新课标人教版八年级数学上册第十四章一次函数全章教案
- 格式:doc
- 大小:1.64 MB
- 文档页数:27
第十四章一次函数(共22课时)第一课时课题§11.1.1 变量课型:新授教学目标(一)知识与技能1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.(二)过程与方法1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.2.逐步感知变量间的关系.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.认识变量、常量.2.用式子表示变量间关系.教学难点用含有一个变量的式子表示另一个变量.教学方法引导、探索法.教具准备多媒体演示.(小黑板)教学过程Ⅰ.提出问题,创设情境情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.1.请同学们根据题意填写下表:t/时 1 2 3 4 5s/千米2.在以上这个过程中,变化的量是________.变变化的量是__________.3.试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.Ⅱ.导入新课[师]我们首先来思考上面的几个问题,可以互相讨论一下,然后回答.[生]从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60•千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量.[师]很好!谢谢你正确的阐述.这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.[活动一]活动内容设计:1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?设计意图:让学生熟练从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量.教师活动:引导学生通过合理、正确的思维方法探索出变化规律.学生活动:在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论.活动结论:1.早场电影票房收入:150×10=1500(元)日场电影票房收入:205×10=2050(元)晚场电影票房收入:310×10=3100(元)关系式:y=10x2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)挂2kg重物时弹簧长度:2×0.5+10=11(cm)挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10[师]通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量.Ⅲ.随堂练习1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.Ⅳ.课时小结本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.1.确定事物变化中的变量与常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系区.Ⅴ.课后作业习题:14.1----1、2、3Ⅵ.活动与探究瓶子或罐头盒等物体常如下图那样堆放.试确定瓶子总数y与层数x之间的关系式.过程:要求变量间关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.结论:从题意可知:堆放1层,总数y=1堆放2层,总数y=1+2堆放3层,总数y=1+2+3……堆放x层,总数y=1+2+3+…x 即y=12x(x+1)板书设计§11.1.1变量一、常量与变量二、寻求确定变量间关系式的方法三、随堂练习四、课时小结教学反馈:第二课时课题:变量与函数(2) 课型:新授教学目标(一)知识与技能理解函数的概念,能准确识别出函数关系中的自变量和函数(二)过程与方法会用变化的量描述事物(三)情感与价值观要求回用运动的观点观察事物,分析事物教学重点:函数的概念及相关计算教学难点:认识函数、领会函数的意义教学方法引导、探究法教具准备多媒体电脑(小黑板)计算器教学过程Ⅰ.提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.Ⅱ.导入新课首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.活动一两个问题都有两个变量.问题(1)中,经计算可以发现:每当售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1500;日场x=205,则y=2050;晚场x=310,则y=3100.问题(2)中,通过试验可以看出:每当重物质量m确定一个值时,弹簧长度L•就随之确定一个值.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm.当m=10时,则L=15,当m=20时,则L=20.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.活动二:其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 14.061994 14.761999 12.52通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a 时,y=b,那么b叫做当自变量的值为a时的函数值.据此可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.例1:一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?结论:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x油箱中剩余油量为:50-0.1x所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤5003.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=50-0.1x得: y=50-0.1×200=30汽车行驶200km时,油箱中还有30升汽油.Ⅲ.随堂练习下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.1.改变正方形的边长x,正方形的面积S随之改变.2.秀水村的耕地面积是106m2,这个村人均占有耕地面积y随这个村人数n的变化而变化.解答:1.正方形边长x是自变量,正方形面积S是x的函数.函数关系式:S=x22.这个村人口数n是自变量,人均占有耕地面积y是n的函数.Ⅴ.作业1、p14--1,6题.2、练习册Ⅵ.活动与探究1、小明去商店为美术小组买宣纸和毛笔,宣纸每张3元,毛笔每支5元,商店正搞优惠活动,买一支毛笔赠一张宣纸.小明买了10支毛笔和x张宣纸,则小明用钱总数y (元)与宣纸数x之间的函数关系是什么?过程:根据题意可知:当小明所买宣纸数x小于等于10张时,所用钱数为:y=5×10=50(元)当小明所买宣纸数x大于10张时,所用钱数为:y=50+(x-10)×3=3x+20(元)结果:当0<x≤10时 y=50当x>10时 y=3x+202、为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x >10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?(参考答案:Y=1.8x-6或)2、如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式.3.到邮局投寄平信,每封信的重量不超过20克时付邮费0.80元,超过20克而不超过40克时付邮费1.60元,依此类推,每增加20克须增加邮费0.80元(信重量在100克内).如果某人所寄一封信的质量为78.5克,则他应付邮费________元.板书设计§14.1.2 函数一、自变量、函数及函数值二、例析三、课堂练习教学反思:第三课时课题:变量与函数(3)课型:新授教学目标(一)知识与技能进一步理解掌握确定函数关系式.会确定自变量取值范围.(二)过程与方法会用变化的量描述事物(三)情感与价值观要求会用运动的观点观察事物,分析事物教学重点:1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.教学难点:认识函数、领会函数的意义.教学方法:引导法、合作学习教具准备:小黑板、计算器教学说明:①求自变量的取值范围②求实际问题中自变量的取值范围教学过程1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是1这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1关于函数自变量的取值范围1.实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。
)观察两个变量之间的联系,当其中一个变量取定一个值时,
d
教学板块一、课堂引入
)菜地离小明家多远?小明走到菜地用了多少时间?
