2020届高考数学小题狂练
- 格式:doc
- 大小:1.49 MB
- 文档页数:22
2020届高三数学小题狂练二十姓名 得分1.已知集合2{|log 1}M x x =<,{|1}N x x =<,则M N I = .2.双曲线2213x y -=的两条渐近线的夹角大小为 .3.设a 为常数,若函数1()2ax f x x +=+在(2,2)-上为增函数,则a 的取值范围是 . 4.函数)2(log log 2x x y x +=的值域是 .5.若函数()23f x ax a =++在区间)1,1(-上有零点,则a 的取值范围是 .6.若1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的取值范围是 .7.已知函数12||4)(-+=x x f 的定义域是[,]a b (a ,b 为整数),值域是[0,1],则满足条件的整数数对),(b a 共有 个.8.设P ,Q 为ABC ∆内的两点,且2155AP AB AC =+u u u r u u u r u u u r ,AQ uuu r 23AB =u u u r 14+AC u u ur ,则ABP ∆的面积与ABQ ∆的面积之比为 . 9.在等差数列{}n a 中,59750a a +=,且95a a >,则使数列前n 项和n S 取得最小值的n 等于 . 10.设x ,y ∈R +,312121=+++y x ,则xy 11.在正三棱锥A BCD -中,E ,F 分别是AB ,BC EF DE ⊥,1BC =,则正三棱锥A BCD -的体积是 .12.设()f x 是定义在R 上的偶函数,满足(1)()1f x f x ++=,且当[1,2]x ∈时,()2f x x =-,则(2016.5)f -=_________.DCQ BAP答案1.(0,1) 2.60︒ 3.),21(+∞4.),3[]1,(+∞--∞Y 5.(3,1)-- 6.)23,2[- 7.5(||[0,2]x ∈) 8.459.610.16(8xy x y =++,8xy ≥+16xy ≥)11.242(EF DE ⊥,EF ∥AC ,∴AC DE ⊥.又AC BD ⊥,∴AC ⊥平面ABD .∵1BC =,∴2AB AC AD ===,3162V =24=)12.0.5(2T =,(0.5)(0.5)(1.5)0.5f f f =-==)。
2020届高三数学小题狂练十三姓名 得分1.函数2()12sin f x x =-的最小正周期为 .2.若函数()log (01)a f x x a =<<在闭区间[,2]a a 上的最大值是最小值的3倍,则a = .3.函数x y sin =的定义域为],[b a ,值域为21,1[-],则a b -的最大值和最小值之和为 .4.函数32()267f x x x =-+的单调减区间是 .5.若2(3),6,()log ,6,f x x f x x x +<⎧=⎨≥⎩则(1)f -的值为 .6.设等差数列{}n a 的公差0d ≠,19a d =.若k a 是1a 与2k a 的等比中项,则k = .7.在直角坐标系xOy 中,i r ,j r 分别是与x 轴,y 轴平行的单位向量,若直角ABC ∆中,AB i j =+u u u r r r ,2AC i m j =+u u u r r r ,则实数m = .8.若函数2()x f x x a=+(0a >)在[1,)+∞上的最大值为3,则a 的值为 . 9.若不等式1,0ax x a >-⎧⎨+>⎩的解集是空集,则实数a 的取值范围是 . 10.已知两圆1C :22210240x y x y +-+-=,2C :222280x y x y +++-=,则以两圆公共弦为直径的圆的方程是 .11.过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点,交其准线于点C ,且2BC FB =u u u r u u u r ,12AF =,则p 的值为 .12.从椭圆上一点A 看椭圆的两焦点1F ,2F 的视角为直角,1AF 的延长线交椭圆于B ,且2AF AB =,则椭圆的离心率为__________.答案1.π2.43.2π4.[0,2] 5.36.47.0或2-81-讨论a9.(,1]-∞-10.5)1()2(22=-++y x (圆心在公共弦上,3λ=-)11.6:作AH Ox ⊥,30AFH ∠=︒,12sin 30622A p p x =+︒=+,12cos 30A y =︒=12269-不扣分):2AF m =,2BF =,24m a +=,故(4m a =-,12AF a m =-,22212(2)AF AF c +=。
2020届高三数学小题狂练十九姓名 得分1.设a 是实数,且211i i a +++是纯虚数,则=a . 2.已知0a >,0b <,),(a b m ∈且0≠m ,则m 1的取值范围是 . 3.直线2(1)(3)750m x m y m ++-+-=与直线(3)250m x y -+-=垂直的充要条件是 .4.有一棱长为a 的正方体框架,其内放置一气球,使其充气且尽可能地膨胀(气球保持为球的形状),则气球表面积的最大值为 .5.若函数1)(2++=mx mx x f 的定义域是R ,则m 的取值范围是 .6.已知α,β均为锐角,且cos()sin()αβαβ+=-,则tan α的值等于 .7.设数列{}n a 的前n 项和为n S ,若11a =,13n n a S +=(n =1,2,3,…),则410log S = .8.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为 .9.设双曲线C :22221x y a b-=(0a >,0b >)的右顶点为E ,左准线与两渐近线的交点分别为A ,B 两点,若60AEB ∠=︒,则双曲线C 的离心率e 等于 .10.函数)sin()(θ+=x x f (||2πθ<)满足对任意x ∈R 都有)6()6(x f x f --=+ππ,则θ= .11.在△ABC 中,AB =2BC =,CA =BC a =u u u r r ,CA b =u u u r r ,AB c =u u u r r ,则a b b c c a ⋅+⋅+⋅=r r r r r r .12.过抛物线214y x =准线上任一点作该抛物线的两条切线,切点分别为M ,N ,则直线MN 过定点__________.答案1.1-2.),1()1,(+∞⋃-∞ab3.3m =或2m =- 4.22a π5.[0,4]6.17.98.09.210.6π-11.6- 12.(0,1)(解法1:(,1)a -,2240i i x ax --=,122x x a +=,2222121212()248x x x x x x a +=+-=+,于是MN 中点为22(,)2a a +,21122122MN y y x x a k x x -+===-,直线MN :12a y x =+,过定点(0,1). 解法2:(,1)a -,1111()2y y x x x -=-,1111122y x a y --=-,11220ax y -+=.同理可得22220ax y -+=.故直线MN 方程为220ax y -+=,过(0,1))。
冲刺2020年高考数学小题狂刷卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|20}A x x x =--≥,则R C A =( )A .(1,2)-B .[1,2]-C .(2,1)-D .[2,1]-【答案】A 【解析】 由题意2{|20}{|2A x x x x x =--≥=≥或1}x ≤-,所以{|12}R C A x x =-<<,故选A .2.双曲线222=2x y -的焦点坐标为( )A .(1,0)±B.(0) C .(0,1)± D.(0,【答案】B 【解析】由2222x y -=可得22a 2,1b ==,焦点在x 轴上,所以222a 3c b =+=,因此c =所以焦点坐标为();故选B . 3.设实数x ,y 满足约束条件330200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则z x y =+的最大值为( )A .0B .1C .2D .3【答案】D【解析】由实数x ,y 满足约束条件330200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩画出可行域如图阴影部分所示,可知当目标函数z x y =+经过点()3,0A 时取得最大值,则max 30 3.z =+= 故选D. 4.已知,,a b R ∈则“221a b +≤”是“1a b +≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】22221||1a b a b +≤⇔+≤,其表示的是如图阴影圆弧AB 部分,1a b +≤其表示的是如图阴影OAB ∆部分,所以 “221a b +≤”是“1a b +≤”的必要不充分条件.故答案选B.5.如图,网格纸是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为( )A .4B .8C .16D .20【答案】C 【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积6212S =⨯=,高为4,故该几何体的体积111241633V Sh ==⨯⨯=,故选C. 6.函数()()22ln x x f x x -=+的图象大致为( )A .B .C .D .【答案】B【解析】()f x Q 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+= ()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .故选B .7.设66016(1),x a a x a x +=+++L 则246a a a ++=( )A .31-B .32-C .31D .32【答案】C 【解析】二项式展开式的通项公式为6r r C x ,故2462466661515131a a a C C C ++=++=++=,故选C .8.如图,半径为1的扇形AOB 中,23AOB π∠=,P 是弧AB 上的一点,且满足OP OB ⊥,,M N 分别是线段,OA OB 上的动点,则•PM PN u u u u v u u u v的最大值为( )A .2BC .1 D【答案】C【解析】•PM PN u u u u v u u u v 2()()PO OM PO ON PO OM PO OM ON =+⋅+=+⋅+⋅u u u v u u u u v u u u v u u u v u u u v u u u u v u u u v u u u u v u u u v0011cos150cos12010()0()122OM OM ON =++⋅≤+⨯-+⨯-=u u u u v u u u u v u u u v ,选C .9.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D .10.已知数列{}n a 满足()*11112n n n na a n a a +++=+∈N ,则( ) A .