实常数a的平方根、立方根是什么概念?思考4:如果x4=a,x5=a,x6=a,参照上面的说法,这里的x分别叫什么名称?思考5:推广到一般情形,a的n次方根是一个什么概念?试给出其定义。
指数与指数幂的运算教学设计教学设计:指数与指数幂的运算一、教学目标1.知识与技能:-理解指数的概念;-掌握指数幂与指数的运算规则;-能够用运算规则计算简单的指数幂与指数运算;-能够解决一些实际问题。
2.过程与方法:-采用启发引导和演绎法讲解指数与指数幂的概念和运算规则;-结合实际问题进行训练和应用;-培养学生的逻辑思维和抽象推理能力;-通过合作学习和小组活动提高学生的学习兴趣和合作意识。
3.情感态度价值观:-培养学生的数学兴趣和创新精神;-培养学生的逻辑思维和抽象推理能力;-加强学生的团队协作和沟通能力。
二、教学重点和难点1.教学重点:-指数的概念和运算规则;-指数幂的概念和运算规则。
2.教学难点:-运用运算规则解决一些实际问题。
三、教学准备1.教学材料:教科书、习题集、挂图等;2.教学工具:黑板、彩色粉笔、计算器等;3.教学环境:课堂、实验室等;4.学生准备:认真预习教材内容。
四、教学过程本教学设计采用扩展和巩固知识点相结合的教学方法,具体分为以下几个步骤:步骤一:导入(5分钟)利用个案讨论的方式引入指数的概念和应用。
例如,陈述一个实际问题:“假设你投资1000元,年利率为3%,每年复利计算,5年后你的本金和利息总共是多少?”让学生思考并讨论。
步骤二:探究指数的概念与性质(15分钟)1.通过观察和分析,引导学生总结指数的概念和性质。
例如,通过做一些实际问题,引导学生找到指数的共同规律和特点,如指数是正整数、底数相同则指数相加等。
2.教师给出正确的定义和公式,并对概念进行解释和说明。
步骤三:研究指数幂的意义(20分钟)1.通过具体例子,引导学生理解指数幂的概念和意义。
例如,计算2的3次方,是指底数2乘以自己三次的结果。
2.结合实际问题,让学生分组进行小组活动,解决有关指数幂的实际问题,并向全班汇报和分享。
步骤四:掌握指数幂的运算规则(20分钟)1.通过实际例子和计算,引导学生总结指数幂的运算规则。
初中数学教案指数与幂的运算初中数学教案指数与幂的运算
一、引言
指数与幂是数学中的重要概念之一,广泛应用于各个领域。
掌握指
数与幂的运算规则,对于学生的数学学习十分关键。
本教案旨在引导
学生理解指数与幂的含义和特点,并掌握其运算规则。
二、知识概述
1. 指数的定义:
指数是幂运算中的一个重要概念。
它表示乘方的次数。
如a^n中,n即为指数。
2. 幂的定义:
幂是指数运算的结果,表示相同因子的连乘积。
如a^n中,a为底数,n为指数,a^n表示a连乘n次。
3. 指数与幂的关系:
指数n表示连乘n个相同因子,这些相同因子组成的乘积就是幂
a^n。
4. 指数与幂的运算规则:
a^m * a^n = a^(m+n)
a^m ÷ a^n = a^(m-n)
(a^m)^n = a^(m*n)
(ab)^n = a^n * b^n
(a/b)^n = a^n / b^n
三、教学过程
1. 概念解释与认知引导
通过引导学生阅读概念定义,让学生理解指数与幂的含义和基本
特点,并与实际生活中的例子相联系,增强学生的理解力和兴趣。
2. 运算实例演示
通过具体的运算实例,让学生掌握指数与幂的运算规则。
例如,
计算2^3 * 2^4的结果,引导学生按照规则进行运算,解释答案的求解
过程。
3. 练习和巩固
提供一些练习题,让学生进行实际操作和运算,巩固所学的知识。
例如,计算(3^2)^3的结果,简化(2^3 * 5^2)^2等。
4. 拓展与应用
引导学生思考指数与幂在实际应用中的意义和应用场景。
例如,
计算物体体积、面积时的运算规则,以及解决实际生活中的问题。
五、知识总结与拓展
在本节课中,我们学习了指数与幂的定义,以及它们的运算规则。
指数与幂是数学中非常重要的概念,掌握它们的运算规则对于我们的
数学学习和实际生活都具有重要意义。
六、课后作业
1. 计算2^4 * 3^2的结果。
2. 计算(5^2)^3的结果。
3. 简化(4^2 * 6^3)^2。
七、延伸阅读
如果你对指数与幂的运算还想进一步了解,可以阅读以下推荐材料:-《数学中的指数与幂》:详细介绍了指数与幂的概念和运算规则。
-《实际应用中的指数与幂》:探索了指数与幂在实际应用中的重要性和应用场景。
以上是本节课的教案,希望同学们通过本节课的学习,能够掌握指
数与幂的基本概念和运算规则,并能够灵活应用于解决实际问题。
祝
大家学习愉快!。