)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?
)小明给玉米地锄草用了多少时间?
)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?
教学板块一、课堂引入
教学板块一、课堂引入
【教师活动】引导学生归纳总结知识的流程图,提高认识.【教学形式】互动交流,探究方法.
三、课堂练习
x(单位:秒)的函数.轴的交点为(6,0),得x=6.
y
1
学生课堂练习单有成
观察屏幕,通过思考,得到(1)、(2)的答案,回答问
将原不等式的两边分别看作两个一次函数,画出直线y=5x+4
(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一
)都在这个图象上.′,C′(3,2)也就是当。
第十四章一次函数一、教材内容义务教育课程标准实验教科书(人教版)《数学》八年级上册第十四章。
二、知识背景分析本章隶属于“数与代数”领域,本套教科书将对代数函数的学习分三章编排,即八年级上学期学习一次函数,八年级下学期学习反比例函数,九年级下学期学习二次函数,即按代数运算类型划分阶段,将函数作为方程的后续内容。
本章是学习函数的第一阶段,重点在于初步认识函数概念,并具体讨论最简单的初等函数——一次函数。
本章主要包括:变量与函数的概念,函数的三种表示法,正比例函数和一次函数的概念、图象、性质以及应用举例,用函数的观点再认识一元一次方程、一元一次不等式和二元一次方程组,课题学习“选择方案”。
本章在学生对一元一次方程、一元一次不等式和二元一次方程组等以一次(线性)运算为基础的数学模型的已有认识上,从变化和对应的角度,对一次运算进行更深入的讨论。
教科书在进行专门对一次函数的讨论之前,安排学生先了解函数的一般概念,在对函数的概念初步讨论后,转入对一种具体的初等函数的讨论,即一次函数。
人们认识事物往往经历从特殊到一般的过程,因此,首先从讨论正比例函数开始,对其定义、图象和性质的讨论,为讨论一次函数奠定基础。
接着由直线y=kx的平移过渡到直线y=kx+b,采用了“先特殊化、简单化,再一般化、复杂化”的做法来讨论一次函数本身以及它的简单应用。
在学习的过程中,人们需要不断地提高认识问题的水平。
接下来14.3节“用函数的观点看方程(组)与不等式”,从函数的角度对前面学过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析,这种再认识不是原来水平上的回顾与复习,而是站在更高的起点上的动态分析。
为进一步提高实践意识与综合应用数学知识的能力,本章最后安排了“课题学习选择方案”,这一节讨论的问题具有较强的实际背景,需要建立一次函数作为问题的数学模型,并综合应用有关函数的知识对问题进行分析。
通过具体问题的最佳解决方案,不仅可以从数形结合的角度进入综合地、灵活地运用函数知识的情境,而且可以深切体会函数在分析和解决实际问题中的重要作用,进一步感受建立数学模型的思想方法。
最新人教版八年级数学第14章一次函数教案备课应有教师自己的东西,教案也应突出教参所没有的内容。
不仅有对教参的割舍与放弃,也有具体的知识拓展与补充,以及传授的方法与步骤。
今天在这里整理了一些最新人教版八年级数学第14章一次函数教案范文,我们一起来看看吧!最新人教版八年级数学第14章一次函数教案范文1一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算.3. 难点与突破方法分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实.三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a1,因此(a-1)2=a2-2a+1四、课堂引入1.出示P13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析]这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a1,因此(a-1)2=a2-2a+1最新人教版八年级数学第14章一次函数教案范文2一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗? 与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。
第十四章 14.2.2 一次函数教案(1)课题:主备人:教学目标基础知识:理解一次函数的概念,理解y=kx+b与y=kx之间的关系基本技能:会根据实际意义求一次函数的解析式,解决实际问题基本思想方法:函数思想、特殊到一般、类比思想基本活动经验通过一次函数概念的研究,发展抽象思维及概括能力,体会函数在问题解决中的作用。
教学重点一次函数的概念、根据已知信息写出一次函数的表达教学难点理解一次函数的定义及与正比例函数的关系教具资料准备教师准备:教材、导航、课件学生准备:教材、导航、练习本教学过程教学内容自备补充集备补充一、创设情境、引入课题:复习:1、什么是正比例函数?2、正比例函数的图象是什么?3、正比例函数y=kx(k≠0)中的k的正负对函数的图象有什么影响?二、操作与探究1、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y ℃,试用解析式表示y与x的关系。
分析:(略)思考P114:下列问题中变量间的对应关系可用怎样函数表示?这些函数有什么共同点?(1)有人发现,在20~25ºc时蟋蟀每分鸣叫次数c与温度t有关,即c的值大约是t的7倍与35的差;c=7t-35()(2) 一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减去常数105,所得差是G的值;G=h-105(3) 某城市的市内电话的月收额y(单位:元)包括:月租费22元,拨打电话x 分的计时费(按0.1元每分收取);y=0.1x+22(x ≥0)(4)把一个长10cm 、宽5cm 的长方形的长减少xcm ,宽不变, 长方形的面积y 随x 的变化而变化。
y=-5x+50 特点:都是自变量的k 倍与一个常数的和定义:形如y=kx+b(k 、 b 是常数,k ≠0)的函数,叫一次函数当 b=0时,是正比例函数练习:P114:1、2、3 解:略例:已知一次函数的图象过点 (1,-2)与(3,4), 求这个一次函数的解析式。
一次函数人教版数学八年级上册教案一次函数人教版数学八年级上册教案1一、内容和内容解析1、内容正比例函数的概念。
2、内容解析一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
二、目标和目标解析1、目标(1)经历正比例函数概念的形成过程,理解正比例函数的概念;(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
三、教学问题诊断分析正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的`理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。
人教版八年级数学上册教案第十四章 一次函数
第十四章一次函数
14.1 变量与函数
14.2 一次函数
14.3 用函数观点看方程(组)与不等式
14.4 课题学习选择方案
教学活动
课题§14.1.1变量
教学目标
(一)教学知识点1.认识变量、常量.