当()*01n a n <<∈N 时,则1n n a a +> B .当()*1n a n >∈N 时,则1n n a a +<C .当112a =时,则111n n a a +++> D .当12a =时,则111n n a a +++>【答案】C 【解析】111111112n n n n n n n n n a a a a a a a a a +++++=+∴-+-=即111()(1)n n n n na a a a a ++--=. 当01n a <<时,1110n n a a +-<,故1n n a a +<,A 错误.当1n a >时,1110n n a a +->,故1n n a a +>,B 错误.对于D 选项,当1n =时,12a =,212111922a a a a +=+=<D 错误.用数学归纳法证明选项C.易知0n a >恒成立,当1n =时,21211123a a a a +=+=> 假设当n k =时成立,111k k a a +++>2121122k k a k a +++>+,当1n k =+时,222222111122211111112443426k k k k k k k k k a a a a a k a a a a +++++++++⎛⎫⎛⎫+=+=++=+++>+ ⎪ ⎪⎝⎭⎝⎭即221k k a a +++> 成立,故111n n a a +++>恒成立,得证,故答案选C . 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2020届高三数学小题狂练八姓名 得分1.复数z 满足方程(2)z z i =+,则z = .2.设集合{|}M x x m =≤,{|2}xN y y -==,若M N ⋂≠∅,则实数m 的取值范围是 . 3.若函数2()2x x a f x a+=-是奇函数,则a = . 4.抛物线24x y =上一点A 的横坐标为2,则点A 与抛物线焦点的距离为 .5.掷一个骰子的试验,事件A 表示“大于2的点数出现”,事件B 表示“大于2的奇数点出现”,则一次试验中,事件A B +发生概率为 .6.过点(1,4)A -作圆22(2)(3)1x y -+-=的切线l ,则l 的方程为 .7.若ABC ∆的三条边长2a =,3b =,4c =,则C ab B ca A bc cos 2cos 2cos 2++的值为 .8.已知函数)(x f 的导数()(1)()f x a x x a '=+-,若()f x 在x a =处取到极大值,则常数a 的取值范围是 .9.已知二次函数2()f x ax bx c =++,且不等式()0f x <的解集为(,1)(3,)-∞+∞U ,若)(x f 的最大值小于2,则a 的取值范围是 .10.在OAB ∆中,M 为OB 的中点,N 为AB 的中点,ON ,AM 交于点P ,若AP mOA nOB =+u u u v u u u v u u u v (m ,n ∈R ),则n m -= .11.已知n S 为等差数列{}n a 的前n 项的和,n T 为等差数列{}n b 的前n 项的和,若n m S T =2(1)n m m +,则510a b =_________. 12.已知()f x 是定义在R 上的偶函数,它的图象关于直线2x =对称,当[02]x ∈,时,tan [01),()(1)[12],x x f x f x x ∈⎧=⎨-∈⎩,,,,则(5)6f π--=__________.答案1.1i -+2.(0,)+∞3.1±4.25.32 6.4y =或34130x y +-=7.298.(1,0)-9.(2,0)-10.1:连MN ,相似11.920(59101921929a Sb T =) 12.3(()()f x f x -=,(2)(2)f x f x +=-+,∴()(4)f x f x =-+((4))f x =--+,周期为4,(5)(1)(1)()tan 66666f f f f πππππ--=--=+===)。
专题一集合与常用逻辑用语1、 下列说法正确的有()(1) 很小的实数町以构成集合;(2) 集合{y| y=x 2-l}与集合{(x,y)| y= x 2 -1}是同一个集合;⑶这些数组成的集合有5个元素; 2 4 2(4)任何集合至少刈两个子集一A. 0个B. 1个C. 2个D. 3个2、 己知 xe{l,2,x 2},则有()A. x=lB. x=l 或x=2C. x=0或x=2 D . x=0 或 x=l 或 x=23、 若一lw{a-l,2a + l,a2-l},则实数a 的取值集合是 __________________ .4、 定义一种集合运算 AB = {x|xe(A^B),且 xw(AcB)},设 Nl = {x|-2 < x< 2},N = {x 卩v xv 3}则MN 所表示的集合是 _____________ .5、 设集合 A={x|-l<x<2},B = {x|x<a},r.: A C B,则 a 的取值范围()A ・ a>-lB ・ a»2C. a>-l D ・-lvaS2 6、设全集U=R,集合A={x|log :x<2), B = {x|(x-3)(x+l)>0},则(0B )f)A ()7、已知全集U=R,N = -;x 1 < 2X < 1 >. Nl = { x | y = ln(-x -1)} , WlJ 图中阴影部分表示的集合是A.{x|-3< x<-1} B {x|-3< x<0} C.{x|-l<x<0} D {x|xv_3}8、 己知命题p:单位向量的方向均相同,命题q:实数a 的平方为负数。
则下列说法正确的 是()A. pvq 是真命题B p/\q 是頁•命题C. (-ip)vq 是假命题D. pA (->q)是假命题A. B. (v,-l]U(0,3) C. (0,3] D. (0,3)9、设a,b都是不等于1的正数,则“3。
2020届高三数学小题狂练六姓名 得分1.设集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合=N M I .2.已知∈x R ,[]x 表示不大于x 的最大整数,如[]π=3,[]-=-121,[]120=,则使[]x -=13成立的x 的取值范围是 .3.定义在R 上的奇函数)(x f 满足1)2(=f ,且)2()()2(f x f x f +=+,则(1)f = .4.已知ααcos sin 2=,则ααα2cos 12sin 2cos ++的值等于 . 5.若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m = .6.若向量a v ,b v满足||a =v ||1b =v ,()1a a b +=v v v g ,则向量a v ,b v 夹角大小为 .7.若cos 2sin()4απα=-,则cos sin αα+的值为 . 8.化简tan 70cos10tan 702cos 40-o o o o o = .9.已知0a >且1a ≠,2()x f x x a =-,若当x ∈[1,1]-时均有1()2f x <,则实数a 的范围是 .10.已知正项数列{}n a 的首项11a =,前n 和为n S ,若以(,)n n a S 为坐标的点在曲线1(1)2y x x =+上,则数列{}n a 的通项公式为 . 11.已知02x π<<,且t 是大于0的常数,1()sin 1sin t f x x x=+-的最小值为9,则t = . 12.设()f x 是定义在R 上的函数,且满足(2)(1)()f x f x f x +=+-,如果3(1)lg 2f =,(2)lg15f =,则(15)f = .答案1.}2,0{2.[4,5)3.21 4.35.26.135︒7.128.29.1(,1)(1,2)2U 讨论最大值 10.n a n =11.412.1((3)()f x f x +=-)。
2020届高三数学小题狂练二姓名 得分1.已知复数z 满足(2-i)z =5,则z = .2.已知向量24(),a =,11(),b =.若向量()λ⊥b a +b ,则实数λ的值是 .3.若连续投掷两枚骰子分别得到的点数m ,n 作为点P 的坐标(,)m n ,则点P 落在圆1622=+y x 内的概率为_________.4.已知()f x 是定义在R 上的奇函数,且当0x >时,2()log f x x =,则方程()1f x =的解集是 .5.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为M ,m ,则M m -= .6.若三条直线320x y -+=,230x y ++=,0mx y +=不能构成三角形,则m 的值构成的集合是 .7.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为 .8.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则||x y -的值为 .9.已知(1)(1)()sin33x x f x ππ++=,则(1)(2)(2015)f f f +++=L .10.数列{}n a 中,11a =,1411++=+n n n a a a = . 11.已知点G 是ABC ∆的重心,若120A ∠=︒,2AB AC =-u u u r u u u r g ,则||AG u u u r 的最小值是 .12.双曲线221x y n-=(1n >)的两焦点为1F ,2F ,点P 在双曲线上,且满足12PF PF +=,则12PF F ∆的面积为 .答案1.2+i2.3-3.294.{2,-12} 5.326.{3-,1-,2} 7.78.49.010.12764 11.23:1()3AG AB AC =+u u u r u u u r u u u r12.1:12PF PF +=1212S PF PF =g ,平方减。
冲刺2020年高考数学小题狂刷卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )A .3πB .3π-C .23πD .23π- 【答案】B【解析】因为时针旋转一周为12小时,转过的角度为2π,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为11263ππ-⨯=-.故选:B.2.已知集合{|3}M x x =≥,2{|16}N y Z y =∈≤,那么()R C M N ⋂=( )A .[]3,3-B .()3,3-C .{}3,2,1,0,1,2,3---D .{|33,}x x x Z -<<∈【答案】D【解析】2{|16}N y Z y =∈≤ {}0,1,2,3,4=±±±± ,R C M =(){|3}3,3x x <=- ,所以()R C M N ⋂= {}0,1,2±± ,选D.3.已知a ,b R ∈,21i =-,则“1a b ==”是“222i (i)1i a b ++=-”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】2222211022i (i)2i ()2i {{{111i 22a a ab a b a b ab b b ab ==--=+=+⇔=-+⇔⇔==--=或 , 因此"1"a b ==是“()2221i a bi i+=+-”的充分不必要条件,选A.4.要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象( ) A .向右平移6π个单位 B .向右平移3π个单位 C .向左平移3π个单位 D .向左平移6π个单位 【答案】D 【解析】函数sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,∴要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向左平移6π个单位.故选:D .5.函数cos x y x=-的图像可能是( ) A . B . C . D .【答案】A【解析】()()()cos cos x x f x f x x x--=-==--Q ,即函数为奇函数,图像关于原点对称.排除B,当0,cos 1,x x +→→ 则cos ,x x -→-∞排除C,D.故选A.。