2.学会用含一个变量的代数式表示另一个变量.
(二)能力训练要求1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.
2.逐步感知变量间的关系.
(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.
2.形成实事求是的态度以及独立思考的习惯.
教学重点1.认识变量、常量.2.用式子表示变量间关系.
教学难点用含有一个变量的式子表示另一个变量.
教学过程
Ⅰ.提出问题,创设情境
情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米. 行驶时间为t小时.。
第十四章第2节《一次函数》第四课时教学过程Ⅰ.提出问题,创设情境我们在前几节课里已经看到或亲自动手用列表格.写式子和画图象的方法表示了一些函数.这三种表示函数的方法分别称为列表法、解析式法和图象法.思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?这就是我们这节课要研究的内容.Ⅱ.导入新课从前面几节课所见到的或自己做的练习可以看出.列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.至于图象法它则形象、直观地表示出函数中两个变量的关系.相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.表示方法全面性准确性直观性形象性列表法×∨∨×解析式法∨∨××图象法××∨∨从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.III 例题与练习例1:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.t/时0 1 2 3 4 5 …y/米10 10.05 10.10 10.15 10.20 10.25 …1.由记录表推出这5小时中水位高度y(米)随时间t•(时)变化的函数解析式,并画出函数图象.2.据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?分析:记录表中已经通过6组数值反映了时间t与水位y之间的对应关系.•我们现在需要从这些数值找出这两个表量之间的一般联系规律,由它写出函数解析式来,再画出函数图象,进而预测水位.解:1.由表中观察到开始水位高10米,以后每隔1小时,水位升高0.05米,•这样的规律可以表示为: y=0.05t+10(0≤t≤7)这个函数的图象如下图所示:2.再过2小时的水位高度,就是t=5+2=7时,y=0.05t+10的函数值,从解析式容易算出:y=0.05×7+10=10.35从函数图象也能得出这个值数.2小时后,预计水位高10.35米.提出问题:1.函数自变量t的取值范围:0≤t≤7是如何确定的?2.2小时后的水位高是通过解析式求出的呢,还是从函数图象估算出的好?3.函数的三种表示方法之间是否可以转化?从题目中可以看出水库水位在5小时内持续上涨情况,•且估计这种上涨情况还会持续2小时,所以自变量t的取值范围取0≤t≤7,超出了这个范围,•情况将难以预计.2小时后水位高通过解析式求准确,通过图象估算直接、方便.•就这个题目来说,2小时后水位高本身就是一种估算,但为了准确而言,•还是通过解析式求出较好.从这个例子可以看出函数的三种不同表示法可以转化,因为题目中只给出了列表法,而我们通过分析求出解析式并画出了图象,所以可以相互转化.练习:1.用列表法与解析式法表示n边形的内角和m是边数n的函数.2.用解析式与图象法表示等边三角形周长L是边长a的函数.解析:1.因为n表示的是多边形的边数,所以,n是大于等于3的自然数.n 3 4 5 6 …m 180 360 540 720 …由表可看出,三角形内角和为180°,边数每增加1条,•内角和度数就增加180°.故此m、n函数关系可表示为:m=(n-2)·180°(n≥3的自然数).2.因为等边三角形的周长L是边长a的3倍.所以周长L与边长a•的函数关系可表示为:L=3a (a>0)我们可以用描点法来画出函数L=3a的图象.列表:a … 1 2 3 4 …L … 3 6 9 12 …描点、连线:3、甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米.求y随x(0≤x≤100)变化的函数解析式,并画出函数图象.解:由题意可知:x秒后两车行驶路程分别是:甲车为:20x 乙车为:25x两车行驶路程差为:25x-20x=5x两车之间距离为:500-5x所以:y随x变化的函数关系式为:y=500-5x 0≤x≤100用描点法画图:x …10 20 30 40y …450 400 350 300x 50 60 70 80 …y 250 200 150 100 …Ⅳ.课堂小结通过本节课学习,我们认识了函数的三种不同的表示方法,并归纳总结出三种表示方法的优缺点,学会根据实际情况和具体要求选择适当的表示方法来解决相关问题,进一步知道了函数三种不同表示方法之间可以转化.其实函数图象与函数性质之间存在着必然联系,我们可以归纳如下:图象特征函数变化规律由左至右曲线呈上升状态.⇔y随x的增大而增大.由左至右曲线呈下降状态.⇔y随x的增大而减小.曲线上的最高点是(a,b).⇔x=a时,y有最大值b.曲线上的最低点是(a,b).⇔x=a时,y有最小值b.Ⅴ.课后作业1、习题─8、9、11、12题.2、同步练习VI板书设计§14.2 函数图象一、函数的三种表示方法二、不同表示方法的优缺点三、不同表示方法的具体选择四、随堂练习备课资料甲、乙两人分别骑自行车与摩托车从A城出发到B城旅游.甲、乙两人离开A•城的路程与时间之间的函数图象如图所示.根据图象你能得到甲、乙两人旅游的哪些信息?1.甲骑自行车从A城去B城用了8个小时.乙骑摩托车从A城去B城用了2个小时.2.甲比乙早4个小时出发,晚2个小时到达.3.甲骑自行车在出发后第一个2小时内行驶了40千米,第二个2小时内行驶了20千米,然后停留了1个小时,又在1个小时内行驶了20千米,最后用2个小时行驶了20千米完成全程到达B城.乙骑摩托车在2小时内行驶了100千米路程到达B城.4.甲、乙在距A城60多千米的地方相遇一次.。
一次函数全章教案-新人教版第一章:一次函数的定义与性质1.1 一次函数的定义引入:通过日常生活实例,如购物时计算总价,引出一次函数的概念。
讲解:一次函数是指函数表达式为y=kx+b(k、b为常数,k≠0,x 为自变量)的函数。
例题:解析生活中的实例,求出一次函数的表达式。
1.2 一次函数的性质讲解:一次函数的图像是一条直线,且斜率为k,截距为b。
性质1:当k>0时,函数图像从左下到右上递增;当k<0时,函数图像从左上到右下递增。
性质2:当b>0时,函数图像在y轴上方与y轴相交;当b<0时,函数图像在y轴下方与y轴相交。
例题:根据函数的性质,判断函数图像的走势及与y轴的交点位置。
第二章:一次函数的图像与解析式2.1 一次函数图像的画法讲解:通过直角坐标系,讲解如何画出一次函数的图像。
方法:先确定两个点,连接这两个点,即为一次函数的图像。
例题:给定一次函数,求出其图像上的两个点,并画出图像。
2.2 一次函数解析式的求法讲解:通过图像,反求出一次函数的解析式。
方法:已知图像上的两个点,求出斜率k和截距b。
例题:已知一次函数图像上的两个点,求出其解析式。
第三章:一次函数的应用3.1 线性方程的应用讲解:通过实际问题,引入线性方程的解法。
方法:将实际问题转化为线性方程,求解得到答案。
例题:已知某商品的原价和折扣后价格,求折扣率。
3.2 线性方程组的应用讲解:当实际问题中有两个未知数时,可转化为线性方程组求解。
方法:利用消元法或代入法,求解线性方程组。
例题:已知某商品的原价、折扣率及折后价格,求原价和折扣率。
第四章:一次函数的图象与几何变换4.1 一次函数图象的平移讲解:讲解一次函数图象如何进行平移变换。
方法:上下平移不变斜率,左右平移改变截距。
例题:给出一次函数,进行上下或左右平移,求新函数的解析式。
4.2 一次函数图象的缩放讲解:讲解一次函数图象如何进行缩放变换。
方法:横坐标缩放改变斜率,纵坐标缩放改变截距。
第14章一次函数复习教案(人教新课标初二上)doc初中数学第14章一次函数复习教案(人教新课标初二上)doc初中数学一、差不多知识提炼整理〔一〕、差不多概念1.函数的概念一样地,在一个变化过程中,假如有两个变量x和y,同时关于x 的每一个确定的值,y都有惟一确定的值与其对应,那么我们就讲x是自变量,y是x的函数.2.一次函数和正比例函数的概念假设两个变量x,y之间的关系式能够表示成y=kx+b〔k,b为常数,且k≠0〕的形式,那么称y是x的一次函数〔x是自变量〕.专门地,当b=0时,称y是x的正比例函数.〔二〕、一次函数和正比例函数的图象和性质函数图象性质一次函数y=kx +b 〔k≠0〕过点〔0,b〕且平行于y=kx的一条直线〔1〕当k>0时,y随x的增大而增大,图象必过第一、三象限;①当b>0时,过第一、二、三象限;②当b=0时,只过第一、三象限;③当b<0时,过第一、三、四象限.〔2〕当k<0时,y随x的增大而减小,图象必过第二、四象限.①当b>0时,过第一、二、四象限;②当b=0时,只过第二、四象限;③当b<0时,过第二、三、四象限正比例函数y=kx (k≠0) 过原点的一条直线图象过原点.〔1〕当k>0,y随x的增大而增大,图象必过第一、三象限;〔2〕当k<0时,y随x的增大而减小,图象必过第二、四象限二、学法指导在本章的学习中,要逐步透彻明白得函数的概念,在明白得的基础上把握一次函数图象的性质,注意在解决咨询题过程中充分体会和运用数形结合的思想,除此之外,还要注意函数与方程、不等式、几何知识的内在联系,把一次函数的知识与其他学科有机地结合起来.三、知识网络图示专题总结及应用一、基础知识应用1.结合实例明白得函数的概念.2.熟练把握一次函数和正比例函数的概念.3.结合一次函数的图象,熟练把握一次函数和正比例函数的性质.4.会求一次函数的表达式.5.能灵活运用一次函数的图象解决实际咨询题.例1 一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还能够以每份0.2元的价格退回报社,在一个月内〔以30天运算〕有20天每天能够卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,假设以报亭每天从报社订购报纸的份数为自变量x,每月所获利润为y〔元〕.〔1〕写出y与x之间的函数关系式,并指出自变量x的取值范畴;〔2〕报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?[分析] 〔1〕先确定x的取值范畴,60≤x≤100,且x是正整数,然后列出函数表达式.〔2〕利用一次函数的性质求出最大利润.解:〔1〕假设报亭每天从报社订购晚报x份,那么x应满足60≤x≤100,且x是正整数.那么每月共销售〔20x+10×60〕份,退回报社10〔x-60〕份.又因为卖出的报纸每份获利0.3元,退回的报纸每份亏损0.5元,因此每月获得的利润为,y=0.3(2Ox 十10×6O)一0.5×1O(x-6O)=x 十48O .自变量x的取值范畴是60≤x ≤100,且x 是正整数.〔2〕∵当60≤x ≤100时,y 随x 的增大而增大,∴当x=100时,y 有最大值. y 最大值=100+480=580〔元〕.∴报亭应该从报社订购100份报纸,才能使每月获得的利润最大,最大利润是580元.小结解有关一次函数的应用题要注意运用数形结合的方法综合分析咨询题,将所学知识灵活运用,融会贯穿,同时还要专门注意自变量的取值范畴的限制,它是解决咨询题的关键之一.例2 拖拉机耕地时,每小时的耗油量假定是个常量,拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.〔1〕写出油箱中余油量Q 〔升〕与工作时刻t 〔时〕之间的函数关系式;〔2〕画出函数图象;〔3〕这台拖拉机工作3小时后,油箱中的油还够拖拉机连续耕地几小时?(分析)由两组对应量可求出函数关系式,再画出图象〔在自变量取值范畴内〕.解:〔1〕设函数关系式为Q=kt+b(k ≠0). 由题意可知,=-=∴??+=+=.40,6,322,228b k b k b k ∴余油量Q 与时刻t 之间的函数关系式是Q=-6t+40.∵40-6t ≥0, ∴t ≤320. ∴自变量t 的取值范畴是0≤t ≤320.〔2〕当t=0时,Q=40;当t=320时,Q=0.得到点(0,40),(320,0).连接两点,得出函数Q=-6t+40(0≤t ≤320)的图象,如图11-53所示.〔3〕当Q=0时,t=320,那么320-3=332(时).