2020届高三数学小题狂练四姓名 得分1.若集合2{5,log (3)}A a =+,集合{,}B a b =,{2}A B =I ,则A B U = .2.若复数2(56)(3)i z m m m =-++-是纯虚数,则实数m = .3.若10≤≤x ,且21y x -≥,则2z x y =+的最小值为 .4.若函数32()f x ax x x =-+在R 上单调递增,则a 的取值范围是 . 5.在等差数列{}n a 中,638a a a =+,则前9项之和9S = .6.已知ABC ∆中,2a =,b =45A =︒,则B 等于 .7.曲线sin cos y t x x =+在0=x 处的切线方程为1+=x y ,则=t .8.曲线C1+=上的点到原点的距离的最小值为_________.9.已知直线l 的倾斜角为︒120,与圆M :0222=-+y y x 交于P ,Q 两点,若0OP OQ ⋅=u u u r u u u r (O 为原点),则l 在x 轴上的截距为 .10.如图,在ABC ∆中,1tan 22C =,0AH BC ⋅=u u u r u u u r , 0)(=+⋅CB CA AB ,则过点C 以A ,H 为两 焦点的双曲线的离心率为 .11.在由正整数构成的无穷数列{}n a 中,对任意的正整数n ,都有1n n a a +≤,且对任意的正整数k ,该数列中恰有21k -个k ,则2015a 的值等于 .12.已知函数()f x 满足(2016)1f =,)1(-x f 为奇函数,)1(+x f 为偶函数,则(4)f 的值等于 . B A CH答案1.{1,2,5}2.23.14.1[,)3+∞5.06.60°或120°7.18.429y b =+ 10.211.4512.1-:(1)(1)f x f x -=---,(1)(1)f x f x -=+,于是()(2)f x f x =---,(2)()f x f x -=,所以(2)(2)f x f x -=---,进而得周期为8。
2020届高三数学小题狂练一姓名 得分1.已知2{230}A x x x =--≤,{}B x x a =<,若A ⊆B ,则实数a 的取值范围是 .2.已知2()|log |f x x =,则=+)23()43(f f .3.若平面向量b 与向量a =(1,2)-的夹角是180o ,且|b |=b = . 4.已知α,β,γ是三个互不重合的平面,l 是一条直线,给出下列四个命题:①若αβ⊥,l β⊥,则l ∥α; ②若l α⊥,l ∥β,则βα⊥; ③若l 上有两个点到α的距离相等,则α//l ; ④若αβ⊥,α∥γ,则βγ⊥. 其中正确命题的序号是 .5.设函数()24xf x x =--,0x 是()f x 的一个正数零点,且0(,1)x a a ∈+,其中a ∈N ,则a = . 6.已知α为第二象限的角,且53sin =α,则=+)4cos(πα . 7.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知3A π=,3=a ,1=b ,则=c .8.已知函数()cos f x x x =,则'()3f π=_________. 9.已知等差数列{n a }中,0n a ≠,若m ∈N ,1m >,2110m m m a a a -+-+=,2138m S -=,则m = .10.若关于x 的方程10kx +=有两个不相等的实数解,则实数k 的取值范围是 .11.设周期函数)(x f 是定义在R 上的奇函数,若)(x f 的最小正周期为3,且2)1(->f ,mm f 3)2(-=,则m 的取值范围是 . 12.分别在区间[1,6]和[2,4]内任取一实数,依次记为m 和n ,则m n >的概率为 .答案1.(3,)+∞2.13.(3,6)-4.②④5.26. 7.28.12 9.1010.1[,0)2- 11.)3,0()1,(⋃--∞ 12.35。
2020年高考冲刺数学小题狂刷卷(浙江专用)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a R ∈,复数122,12z ai z i =+=-,若12z z 为纯虚数,则a 的值为( ) A .0B .1C .3D .5 【答案】B 【解析】 由()()122(12)222(4)2241212(12)555ai i z ai a a i a a i z i i i +++-++-+====+--+, 因为复数是纯虚数,所以1a =满足题意,故选B.2.函数()233sin 32f x x π⎛⎫=+ ⎪⎝⎭是( ) A .周期为3π的偶函数 B .周期为2π的偶函数C .周期为3π的奇函数D .周期为43π的偶函数 【答案】A 【解析】()2323sin 3cos 323f x x x π⎛⎫=+=- ⎪⎝⎭,3T π=,为偶函数.故选A. 3.已知集合{1A x x ≤=-或}1x ≥,集合{}01B x x =<<,则( )A .{}1AB ⋂=B .R A B A ⋂=ðC .()(]R 0,1A B ⋂=ð D .A B =R U 【答案】B【解析】1B ∉ 故A 错;{}R 01B x x x =≤≥或ð 故B 正确; ()(]R 0,1A B ⋂≠ð ;R A B ⋃≠;故选B.4.点()1,1M 到抛物线22y ax =准线的距离为2,则a 的值为( ) A .1 B .1或3 C .18或124- D .14-或112【答案】C 【解析】依题意可知0a ≠,抛物线的标准方程为212x y a= 当0a <时,抛物线的准线方程为18y a =-,点()1,1M 到18y a =-的距离为1111288a a ⎛⎫--=+= ⎪⎝⎭,解得124a =-.当0a >时,抛物线的准线方程为18y a =-,点()1,1M 到18y a =-的距离为1111288a a ⎛⎫--=+= ⎪⎝⎭,解得18a =.所以a 的值为18或124-.故选C. 5.若x y ,满足约束条件0300x y x y x m +≥⎧⎪-+≥⎨⎪≤≤⎩,且2z x y =-的最大值为9.则实数m 的值为( )A .12B .1C .2D .3【答案】D 【解析】画出可域如下图,其中x=m 是一条动直线,由于已知max 2x-9y =(),所以当29x y -=经过可行域某个顶点(或边界)时取到最大值,此时点A(3,-3),所以m=3,选D.6.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法的种数为( )A .40B .36C .32D .20 【答案】A【解析】除甲、乙、丙三人的座位外,还有7个座位,共可形成六个空,三人从6个空中选三位置坐上去有36C 种坐法,又甲坐在中间,所以乙、丙有22A 种方法,所以他们每人左右两边都有空位且甲坐在中间的坐法有36C 2240A ⋅=种.故答案为A. 7.已知等差数列{}n a 的前n 项和为n S ,且112,0,3(2)m m m S S S m -+=-==≥,则n nS 的最小值为( ) A .-3B .-5C .-6D .-9【答案】D【解析】由112,0,3(2)m m m S S S m -+=-==≥可知12,3m m a a +==, 设等差数列{}n a 的公差为d ,则1d =,∵0m S =,∴12m a a =-=-,则3n a n =-,(5)2n n n S -=,2(5)2n n n nS -=,设2(5)(),02x x f x x -=>,23'()5,02f x x x x =->,∴()f x 的极小值点为103x =,∵n Z ∈,且(3)9f =-,(4)8f =-,∴min ()9f n =-,故选D.8.已知随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.令随机变量|()|E ηξξ=-,则( )A .()()E E ηξ>B .()()E E ηξ<C .()()D D ηξ>D .()()D D ηξ<【答案】D【解析】随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<. 则随机变量ξ的分布列为:所以()()(),1E p D p p ξξ==-,随机变量|()|E ηξξ=-,所以当0ξ=时,()E p ηξξ=-=,当1ξ=时,()1E p ηξξ=-=-,所以随机变量|()|E ηξξ=-的分布列如下表所示(当0.5p =时,η只有一个情况,概率为1):则()()()()1121E p p p p p p η=-+-=-,()()()()22211121D p p p p p p p p η=--⋅-+---⋅⎡⎤⎡⎤⎣⎦⎣⎦()()2121p p p =--, 当()()E E ξη=即()21p p p =-,解得12p =.所以A 、B 错误.()()D D ξη-()()()21121p p p p p =----()22410p p =->恒成立.所以C 错误,D 正确,故选D.9.在平行四边形ABCD 中,点P 在对角线AC 上(包含端点),且2AC =,则()PB PD PA +⋅u u u v u u u v u u u v 有( ) A .最大值为12,没有最小值 B .最小值为12-,没有最大值 C .最小值为12-,最大值为4 D .最小值为4-,最大值为12 【答案】C 【解析】如图:2PB PD PO +=u u u r u u u r u u u r 所以2PB PD PA PO PA +⋅=⋅u u u r u u u r u u u r u u u r u u u r (),(1)当点P 在AO 上,设||[0,1]PO a =∈u u u r ,()22(1)PB PD PA PO PA a a +⋅=⋅=--u u u r u u u r u u u r u u u r u u u r ,当12a =时,有最小值12-;(2)当点P 在CO 上,设||[0,1]PO a =∈u u u r ,()22(1)PB PD PA PO PA a a +⋅=⋅=+u u u r u u u r u u u r u u u r u u u r ,当1a =时,有最大值4;综上()PB PD PA +⋅u u u r u u u r u u u r 有最小值为12-,最大值为4.