∴拖拉机还能耕地332小时,即3小时40分.小结运用一次函数图象及其性质能够关心我们解决实际生活中的许多咨询题,如利润最大、成本最小、话费最省、最正确设计方案等咨询题,我们应善于总结规律,达到灵活运用的目的.二、数学思想方法的归纳及应用1.函数方法函数方法确实是应用运动、变化的观点来分析咨询题中的数量关系,抽象升华为函数的模型,进而解决有关咨询题的方法,函数的实质是研究两个变量之间的对应关系,灵活运用函数方法能够解决许多数学咨询题.例1 利用图象解二元一次方程组??-=+=- ②①.5,22y x y x〔分析〕方程组中的两个方程均为关于x,y 的二元一次方程,能够转化为y 关于x 的函数.由①得y=2x-2,由②得y=-x-5,实质上是两个y 关于x 的一次函数,在平面直角坐标系中画出它们的图象,可确定它们的交点坐标,即可求出方程组的解.解:由①得y=2x-2,由②得y=-x-5.在平面直角坐标系中画出一次函数y=2x-2,y=-x-5的图象如图11-54所示.观看图象可知,直线y=2x-2与直线y=-x-5的交点坐标是(-1,-4). ∴原方程组的解是?-=-=.4,1y x小结解方程组通常用消元法.但假如把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标确实是方程组的解.例2 我国是一个严峻缺水的国家,大伙儿应该倍加珍爱水资源,节约用水,据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x 小时后,水龙头滴了ymL 水.〔1〕试写出y 与x 之间的函数关系式;〔2〕当滴了1620mL 水时,小明离开水龙头几小时?〔分析〕拧不紧的水龙头每秒滴2滴水,又∵1小时=3600秒,∴1小时滴水3600×2滴,又∵每滴水约0.05mL ,∴每小时约滴水3600×2×0.05=360mL.解:〔1〕y 与x 之间的函数关系式为x=360x(x ≥0). 〔2〕当y=1620时,有360x=1620,∴x=4.5.∴当滴了1620mL 水时,小明离开水龙头4.5小时.2.数形结合法数形结合法是指将数与形结合起来进行分析、研究、解决咨询题的一种思想方法.数形结合法在解决与函数有关的咨询题时,能起到事半功倍的作用.例3 如图11-55所示,一次函数的图象与x 轴、y 轴分不相交于A ,B 两点,假如A 点的坐标为A 〔2,0〕,且OA=OB ,试求一次函数的解析式.〔分析〕通过观看图象能够看出,要确定一次函数的关系式,只要确定B 点的坐标即可,因为OB=OA=2,因此点B 的坐标为〔0,-2〕,再结合A 点坐标,即可求出一次函数的关系式.解:设一次函数的关系式为y=kx+b(k,b 为常数,且k ≠0). ∵OA=OB ,点A 的坐标为(2,0), ∴点B 的坐标为(0,-2).∵点A ,B 的坐标满足一次函数的关系式y=kx+b ,∴??-=+=+,20,02b b k ∴?-==.2,1b k∴一次函数的关系式为y=x-2. 【讲明】利用函数图象研究数量之间的关系是数形结合思想的具体运用,在解决有关函数咨询题时有着重要的作用.3.分类讨论法分类讨论法是在对数学对象进行分类的过程中寻求答案的一种思想方法.分类讨论法既是一种重要的数学思想,又是一种重要的教学方法.分类的关键是依照分类的目的,找出分类的对象,分类既不能重复,也不能遗漏,最后要全面总结.例4 在一次遥控车竞赛中,电脑记录了速度的变化过程,如图11-56所示,能否用函数关系式表示这段记录?〔分析〕依照所给图象及函数图象的增减性,此题要分三种情形进行讨论.电脑记录提供了赛车时刻t(s)与赛车速度υ(m/s)之间的关系,在10s内,赛车的速度从0加速到7.5m/s,又减至0,因此要注意时刻对速度的阻碍.解:观看图象可知,当t在0~1s内时,速度υ与时刻t是正比例函数关系,υ=7.5t〔0≤t≤1〕;当t在1~8s内时,速度υ保持不变,υ=7.5〔1<t≤8〕;当t在8~10s内时,速度υ与时刻t是一次函数关系,υ=-3.75t+37.5〔8<t≤10=.例5 某商场打算投入一笔资金采购一批紧俏商品,通过市场调查发觉,假如月初出售可获利15%,并可用本利和再投资其他商品,到月末又可获利10%;假如月末出售可获利30%,但要付仓储费用700元,咨询他如何销售获利较多?〔分析〕两种方式获利多少与投入资金有关,需要分类讨论,题中的三个百分比是对投资来讲的,设该商场投入资金x元,那么按不同方式销售的获利情形:月初出售共获利15%x+(x+15%)·1O%;月末出售共获利3O%x-700.然后比较两种销售方式获利的多少.解:设商场打算投资x元,在月初出售共获利y1元,在月末出售共获利y2元,依照题意,得y1=15%x+〔x+15%x〕·10%=0.265x,y2=30%x-700=0.3x-700.∴y1-y2=0.265x-(0.3x-700)=700-0.035x.①当y1-y2=0时,有700-0.035x=0,∴x=20000.∵当x=20000时,两种销售方式获利一样多.②当y1-y2>0时,有700-0.035x>0,∴x<20000.∴当x<20000时,y1>y2.即月初出售获利较多.③当y1-y2<0时,有700-0.035x<0,∴x>20000.∴当x>20000时,y1<y2.即月末出售获利较多.【讲明】进行有关咨询题的分类讨论,要全面考察,可依照图形或题意找出所有可能的情形,然后进行总结.4.方程方法方程方法是指对所求数学咨询题通过列方程〔组〕使咨询题得解的方法.在函数及其图象中,方程方法的应用要紧表达在运用待定系数法确定函数关系式中.例6 一次函数y=kx+b(k ≠0)的图象通过点A 〔-3,-2〕及点B(1,6),求此函数关系式,并作出函数图象.(分析) 可将由条件给出的坐标分不代入y=kx+b 中,通过解方程组求出k ,b 的值,从而确定函数关系式.解:由题意可知,==∴??=+-=+-.4,2,6,23b k b k b k ∴函数关系式为y=2x+4. 图象如图11-57所示.【讲明】一次函数y=kx+b 中含有两个待定系数k,b ,依照待定系数法,只要列出方程组即可.例7 科学家通过研究得出:一定质量的某种气体在体积不变的情形下,压强p(kPa)随温度t(℃)变化的函数关系式是p=kt+b ,其图象如图11-58所示的直线.〔1〕依照图象求出上述气体的压强P 与温度t 之间的函数关系式;〔2〕当压强p 为200kPa 时,求上述气体的温度.(分析) 要求出p 与t 之间的函数关系式,需知图象上的两个点的坐标,由图象可知,点〔25,110〕,(50,120)在该图象上,通过解方程可得关系式.解:〔1〕观看图象可知,点(25,110),(50,120)在该图象上.∴??==∴+=+=.100,52,50120,25110b k b k b k∴函数关系式为p=52t+100. 〔2〕当p=200时,有 200=52t+100,∴t=250.∴当压强P 为200kPa 时,气体的温度是250℃.。