故选C. 10.已知1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,若存在过1F 的直线分别交双曲线C 的左、右支于A ,B 两点,使得221∠=∠BAF BF F ,则双曲线C 的离心率的取值范围是( )A .(1,23]+B .(1,25]+C .(3,23]+D .(3,25]+【答案】D 【解析】在2BAF V 和21BF F V 中,由221221,BAF BF F ABF F BF ∠=∠∠=∠,可得221BAF BF F V V ∽, 即有221212BF F A BA k BF BF F F ===,即为112212,2AB BF AF kBF BF kBF AF k c =-=⎧⎪=⎨⎪=⋅⎩ 121111222(1)21a BF BF a BF kBF a k BF a BF k-=-=∴-=∴=-Q ,, . 2112112211,,2BF AF kBF AF BF kBF AF a BF k BF -=∴=-∴-=-Q ,()222211a k c a k k ∴⋅-=--21,3a k e c a∴=<∴>-.1122()12,,253a a c a BF a BF c a e c a c a -⎛⎫-==≥+∴≤+ ⎪--⎝⎭故选D. 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2020届高三数学小题狂练一姓名 得分1.已知2{230}A x x x =--≤,{}B x x a =<,若A ⊆B ,则实数a 的取值范围是 .2.已知2()|log |f x x =,则=+)23()43(f f .3.若平面向量b 与向量a =(1,2)-的夹角是180o,且|b |=b = .4.已知α,β,γ是三个互不重合的平面,l 是一条直线,给出下列四个命题: ①若αβ⊥,l β⊥,则l ∥α; ②若l α⊥,l ∥β,则βα⊥; ③若l 上有两个点到α的距离相等,则α//l ; ④若αβ⊥,α∥γ,则βγ⊥. 其中正确命题的序号是 .5.设函数()24xf x x =--,0x 是()f x 的一个正数零点,且0(,1)x a a ∈+,其中a ∈N ,则a = .6.已知α为第二象限的角,且53sin =α,则=+)4cos(πα . 7.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知3A π=,3=a ,1=b ,则=c .8.已知函数()cos f x x x =,则'()3f π=_________.9.已知等差数列{n a }中,0n a ≠,若m ∈N ,1m >,2110m m m a a a -+-+=,2138m S -=,则m = .10.若关于x 的方程10kx +=有两个不相等的实数解,则实数k 的取值范围是 .11.设周期函数)(x f 是定义在R 上的奇函数,若)(x f 的最小正周期为3,且2)1(->f ,mm f 3)2(-=,则m 的取值范围是 . 12.分别在区间[1,6]和[2,4]内任取一实数,依次记为m 和n ,则m n >的概率为 .答案 1.(3,)+∞ 2.1 3.(3,6)- 4.②④ 5.26. 7.28.12 9.10 10.1[,0)2-11.)3,0()1,(⋃--∞ 12.352020届高三数学小题狂练二姓名 得分1.已知复数z 满足(2-i)z =5,则z = .2.已知向量24(),a =,11(),b =.若向量()λ⊥b a +b ,则实数λ的值是 . 3.若连续投掷两枚骰子分别得到的点数m ,n 作为点P 的坐标(,)m n ,则点P 落在圆1622=+y x 内的概率为_________.4.已知()f x 是定义在R 上的奇函数,且当0x >时,2()log f x x =,则方程()1f x =的解集是 .5.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为M ,m ,则M m -= .6.若三条直线320x y -+=,230x y ++=,0mx y +=不能构成三角形,则m 的值构成的集合是 .7.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为 . 8.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则||x y -的值为 .9.已知(1)(1)()sin 33x x f x ππ++=,则(1)(2)(2015)f f f +++=L .10.数列{}n a 中,11a =,1411++=+n n n a a a = .11.已知点G 是ABC ∆的重心,若120A ∠=︒,2AB AC =-u u u r u u u rg ,则||AG u u u r 的最小值是 .12.双曲线221x y n-=(1n >)的两焦点为1F ,2F ,点P 在双曲线上,且满足12PF PF +=,则12PF F ∆的面积为 .答案1.2+i 2.3- 3.294.{2,-12}5.326.{3-,1-,2} 7.7 8.4 9.010.1276411.23:1()3AG AB AC =+u u ur u u u r u u u r12.1:12PF PF +=1212S PF PF =g ,平方减2020届高三数学小题狂练三姓名 得分1.若12z a i =+,234z i =-,且12z z 为纯虚数,则实数a 的值是 . 2.抛物线2y ax =(a 为非零常数)的准线方程为 .3.设函数()log a f x x =(0a >,1a ≠)满足(9)2f =,则(9)af 的值是 . 4.曲线C :()sin xf x x e =+在0x =处的切线方程为 .5.设n S 是等比数列{}n a 的前n 项和,若3S ,9S ,6S 成等差数列,则数列{}n a 的公比q 为 .6.若a ,b≤m 的最小值是 .7.椭圆22143x y +=的右焦点为F ,点(1,1)A ,点M 是椭圆上的任意一点,则2MA MF +的最小值为 . 8.设x ,y 均为正实数,且312121=+++y x ,则xy 的最小值为 . 9.若直线l 与圆224x y +=相交于11(,)A x y ,22(,)B x y 两点,且12122x x y y +=,则AB = .10.小张、小李、小王三位同学在足球场上做传球训练,规定:持球的任何一人必须将球传给另两位同学中的一人.开始时球在小王脚下,传球4次后,则球仍然回到小王脚下的概率为 .11.已知()f x =||2x x a x -+,若()f x 在R 上恒为增函数,则a 的取值范围是 .12.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,点P 在准线上,且12PF PF ⊥,124PF PF ab =g ,则该双曲线的离心率等于 .答案 1.38 2.14y a=- 3.64.210x y -+=5.2-67.38. 16(去分母)9.2(2OA OB ⋅=u u u r u u u r ,3AOB π∠=)10.38(树状图,616)11.[2,2]-(x a ≥:0x a ≤;x a <:0x a ≥)12(由射影公式得222()a m c c c =+2222c a =+,222()a n c c c=-22b =,代入222216m n a b =)或(2ab h c=,中线PO c =,2222()a h c c =-)2020届高三数学小题狂练四姓名 得分1.若集合2{5,log (3)}A a =+,集合{,}B a b =,{2}A B =I ,则A B U = . 2.若复数2(56)(3)i z m m m =-++-是纯虚数,则实数m = . 3.若10≤≤x ,且21y x -≥,则2z x y =+的最小值为 .4.若函数32()f x ax x x =-+在R 上单调递增,则a 的取值范围是 . 5.在等差数列{}n a 中,638a a a =+,则前9项之和9S = . 6.已知ABC ∆中,2a =,b =45A =︒,则B 等于 .7.曲线sin cos y t x x =+在0=x 处的切线方程为1+=x y ,则=t . 8.曲线C1+=上的点到原点的距离的最小值为_________.9.已知直线l 的倾斜角为︒120,与圆M :0222=-+y y x 交于P ,Q 两点,若0OP OQ ⋅=u u u r u u u r(O 为原点),则l 在x 轴上的截距为 .10.如图,在ABC ∆中,1tan 22C =,0AH BC ⋅=u u u r u u ur ,0)(=+⋅CB CA AB ,则过点C 以A ,H 为两焦点的双曲线的离心率为 .11.在由正整数构成的无穷数列{}n a 中,对任意的正整数n ,都有1n n a a +≤,且对任意的正整数k ,该数列中恰有21k -个k ,则2015a 的值等于 .12.已知函数()f x 满足(2016)1f =,)1(-x f 为奇函数,)1(+x f 为偶函数,则(4)f 的值等于 .BACH答案1.{1,2,5} 2.2 3.1 4.1[,)3+∞ 5.0 6.60°或120° 7.1 8.429y b =+ 10.2 11.4512.1-:(1)(1)f x f x -=---,(1)(1)f x f x -=+,于是()(2)f x f x =---,(2)()f x f x -=,所以(2)(2)f x f x -=---,进而得周期为82020届高三数学小题狂练五姓名 得分1.已知向量(1,3)m →=,(2,1)n a a →=-,若→→⊥n m ,则a = .2.已知7-,1a ,2a ,1-四个实数成等差数列,4-,1b ,2b ,3b ,1-五个实数成等比数列,则212b a a -= . 3.正方体的内切球与其外接球的体积之比为 .4.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线5x y +=下方的概率是 .5.若直线10x my ++=与线段AB 有公共点,其中(2,3)A -,(3,2)B ,则实数m 的取值范围是 .6.若椭圆22221(0)x y a b a b +=>>的离心率为,则双曲线22221y x a b-=的离心率为 .7.设x ,y 为实数,且511213x y i i i+=---,则x y += .8.已知向量a r 与b r 的夹角为120o,||3a =r ,||a b +=r r ||b r = .9.在ABC ∆中,3sin 4cos 6A B +=,3cos 4sin 1A B +=,则C ∠等于 . 10.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .11.函数()f x 对于任意x 满足()(2)1f x f x +=,且(1)5f =-,则((5))f f = . 12.已知()f x 是定义在R 上的偶函数,定义在R 上的奇函数()g x 的图象过点(1,1)-且()(1)g x f x =-,则(2015)(2016)f f +=__________.答案 1.3 2.1-3.1∶ 4.165.1[2,]3-6 7.4 8.4 9.6π(若6A B π+=,1sin 2A <,4cos 4B ≤)10.22(2)(2)2x y -+-= 11.15-:1(1)5f -=-12.1-(由()(1)g x f x -=--得()(1)g x f x -=+,故(1)(1)f x f x --=+,于是(4)()f x f x +=,所以(1)(0)(0)(1)f f g g -+=+)2020届高三数学小题狂练六姓名 得分1.设集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合=N M I . 2.已知∈x R ,[]x 表示不大于x 的最大整数,如[]π=3,[]-=-121,[]120=,则使[]x -=13成立的x 的取值范围是 .3.定义在R 上的奇函数)(x f 满足1)2(=f ,且)2()()2(f x f x f +=+,则(1)f = .4.已知ααcos sin 2=,则ααα2cos 12sin 2cos ++的值等于 . 5.若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m = .6.若向量a v ,b v满足||a =v ||1b =v ,()1a a b +=v v vg ,则向量a v ,b v 夹角大小为 .7.若cos 2sin()4απα=-,则cos sin αα+的值为 . 8.化简tan 70cos10tan 702cos 40-oo o o o= . 9.已知0a >且1a ≠,2()xf x x a =-,若当x ∈[1,1]-时均有1()2f x <,则实数a 的范围是 .10.已知正项数列{}n a 的首项11a =,前n 和为n S ,若以(,)n n a S 为坐标的点在曲线1(1)2y x x =+上,则数列{}n a 的通项公式为 . 11.已知02x π<<,且t 是大于0的常数,1()sin 1sin tf x x x=+-的最小值为9,则t = . 12.设()f x 是定义在R 上的函数,且满足(2)(1)()f x f x f x +=+-,如果3(1)lg2f =,(2)lg15f =,则(15)f = .答案 1.}2,0{ 2.[4,5) 3.21 4.3 5.2 6.135︒ 7.128.29.1(,1)(1,2)2U 讨论最大值 10.n a n = 11.412.1((3)()f x f x +=-)2020届高三数学小题狂练七姓名 得分1.若集合{1,1}M =-,11{|242x N x x +=<<∈Z},,则M N =I . 2.已知cos ,0,()(1)1,0,x x f x f x x π≤⎧=⎨-+>⎩则41()()33f f +-的值为 .3.已知()(1)(21)(31)(1)f x x x x x nx =+++⋅⋅⋅+,求=')0(f .4.设O 是ABC ∆内部一点,且2OA OC OB +=-u u u r u u u r u u u r,则AOB ∆与AOC ∆的面积之比为 .5.已知函数2()log 3f x x x =⋅+,直线l 与函数()f x 图象相切于点(1,)A m ,则直线l 的方程的一般式为 .6.扇形OAB 半径为2,圆心角60AOB ∠=︒,点D 是弧AB 的中点,点C 在线段OA 上,且3=OC .则OB CD ⋅的值为 .7.已知0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是 .8.已知ABC ∆的面积等于3,1BC =,3π=∠B ,则tan C 的值为 .9.如果圆2244100x y x y +---=上至少有三个点到直线l :0ax by +=的距离为l 的倾斜角的取值范围是 .10.若函数)(x f 是定义在(0,+∞)上的增函数,且对一切0x >,0y >满足)()()(y f x f xy f +=,则不等式)4(2)()6(f x f x f <++的解集为 .11.若直线6x π=是函数sin cos y a x b x =+图像的一条对称轴,则直线0ax by c ++=的倾斜角为 . 12.已知正实数x ,y 满足111x y +=,则9411y xx y +--的最小值为 .答案 1.{1}- 2.2 3.1 4.1∶25.(ln 2)3ln 210x y -+-=6.3(CD CO OD =+u u u r u u u r u u u r)7.(4,2)-8.- 9.5[,]1212ππ10.(0,2)11.150°((0)()3f f π=)12.25:令10m x=>,10n y =>,则1m n +=,于是9411y x x y +--49449911m n m nm n n m++=+=+--25≥2020届高三数学小题狂练八姓名 得分1.复数z 满足方程(2)z z i =+,则z = .2.设集合{|}M x x m =≤,{|2}xN y y -==,若M N ⋂≠∅,则实数m 的取值范围是 .3.若函数2()2x x af x a+=-是奇函数,则a = .4.抛物线24x y =上一点A 的横坐标为2,则点A 与抛物线焦点的距离为 . 5.掷一个骰子的试验,事件A 表示“大于2的点数出现”,事件B 表示“大于2的奇数点出现”,则一次试验中,事件A B +发生概率为 .6.过点(1,4)A -作圆22(2)(3)1x y -+-=的切线l ,则l 的方程为 . 7.若ABC ∆的三条边长2a =,3b =,4c =,则C ab B ca A bc cos 2cos 2cos 2++的值为 .8.已知函数)(x f 的导数()(1)()f x a x x a '=+-,若()f x 在x a =处取到极大值,则常数a 的取值范围是 .9.已知二次函数2()f x ax bx c =++,且不等式()0f x <的解集为(,1)(3,)-∞+∞U ,若)(x f 的最大值小于2,则a 的取值范围是 .10.在OAB ∆中,M 为OB 的中点,N 为AB 的中点,ON ,AM 交于点P ,若AP mOA nOB =+u u u v u u u v u u u v(m ,n ∈R ),则n m -= .11.已知n S 为等差数列{}n a 的前n 项的和,n T 为等差数列{}n b 的前n 项的和,若n m S T =2(1)n m m +,则510a b =_________.12.已知()f x 是定义在R 上的偶函数,它的图象关于直线2x =对称,当[02]x ∈,时,tan [01),()(1)[12],x x f x f x x ∈⎧=⎨-∈⎩,,,,则(5)6f π--=__________.答案 1.1i -+ 2.(0,)+∞ 3.1± 4.2 5.326.4y =或34130x y +-= 7.29 8.(1,0)- 9.(2,0)-10.1:连MN ,相似 11.920(59101921929a Sb T =) 12.3(()()f x f x -=,(2)(2)f x f x +=-+,∴()(4)f x f x =-+((4))f x =--+,周期为4,(5)(1)(1)()tan 66666f f f f πππππ--=--=+===)2020届高三数学小题狂练九姓名 得分1.函数()sin(2)f x x π=+的最小正周期是 .2.若直线210x ay +-=与01)1(=+--ay x a 平行,则a 的值为 . 3.抛物线22y x =-的焦点坐标是 .4.函数20.5()log (65)f x x x =-+的单调减区间是 .5.已知3sin 5α=,(,)2παπ∈,则tan()4πα+值为 . 6.某人有甲、乙两只电子密码箱,欲存放三份不同的重要文件,则此人使用同一密码箱存放这三份重要文件的概率是 . 7.函数sin()cos()66y x x ππ=++的图象离原点最近的对称轴方程为 .8.在等比数列{}n a 中,0n a >,且211a a =-,439a a =-,则45a a += .9.若3213()32f x x x ax =-+在[1,4]-上是减函数,则实数a 的取值范围是 .10.已知向量a r ,b r 满足||1a =r ,||b =r a b +=r r,则||a b -=r r .11.已知三棱锥S ABC -的所有顶点都在球O 的球面上.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为 .12.对于任意两个实数a ,b ,定义运算“⊗”如下:,,,.a a b a b b a b ≤⎧⊗=⎨>⎩则函数2()[(6)(215)]f x x x x =⊗-⊗+的最大值为_________.答案 1.22.123.1(0,)8-4.),5(+∞5.17 6.147.12x π=8.27 9.(,4]-∞- 10.2 11.36π 12.92020届高三数学小题狂练十姓名 得分1.方程2lg(1)1lg(1)x x ++=-的解是 . 2.已知复数i z24-=(i 为虚数单位),且复数2()z ai +在复平面上对应的点在第一象限,则实数a 的取值范围为 .3.曲线x x f ln )(=在e x =处的切线方程为 .4.随机向一个正三角形内丢一粒豆子,则豆子落在此三角形内切圆内的概率为 . 5.若双曲线122=-y x 右支上一点(,)A m n 到直线x y =的距离为2,则m n += .6.函数5x y x a+=-在(1,)-+∞上单调递减,则实数a 的取值范围是 . 7.ABC ∆中,AP 为BC 边上的中线,||3AB =u u u r ,2-=⋅,则||AC =u u u r.8.直线AB 过抛物线2y x =的焦点F ,与抛物线相交于A ,B 两点,且|AB |=3,则线段AB 的中点到y 轴的距离为 .9.设数列{}n a 的通项为210n a n =-(n ∈N *),则=+++||...||||1521a a a . 10.已知函数()cos f x x =((,3)2x ππ∈),若方程a x f =)(有三个不同的实根,且三根从小到大依次构成等比数列,则a 的值为 .11.若函数()f x 满足(2)()1f x f x +=-+,且(1)2007f =-,则(2015)f = . 12.对于任意实数x ,符号[]x 表示x 的整数部分,即[]x 是不超过x 的最大整数.那么]1024[log ]4[log ]3[log ]2[log ]1[log 22222+++++Λ= .答案1.11x = 2.(2,6) 3.0x ey -=4 5.126.(5,1]--7 8.549.130 10.21-(三根:α,2πα-,2πα+) 11.2008:(2)()1f x f x +=-+,(4)(2)1f x f x +=-++,4T =,(3)(1)1f f =-+ 12.8204:1+1+2(23-22)+3(24-23)+…+9(210-29)+10=1*21+2*22+3*23+…+9*29+102020届高三数学小题狂练十一姓名 得分1.设集合1{|0}2M x x =-<,{}210N x x =+>,则M N =I . 2.幂函数()y f x =的图象经过点1(2,)8--,则满足()27f x =的x 的值是 .3.