一次函数图像的应用(1)教学设计教科书分析一次函数图象的应用是继学生学习了一次函数的概念,作一次函数的图象和根据情境或图象确定一次函数表达式的又一个内容,是一个对前面知识进行升华的内容。
本节主要是培养学生通过函数图象获取信息,不提倡学生通过求函数表达式去解决问题。
一次函数图象的应用第一课时中,教科书所安排的随堂练习和议一议分别体现的是,通过图象求函数表达式和讨论方程与函数的联系,放在本节中与本节的主要目标有点不合适,移到前一节作为拓展部分安排更适合。
学生分析1、学生在小学时学会读过折线统计图,因此对于识图并不是绝对陌生。
2、学生在学确定一次函数表达式时,对识一次函数图象有初步的理解。
3、通过图象获得信息,只有少数学生能较快达到要求,即就是只有少数学生形象思维能力较强,因此还需老师正确而又耐心的引导。
教学目标1、能通过函数图象获取信息,发展形象思维。
2、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
教学过程一、 创设情境多媒体放映干涸的水库的画面,让学生观看画面后简要描述画面所反映的现象,然后出示具体的问题情境:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t (天)与蓄水量v (万米3)的关系如下图所示,回答下列问题:(1)干旱持续10天,蓄水量为多少?连续干旱23天呢?(2)蓄水量小于400万米3时,将发生严重干旱警报,干旱多少天后将发生严重干旱120010 v/万米3 t/天600 200 20 30 40 50警报?(3)按照这个规律,预计持续多少天水库将干涸?操作方法:先让学生独立思考,试试自己能否独立完成。
然后老师进行分析,启发诱导,让学生学会识图,解决本节中的问题。
分析:(1)这是一幅什么函数的图象?这个图象的每一点的横坐标和纵坐标分别表示什么?(2)要找到干旱持续10天后的蓄水量。
先找到横轴上的10,然后过这点作x 轴的垂线与直线有交点,然后相应地找到交点的纵坐标(边讲边演示,或者请学生边讲边演示)(3)回答第(2)问时方法与上相同。
人教新课标八上第十四章一次函数14.2.2 一次函数(第一课时)教学目标1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学过程Ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为5℃.海拔每升高1 km气温下降6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃.试用解析式表示y与x的关系.解:y与x的函数关系式为y=-6x+5当登山队员由大本营向上登高0.5km时,他们所在位置的气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2℃这个函数y=-6x+5与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.Ⅱ.导入新课下列问题中变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;(2)一种计算成年人标准体重G(单位:千克)的方法是:以厘米为单位的身高值h减常数105,所得的差是G的值;(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取;(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm 2)随x的值而变化。
这些问题的函数解析式分别为:1.C=7t-35.2.G=h-105.3.y=0.01x+22.4.y=-5x+50.归纳:它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b(k≠0)定义:一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.讲解例题例题1:下列函数关系式中,哪些是一次函数,哪些是正比例函数?( 1)y=-x-4 (2)y=5x 2+6 (3)y=2πx (4)y=-8x (5)y=-8x解:( 1)它是一次函数,不是正比例函数。
(此文档为word格式,下载后您可任意编辑修改!)第十四章一次函数课题:11.1.1变量知识目标:理解变量与函数的概念以及相互之间的关系能力目标:增强对变量的理解情感目标:渗透事物是运动的,运动是有规律的辨证思想重点:变量与常量难点:对变量的判断教学媒体:多媒体电脑,绳圈教学说明:本节渗透找变量之间的简单关系,试列简单关系式教学设计:引入:信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?(1)信息2:汽车以60km(支)的关系;(2)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(ms)的关系;(3)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:1.分别指出下列各式中的常量与变量.(1)圆的面积公式S=πr2;(2)正方形的l=4a;(3)大米的单价为2.50元千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出不、常量和变量.(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.思考:怎样列变量之间的关系式?小结:变量与常量作业:阅读教材5页,11.1.2函数课题:11.1.2函数知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数能力目标:会用变化的量描述事物情感目标:回用运动的观点观察事物,分析事物重点:函数的概念难点:函数的概念教学媒体:多媒体电脑,计算器教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:引入:信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?信息2:当你坐在摩天轮上时,随着旋转时间t(min)与你离开地面的高度h(m)之间的关系如图,你能填写下表吗?新课:问题:(1)如图是某日的气温变化图。