过点(1,0)且倾斜角是直线210x y --=的倾斜角的两倍的直线方程是 . 4.若椭圆221x my +=(01m <<,则它的长轴长为 . 5.从分别写有1,2,3,4,5的五张卡片中任取两张,则这两张卡片上的数字和为偶数的概率为 .6.已知复数11z i =-,2||3z =,那么||21z z -的最大值是 . 7.若函数213ln1xy x x+=+-的最大值与最小值分别为M ,m ,则M m += . 8.设1232,2,()log (1),3,x e x f x x x -⎧<⎪=⎨-≥⎪⎩则不等式()2f x >的解集为 . 9.若()sin()1f x A x ωϕ=++(0ω>,||<πϕ)对任意实数t ,都有ππ()()33f t f t +=-+.记()cos()1g x A x ωϕ=+-,则π()3g = .10.已知在同一平面上的三个单位向量a r ,b r ,c r,它们两两之间的夹角均为120o ,且 |1ka b c ++>r r r|,则实数k 的取值范围是 .11.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于A 、B 两点,交准线于点C .若2CB BF =uu r uu u r,则直线AB 的斜率为 .12.已知ABC ∆三边a ,b ,c 的长都是整数,且a b c ≤≤,如果b m =(m ∈N *),则这样的三角形共有 个(用m 表示).答案1.11{|}22x x -<<2.133.4340x y --= 4.4 5.526.3+ 7.68.),10()2,1(+∞Y 9.1-10.{|0k k <或2}k >11.BH l ⊥,抛物线定义得sin 0.5BCH =,故倾斜角为60︒或120︒) 12.(1)2m m +(a m c ≤≤,则m c a m ≤<+,1a =时1个,…,a m =时m 个)2020届高三数学小题狂练十二姓名 得分1.若复数z 满足方程1-=⋅i i z ,则z = .2.A ,B ,C 三种不同型号的产品的数量之比依次为2:3:5,现用分层抽样的方法抽出样本容量为n 的样本,样本中A 型产品有16件,那么样本容量n 为 .3.底面边长为2的正四棱锥的体积为 .4.若点P 是曲线x x y ln 2-=上任意一点,则点P 到直线2-=x y 的最小距离为 .5.袋中有红、黄、绿色球各一个,每次任取一个有放回地抽取三次,球的颜色全相同的概率是 .6.数列{}n a 中,12a =,21a =,11112-++=n n n a a a (2n ≥,n ∈N ),则其通项公式为n a = .7.已知双曲线C 与椭圆221925y x +=有相同的焦点,它们离心率之和为145,则C 的标准方程是 .8.已知二次函数f x ()满足f x f x ()()11+=-,且f f ()()0011==,,若f x ()在区间[,]m n 上的值域是[,]m n ,则m n +的值等于 .9.已知函数()cos f x x ω=(0ω>)在区间π[0]4, 上是单调函数,且3π()08f =,则ω= . 10.已知PA ,PB ,PC 两两互相垂直,且△PAB ,△PAC ,△PBC 的面积分别为1.5cm 2,2cm 2,6cm 2,则过P ,A ,B ,C 四点的外接球的表面积为 cm2.11.设椭圆22221y x a b+=(0a b >>)的两个焦点分别为1F ,2F ,点P 在椭圆上,且120PF PF ⋅=u u u r u u u u r,12tan 2PF F ∠=,则该椭圆的离心率等于 .12.在ABC ∆中,已知4AB =,3AC =,P 是边BC 的垂直平分线上的一点,则BC AP ⋅u u u r u u u r= .答案1.1i-2.803.4 345.1 96.2 n7.221 412y x-=8.1(1n≤)9.43或410.26π(补形)1112.7 2 -2020届高三数学小题狂练十三姓名 得分1.函数2()12sin f x x =-的最小正周期为 .2.若函数()log (01)a f x x a =<<在闭区间[,2]a a 上的最大值是最小值的3倍,则a = .3.函数x y sin =的定义域为],[b a ,值域为21,1[-],则a b -的最大值和最小值之和为 .4.函数32()267f x x x =-+的单调减区间是 . 5.若2(3),6,()log ,6,f x x f x x x +<⎧=⎨≥⎩则(1)f -的值为 .6.设等差数列{}n a 的公差0d ≠,19a d =.若k a 是1a 与2k a 的等比中项,则k = .7.在直角坐标系xOy 中,i r ,j r分别是与x 轴,y 轴平行的单位向量,若直角ABC ∆中,AB i j =+u u u r r r ,2AC i m j =+u u u r r r,则实数m = .8.若函数2()x f x x a=+(0a >)在[1,)+∞上的最大值为3,则a 的值为 . 9.若不等式1,0ax x a >-⎧⎨+>⎩的解集是空集,则实数a 的取值范围是 .10.已知两圆1C :22210240x y x y +-+-=,2C :222280x y x y +++-=,则以两圆公共弦为直径的圆的方程是 .11.过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点,交其准线于点C ,且2BC FB =u u u r u u u r,12AF =,则p 的值为 .12.从椭圆上一点A 看椭圆的两焦点1F ,2F 的视角为直角,1AF 的延长线交椭圆于B ,且2AF AB =,则椭圆的离心率为__________.答案 1.π2.43.2π 4.[0,2]5.3 6.4 7.0或2-81-讨论a 9.(,1]-∞-10.5)1()2(22=-++y x (圆心在公共弦上,3λ=-)11.6:作AH Ox ⊥,30AFH ∠=︒,12sin 30622A p px =+︒=+,12cos 30A y =︒=12269-不扣分):2AF m =,2BF =,24m a +=,故(4m a =-,12AF a m =-,22212(2)AF AF c +=2020届高三数学小题狂练十四姓名 得分1.设集合{0,}P m =,2{|250,}Q x x x x Z =-<∈,若P Q ≠∅I ,则m 的值等于 .2.若函数sin3xy π=(0x t ≤≤)的值域为[1,1]-,则正整数t 的最小值是 .3.若函数23xy t =⨯+的图象不经过第二象限,则t 的取值范围是 .4.已知()y f x =是奇函数,当0x <时,2()f x x ax =+,且(2)6f =,则a = . 5.A 是圆O 上一定点,在圆O 上其它位置任取一点B ,连接AB ,则AB 的长度不小于圆O 半径长度的概率为 .6.若数列}{n a 满足12,01,1,1,n n n n n a a a a a +≤≤⎧=⎨->⎩且167a =,则2015a = .7.已知两点(2,0)A -,(0,2)B ,点C 是圆0222=-+x y x 上任意一点,则ABC ∆面积的最小值是 .8.已知1F ,2F 分别是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是 .9.已知函数()f x ,()g x 满足(5)5f =,3)5('=f ,(5)4g =,1)5('=g ,则函数()2()f x yg x +=的图象在5x =处的切线方程为 .10.若存在[1,3]a ∈,使得不等式2(2)20ax a x +-->成立,则实数x 的取值范围是 .11.若实数a ,b 满足410ab a b --+=(1a >),则(1)(2)a b ++的最小值为 . 12.已知a ,b 是两个互相垂直的单位向量,且1⋅=c a ,1⋅=c b,||=c 正实数t ,1||t t++c a b 的最小值为 .答案1.1或2 2.53.(,2]-∞- 4.55.23 6.377.3-8.59.51630x y -+= 10.{|x 1x <-或23x >}补 11.27(消a )12.2020届高三数学小题狂练十五姓名 得分1.复数13i z =+,21i z =+,则复数12z z 在复平面内对应的点位于第___ ___象限. 2.函数224x x y -=的值域是 .3.等差数列{}n a 中,若18153120a a a ++=,则9102a a -= . 4.若不等式1420xx a +-->在[2,)+∞上恒成立,则实数a 的取值范围为 .5.函数3sin(2)([0,])6y x x ππ=+∈的单调减区间是 .6.若经过点(1,0)P -的直线与圆224230x y x y ++-+=相切,则这条直线在y 轴上的截距是 .7.若3()2f x x ax =--在区间(1,)+∞上是增函数,则实数a 的取值范围是 . 8.在ABC ∆中,角A ,B ,C 所对边的长分别为a ,b ,c ,且sin cos cos A B Ca b c==,则A ∠= .9.实数x ,y 满足350x y --=,[1,3]x ∈,则2yx -的取值范围是 . 10.若33,0,()0,xx a x f x x a -+-<⎧=⎨≥⎩(0a >且1a ≠)是),(+∞-∞上的减函数,则a 的取值范围是 . 11.已知函数||sin 1()||1x x f x x -+=+的最大值为M ,最小值为m ,则M m += .12.已知点O 在ABC ∆内部,且有24OA OB OC ++=0u u u r u u u r u u u r,则OAB ∆与OBC ∆的面积之比为 .答案1.四 2.(0,4] 3.24 4.(,8)-∞ 5.2[,]63ππ6.1 7.(,3]-∞ 8.90o9.(,2][4,)-∞+∞U 10.2(0,]311.212.4∶1(OA OB BA =+u u u r u u u r u u u r ,1477OC OB BC BO BA BC =+⇒=+u u u r u u u r u u u r u u u r u u u r u u u r,平行四边形,相似三角形)2020届高三数学小题狂练十六姓名 得分1.设复数112z i =-,2x x i =+(x ∈R ),若12z z 为实数,则x = . 2.双曲线过点P,且渐近线方程为y x =,则此双曲线的方程为 . 3.已知212cos2sin=+θθ,则cos 2θ= . 4.若关于x 的方程3sin 4cos 21x x m +=-有解,则实数m 的取值范围是 . 5.与圆22(3)(1)2x y -++=相切,且在两坐标轴上有相等截距的切线共有________条.6.已知向量a r ,b r ,c r 满足0a b c ++=r r r r,||1a =r ,||2b =r ,且a r ⊥c r ,则a r 与b r 的夹角大小是 .7.在数列}{n a 中,21=a ,其前n 项和为n S ,若数列{}nS n是公差为2的等差数列,则}{n a 的通项公式为 .8.若函数2()lg 22f x x a x =⋅-+在区间(1,2)内有且只有一个零点,那么实数a 的取值范围是 .9.已知()f x 是以2为周期的偶函数,且当[0,1]x ∈时,()f x x =.若在区间[1,3]-内,方程()1f x kx k =++有4个实数解,则实数k 的取值范围是 .10.已知(,)P x y 满足约束条件30,10,10,x y x y x +-≤⎧⎪--≤⎨⎪-≥⎩O 为坐标原点,(3,4)A ,则||cos OP AOP ⋅∠u u u r的最大值是 .11.抛物线C :2y x =上两点M ,N 满足12MN MP =u u u u r u u u r,若(0,2)OP =-u u u r ,则||MN u u u u r = . 12.若0x y >>323xy y +-的最小值为 .答案 1.12-2.2212x y -=3.81-4.[2,3]- 5.3 6.120o7.42n a n =-8. 9.1(,0)3- 10.115:1(34)5x y +11(,)N m n ,(2,22)M m n +)12.10(4)(22x y x y y xy ≤-=-,3212()f x x≥+,再求导)2020届高三数学小题狂练十七姓名 得分1.集合{3,2}aA =,{,}B a b =,若{2}A B =I ,则A B =U .2.已知函数)1(log )(+=x x f a 的定义域和值域都是[0,1],则实数a 的值是 . 3.若(1,1)a ∈-,则方程20x x a -+=有实根的概率等于 . 4.若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是 .5.若方程02)1(22=-+++a x a x 有一根比1大,另一根比1-小,则a 的取值范围是 .6.若函数()sin()f x x ωφ=+对任意的实数x 都有)3()3(x f x f -=+ππ,则)3(πf 的值等于 .7.若锐角α,β满足4)tan 31)(tan 31(=++βα,则βα+= . 8.设曲线3233+-=x x y 上任一点处的切线的倾斜角为α,则α的取值范围是 .9.已知1F ,2F 为椭圆2212x y +=的两个焦点,过1F 作倾斜角为4π的弦AB ,则2F AB ∆的面积为 .10.已知()f x 为奇函数,且(31)f x +是周期为3的周期函数,(3)2f =,则(60)f 的值等于 .11.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,若此双曲线的离心率为e ,且12||||PF e PF =,则e 的最大值为 . 12.已知数列{}n a 满足1111n n n n a a n a a +++-=-+(n 为正整数),且26a =,则数列{}n a 的通项公式为n a =__________.答案1.{1,2,3} 2.2 3.584.)0,1[- 5.)0,1(- 6.1±7.3π 8.),32[)2,0[πππY9.4310.()f x 周期为9,(60)(3)f f =- 11.21+(2em m a -=,2em m c +≥,相除得11e e e +≥-) 12.22n n -(由1111n n n n a a n a a +++-=-+得)2(11111≥---=++n n n a n a n n ,令na b n n =,则)2(1111≥---=+n n b n n b n n ,故)1(111---=+n n n b n b n n ,…,1211223⨯-=b b ,累加得)1)(12(1++=+n n a n ,)3(22≥-=n n n a n .又11a =,26a =也满足n n a n -=22,故对n ∈N *都有n n a n -=22)2020届高三数学小题狂练十八姓名 得分1.已知全集2{2,4,1}U a a =-+,集合{1,2}A a =+,若}7{=A C U ,则实数a 的值等于 .2.已知双曲线2221x y a-=(0a >)的一条渐近线与直线032=+-y x 垂直,则该双曲线的准线方程是 .3.在数列{}n a 中,已知17a =-,25a =,且满足22n n a a +=+(n ∈N *),则12318a a a a ++++L = .4.已知θ是第三象限角,且95cos sin 44=+θθ,那么θ2sin = . 5.将3OM OA OB OC =--u u u u r u u u r u u u r u u u r写成AM xAB y AC =+u u u u r u u u r u u u r 时,x y += .6.当228x x -<时,函数252x x y x --=+的最小值是 .7.若直角三角形的三边成等比数列,则较小内角的正弦值是 .8.已知函数()y f x =满足(3)(3)f x f x -=+,且有n 个零点1x ,2x ,…,n x (n ∈N *),则12n x x x +++L = .9.过抛物线24y x =的焦点F 作斜率为1的直线交抛物线于A ,B 两点(点A 在x 轴上方),若AF FB λ=u u u r u u u r (1)λ>,则λ= .10.若{|2}xx kx >=R ,则实数k 的取值范围是 .11.已知函数2()1f x x =-,()g x x =-,令{}()max (),()F x f x g x =(max 表示最大值),则()F x 的最小值是 .12.已知00(,)x y 是直线2x y a +=-与圆2222x y a a +=++的公共点,则00x y 的取值范围是 .答案 1.32.x = 3.1264 5.2- 6.3-7.12- 8.3n9.3+21y y -) 10.[0,ln 2)e (21log ln 2e =)1112.(,1][16,)-∞+∞U (自编:由d r ≤得a 的取值范围是6a ≤-或0a ≥,再用222000000()2x y x y x y +=++得00252ax y -=)2020届高三数学小题狂练十九姓名 得分1.设a 是实数,且211ii a +++是纯虚数,则=a . 2.已知0a >,0b <,),(a b m ∈且0≠m ,则m1的取值范围是 .3.直线2(1)(3)750m x m y m ++-+-=与直线(3)250m x y -+-=垂直的充要条件是 .4.有一棱长为a 的正方体框架,其内放置一气球,使其充气且尽可能地膨胀(气球保持为球的形状),则气球表面积的最大值为 . 5.若函数1)(2++=mx mx x f 的定义域是R ,则m 的取值范围是 .6.已知α,β均为锐角,且cos()sin()αβαβ+=-,则tan α的值等于 . 7.设数列{}n a 的前n 项和为n S ,若11a =,13n n a S +=(n =1,2,3,…),则410log S = .8.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为 .9.设双曲线C :22221x y a b-=(0a >,0b >)的右顶点为E ,左准线与两渐近线的交点分别为A ,B 两点,若60AEB ∠=︒,则双曲线C 的离心率e 等于 . 10.函数)sin()(θ+=x x f (||2πθ<)满足对任意x ∈R 都有)6()6(x f x f --=+ππ,则θ= .11.在△ABC 中,AB =2BC =,CA =BC a =u u u r r ,CA b =u u u r r ,AB c =u u u r r,则a b b c c a ⋅+⋅+⋅=r r r r r r .12.过抛物线214y x =准线上任一点作该抛物线的两条切线,切点分别为M ,N ,则直线MN 过定点__________.答案 1.1-2.),1()1,(+∞⋃-∞ab 3.3m =或2m =-4.22a π 5.[0,4] 6.1 7.9 8.0 9.210.6π-11.6-12.(0,1)(解法1:(,1)a -,2240i i x ax --=,122x x a +=,2222121212()248x x x x x x a +=+-=+,于是MN中点为22(,)2a a +,21122122MN y y x x a k x x -+===-,直线MN :12ay x =+,过定点(0,1).解法2:(,1)a -,1111()2y y x x x -=-,1111122y x a y --=-,11220ax y -+=.同理可得22220ax y -+=.故直线MN 方程为220ax y -+=,过(0,1))2020届高三数学小题狂练二十姓名 得分1.已知集合2{|log 1}M x x =<,{|1}N x x =<,则M N I = .2.双曲线2213x y -=的两条渐近线的夹角大小为 .3.设a 为常数,若函数1()2ax f x x +=+在(2,2)-上为增函数,则a 的取值范围是 . 4.函数)2(log log 2x x y x +=的值域是 .5.若函数()23f x ax a =++在区间)1,1(-上有零点,则a 的取值范围是 .6.若1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的取值范围是 .7.已知函数12||4)(-+=x x f 的定义域是[,]a b (a ,b 为整数),值域是[0,1],则满足条件的整数数对),(b a 共有 个.8.设P ,Q 为ABC ∆内的两点,且2155AP AB AC =+u u u r u u u r u u u r ,AQ uuu r 23AB =u u u r 14+AC u u ur ,则ABP ∆的面积与ABQ ∆的面积之比为 . 9.在等差数列{}n a 中,59750a a +=,且95a a >,则使数列前n 项和n S 取得最小值的n 等于 . 10.设x ,y ∈R +,312121=+++y x ,则xy 11.在正三棱锥A BCD -中,E ,F 分别是AB ,BC EF DE ⊥,1BC =,则正三棱锥A BCD -的体积是 .12.设()f x 是定义在R 上的偶函数,满足(1)()1f x f x ++=,且当[1,2]x ∈时,()2f x x =-,则(2016.5)f -=_________.DCQ BAP答案1.(0,1) 2.60︒ 3.),21(+∞4.),3[]1,(+∞--∞Y 5.(3,1)-- 6.)23,2[- 7.5(||[0,2]x ∈) 8.459.610.16(8xy x y =++,8xy ≥+16xy ≥)11.242(EF DE ⊥,EF ∥AC ,∴AC DE ⊥.又AC BD ⊥,∴AC ⊥平面ABD .∵1BC =,∴2AB AC AD ===,3162V =24=)12.0.5(2T =,(0.5)(0.5)(1.5)0.5f f f =-==)2020届高三数学小题狂练二十一姓名 得分1.已知等比数列{}n a 的前三项依次为1a -,1a +,4a +,则n a = . 2.抛物线24y x =上一点M 到其焦点的距离为3,则点M 的横坐标x = . 3.已知函数)(x f y =(x ∈R )满足)()2(x f x f =+,且]1,1[-∈x 时,2)(x x f =,则5()()log F x f x x =-的零点的个数为 .4.若(2,1)a =-v与(,2)b t =-v 的夹角为钝角,则实数t 的取值范围为 .5.函数2()lg(21)f x x ax a =-++在区间(1)-∞,上单调递减,则实数a 的取值范围是 . 6.