①这张图告诉我们哪些信息?②这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:①这表告诉我们哪些信息?②这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
范例:例1 判断下列变量之间是不是函数关系:(4)长方形的宽一定时,其长与面积;(5)等腰三角形的底边长与面积;(6)某人的年龄与身高;活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系思考:自变量是否可以任意取值例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x (单位:km)的增加而减少,平均耗油量为0.1Lkm。
(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?解:(1)y=50-0.1x(2)0≤x≤500(3)x=200,y=30活动2:练习教材9页练习小结:(1)函数概念(2)自变量,函数值(3)自变量的取值范围确定作业:18页:2,3,4题课题:11.1.3函数图象(一)知识目标:学会用图表描述变量的变化规律,会准确地画出函数图象能力目标:结合函数图象,能体会出函数的变化情况情感目标:增强动手意识和合作精神重点:函数的图象难点:函数图象的画法教学媒体:多媒体电脑,直尺教学说明:在画图象中体会函数的规律教学设计:引入:信息1:下图是一张心电图,信息2:下图是自动测温仪记录的图象,他反映了北京的春季某天气温T如何随时间的变化二变化,你从图象中得到了什么信息?新课:问题:正方形的边长x与面积S的函数关系为S=x2,你能想到更直观地表示S与x 的关系的方法吗?一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph)。
范例:例1 下面的图象反映的过程是小明从家去菜地浇水,有去玉米地锄草,然后回家.其中x表示时间,y表示小名离家的距离.根据图象回答问题:(7)菜地离小明家多远?小明走到菜地用了多少时间?;(8)小明给菜地浇水用了多少时间?(9)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?(10)小明给玉米锄草用了多少时间?(11)玉米地离小名家多远?小明从玉米地走回家的平均速度是多少?例2 在下列式子中,对于x的每一确定的值,y有唯一的对应值,即y是x的函数,画出这些函数的图象:(1)y=x+0.5; (2)y= (x>0)解:活动1:教材16页练习1,2题思考:画函数图象的一般步骤是什么?小结:(1)什么是函数图象(2)画函数图象的一般步骤作业:19:5,7题课题:11.1.3函数图象(二)知识目标:学会函数不同表示方法的转化,会由函数图象提取信息能力目标:正确识别函数图象情感目标:激发学生的探索精神重点:利用函数图象解决问题难点:从函数图象中提取信息教学媒体:多媒体电脑,直尺教学说明:在画图象中找函数的规律教学设计:引入:信息1:信息2:新课:函数的表示方法为列表法、解析式法和图形法,这三种方法在解决问题时是可以相互转化的。
范例:例1 一水库的水位在最近5消耗司内持续上涨,下表记录了这5个小时水位高度.解:(1)y=0.05t+10 (0≤t≤7)(2)当t=5+2=7时,y=0.05t+10=10.35预计2小时后水位将达到10.35米。
思考:函数图象上的点的坐标与其解析式之间的关系?例2 已知函数y=2x-3,求:(1)函数图象与x轴、y轴的交点坐标;(2)x取什么值时,函数值大于1;(3)若该函数图象和函数y=-x+k相交于x轴上一点,试求k的值.活动2:在同一直角坐标系中,画出函数y=-x与函数y=2x-1的图象,并求出它们的交点坐标. 练习:教材18页:练习1,2题小结:(1)函数的三种表示方法;(2)函数图象上点的坐标与函数关系式之间的关系;作业:20页8,9,10题11.2.1 正比例函数教学目标(一)教学知识点1.认识正比例函数的意义.2.掌握正比例函数解析式特点.3.理解正比例函数图象性质及特点.4.能利用所学知识解决相关实际问题.教学重点1.理解正比例函数意义及解析式特点.2.掌握正比例函数图象的性质特点.3.能根据要求完成转化,解决问题.教学难点正比例函数图象性质特点的掌握.教学过程Ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥뼈မ鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即y=200×45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.Ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长L随半径r的大小变化而变化.2.铁的密度为7.8gcm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n 的变化而变化.4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.解:1.根据圆的周长公式可得:L=2r.2.依据密度公式p=可得:m=7.8V.3.据题意可知:.4.据题意可知:T=-2t.我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.• • • •一般地,•形如y=•kx•(k•是常数,•k•≠0•)的函数,•叫做正比例函数(proportional func-tion),其中k叫做比例系数.我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?[活动一]活动内容设计:画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.1.y=2x 2.y=-2x活动设计意图:通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣.教师活动:引导学生正确画图、积极探索、总结规律、准确表述.学生活动:利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.活动过程与结论:1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:画出图象如图(1).2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:画出图象如图(2).3.两个图象的共同点:都是经过原点的直线.不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;•经过第二、四象限.尝试练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较.1.y=x 2.y=-x比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=x•的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=-x•的图象从左向右下降,经过二、四象限,即随x 增大y反而减小.总结归纳正比例函数解析式与图象特征之间的规律:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.•当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•图象经过二、四象限,从左向右下降,即随x增大y反而减小.正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,•我们可以称它为直线y=kx. [活动二]活动内容设计:经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,•怎样画最简单?为什么?活动设计意图:通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.教师活动:引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法.学生活动:在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由.活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象.画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.Ⅲ.随堂练习用你认为最简单的方法画出下列函数图象:1.y=x 2.y=-3x解:除原点外,分别找出适合两个函数关系式的一个点来:1.y= x (2,3)2.y=-3x (1,-3)小结:本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.课后作业习题11.2─1、2题.Ⅵ.活动与探究某函数具有下面的性质:1.它的图象是经过原点的一条直线.2.y随x增大反而减小.请你举出一个满足上述条件的函数,写出解析式,画出图象.解:函数解析式:y=-0.5x备选题:汽车由天津驶往相距120千米的北京,S(千米)表示汽车离开天津的距离,•t(小时)表示汽车行驶的时间.如图所示1.汽车用几小时可到达北京?速度是多少?2.汽车行驶1小时,离开天津有多远?3.当汽车距北京20千米时,汽车出发了多长时间?解法一:用图象解答:从图上可以看出4个小时可到达.速度==30(千米时).行驶1小时离开天津约为30千米.当汽车距北京20千米时汽车出发了约3.3个小时.解法二:用解析式来解答:由图象可知:S与t是正比例关系,设S=kt,当t=4时S=120即120=k×4 k=30∴S=30t.当t=1时 S=30×1=30(千米).当S=100时 100=30t t=(小时).以上两种方法比较,用图象法解题直观,用解析式解题准确,各有优特点.毛§11.2.2 一次函数(一)教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程Ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.Ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.2.一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.C=7t-35.2.G=).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.练习:1.下列函数中哪些是一次函数,哪些又是正比例函数?(1)y=-8x.(2)y=.(3)y=5x2+6.(3)y=-0.5x-1.2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?(2)求第2.5秒时小球的速度.3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗?解答:1.(1)(4)是一次函数;(1)又是正比例函数.2.(1)v=2t,它是一次函数.(2)当t=2.5时,v=2×2.5=5所以第2.5秒时小球速度为5米秒.3.函数解析式:y=50-5x自变量取值范围:0≤x≤10y是x的一次函数.[活动一]活动内容设计:画出函数y=-6x与y=-6x+5的图象.并比较两个函数图象,探究它们的联系及解释原因.活动设计意图:通过活动,加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解析式联系规律.教师活动:引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.学生活动:引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.比较上面两个函数的图象的相同点与不同点。