设α为锐角,54)6sin(=+πα,则)32sin(πα+的值等于 . 7.已知0a >,且1a ≠,函数,0,()(14)2,0x a x f x a x a x ⎧<=⎨-+≥⎩满足对任意12x x ≠,都有1212()[()()]0x x f x f x --<成立,则a 的取值范围是 .8.已知a b >,1a b ⋅=,则22a b a b+-的最小值是 .9.已知数列{}n a ,{}n b 都是公差为1的等差数列,其首项分别为1a ,1b ,且115a b +=,1a ,1b ∈N *,则数列{}nb a (n ∈N *)前10项的和等于 .10.设椭圆1C 和双曲线2C 具有公共焦点1F ,2F ,其离心率分别为1e ,2e ,P 为1C 和2C 的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 . 11.设22log 1()log 1x f x x -=+,12()(2)1f x f x +=(12x >),则12()f x x 的最小值为_______.12.对于一切实数x ,令[]x 为不大于x 的最大整数,则函数()[]f x x =称为高斯函数或取整函数.若()3n na f =(n ∈N *),n S 为数列{}n a 的前n 项和,则3n S =________.答案 1.134()2n -⋅2.2 3.44.(1,4)(4,)-+∞U 5.[1,2]6.2524(若3cos()65πα+=-,cos [cos()]066ππαα=+-<;或45<3πα<)7.11(,]428.222()2a b a b +=-+)9.85(11n a a n =+-,11n b b n =+-,113n b n a a b n =+-=+)10.2(2224m n c +=,12m n a +=,2||2m n a -=,后二式平方相加得22122e e --+=)11.23(21222122log 1log (2)11log 1log (2)1x x x x --+=++,化简得22214log log 1x x =-.于是212212221214log ()log log log 5log 1x x x x x x =+=+≥-,所以21212212212log ()122()1log ()1log ()13x x f x x x x x x -==-≥++(12x >))12.232n n -(33(1)(1)(1)n n S S n n n --=-+-+,311S ⨯=,3n S =232n n-)2020届高三数学小题狂练二十二姓名 得分1.函数20.5log (2)y x x =-的单调减区间是 .2.已知函数()sin cos f x a x x =+,且()4f x π-()4f x π=+,则a 的值为 .3.设O 为坐标原点,F 为抛物线x y 42=的焦点,A 为抛物线上的一点,若4-=⋅,则点A 的坐标为 .4.从原点向圆0271222=+-+y y x 作两条切线,则该圆夹在两条切线间的劣弧长为 .5.若函数32()26f x x x m =-+(m 为常数)在[2,2]-上有最大值3,则()f x 在[2,2]-上的最小值为 .6.设等比数列{}n a 的公比为q ,其前n 项的和为n S ,若1n S +,n S ,2n S +成等差数列,则公比q 等于 . 7.规定一种运算:,,,,a a b a b b a b ≤⎧⊗=⎨>⎩则函数x x x f cos sin )(⊗=的值域为 .8.已知当x ∈R 时,函数)(x f y =满足1(2.1)(1.1)3f x f x +=++,且1)1(=f ,则)100(f 的值为 .9.设函数)(x f 是定义在R 上的奇函数,1(1)2f =,)2()()2(f x f x f +=+,则=)5(f .10.双曲线222015x y -=的左、右顶点分别为1A ,2A ,P 为其右支上一点,且12124A PA PA A ∠=∠,则12PA A ∠的大小为 .11.已知3450a b c ++=r r r r ,且||||||1a b c ===r r r,则()a b c ⋅+=r r r .12.已知α,β均为锐角,且sin cos()sin ααββ+=,则tan α的最大值是 .答案1.(2,)+∞ 2.1(取4x π=)3.(1,2)± 4.2π 5.37- 6.2- 7.]22,1[- 8.349.2.5((12)(1)(2)f f f -+=-+,故(2)1f =,(3) 1.5f =,(5)(3)1f f =+)10.12π(tan y x a α=+,tan 5y x a α=-,由222015x y -=得tan tan51αα=,于是得cos60α=)11.35-(534c a b -=+r r r ,435b a c -=+r r r ,两式分别平方得0a b =r r g,35a c =-r r g )12αβ+也为锐角,tan()αβ+存在.由cos()sin sin[()]αββαββ+=+-展开得tan()2tan αββ+=.从而有tan tan[()]ααββ=+-2tan 41tan ββ=≤+)2020届高三数学小题狂练二十三姓名 得分1.若直线30x ay ++=的倾斜角为120︒,则a 的值是 .2.已知定义在R 上的函数()f x 的图象关于点3(,0)4-对称,且(1)1f -=,则1()2f -的值等于 .3.不等式02||2<--x x 的解集是 .4.在一个水平放置的底面半径为3的圆柱形量杯中装有适量的水,现放入一个半径为R 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升R ,则R = . 5.函数xx y tan 31tan 3+-=的单调减区间是 .6.在坐标平面内,已知由不等式组|2|,||y x y x a≥-⎧⎨≤-+⎩所确定的区域的面积为52,则a 的值等于 .7.若函数3()log ()(0a f x x ax a =->且1)a ≠在区间1(,0)3-内单调递增,则实数a 的取值范围是 .8.已知数列{}n a 中,12a =,前n 项和n S ,若n n a n S 2=,则n a = .9.已知函数1,1,|1|()11,x x f x x ⎧≠⎪-=⎨⎪=⎩, 若关于x 的方程2()()0f x bf x c ++=有3个不同的实数解1x ,2x ,3x ,则222123x x x ++的值等于 .10.已知函数()f x 在[2,)+∞单调递增,且对任意实数x 恒有(2)(2)f x f x +=-,若22(12)(12)f x f x x -<+-,则x 的取值范围是 .11.设非零向量a r ,b r 满足||1b =r ,a r 与b a -r r 的夹角为120︒,则||a r的最大值为 .12.已知)(x f y =是定义在R 上的函数,且对任意x ∈R ,都有1()(2)1()f x f x f x -+=+,又1(1)2f =,1(2)4f =,则(2015)(2016)f f += .答案1.32.1-3.(2,2)- 4.325.5(,)66k k ππππ-+(k ∈R ) 6.37.1[,1)38.)1(4+n n9.510.(2,0)-(12|2||2|X X -<-)11ABC ∆中,CA b =u u u r r ,CB a =u u u r r ,BA b a =-u u u r r r ,60ABC ∠=︒,||sin 601a ︒≤r ,||a ≤r )12.1415(令1=x ,则1(1)1(3)1(1)3f f f -==+,令2=x ,则1(2)3(4)1(2)5f f f -==+,)(n f 以4为周期,所以1314(3)(4)3515f f +=+=)2020届高三数学小题狂练二十四姓名 得分1.设230.0310x y -==,则11xy ---的值为 .2.已知函数()f x 对任意的x ∈R 都有11()()222f x f x ++-=成立,则127()()()888f f f +++L 的值为 . 3.设直线0=++C By Ax 与圆422=+y x 相交于M ,N 两点,若222A B C +=,0C ≠,则OM ·ON (O 为坐标原点)的值等于 . 4.若222xy ax y ≤+对任意[1,2]x ∈及[2,3]y ∈恒成立,则实数a 的范围是 .5.设数列{}n a 的通项公式为3n a n n λ=+(n ∈N *),若123n a a a a <<<<<L L ,则实数λ的取值范围是 . 6.若()2sin()f x ax =在区间[,]34ππ-上的最小值为2-,则实数a 的范围是 .7.若等比数列{}n a 满足354321=++++a a a a a ,且122524232221=++++a a a a a ,则54321a a a a a +-+-的值等于 .8.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边的长,若a ,b ,c 成等差数列,4sin 5B =,且ABC ∆的面积为32,则b = . 9.已知函数21,0,()(1),0,x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是 .10.已知1F ,2F 分别为双曲线C :12222=-by a x 的左、右焦点,P 是C 左支上的一点,若2218||PF a PF =,则C 的离心率的取值范围是 .11.已知1()41()xf x f x +=-,正实数1x ,2x 满足12()()1f x f x +=,则12()f x x +的最小值为 .12.已知实数x ,y 满足x y ,则x y +的最大值为 .。
2020届高三数学小题狂练三姓名 得分1.若12z a i =+,234z i =-,且12z z 为纯虚数,则实数a 的值是 . 2.抛物线2y ax =(a 为非零常数)的准线方程为 .3.设函数()log a f x x =(0a >,1a ≠)满足(9)2f =,则(9)af 的值是 . 4.曲线C :()sin xf x x e =+在0x =处的切线方程为 .5.设n S 是等比数列{}n a 的前n 项和,若3S ,9S ,6S 成等差数列,则数列{}n a 的公比q 为 .6.若a ,b≤m 的最小值是 .7.椭圆22143x y +=的右焦点为F ,点(1,1)A ,点M 是椭圆上的任意一点,则2MA MF +的最小值为 . 8.设x ,y 均为正实数,且312121=+++y x ,则xy 的最小值为 . 9.若直线l 与圆224x y +=相交于11(,)A x y ,22(,)B x y 两点,且12122x x y y +=,则AB = .10.小张、小李、小王三位同学在足球场上做传球训练,规定:持球的任何一人必须将球传给另两位同学中的一人.开始时球在小王脚下,传球4次后,则球仍然回到小王脚下的概率为 .11.已知()f x =||2x x a x -+,若()f x 在R 上恒为增函数,则a 的取值范围是 .12.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,点P 在准线上,且12PF PF ⊥,124PF PF ab =g ,则该双曲线的离心率等于 .答案 1.38 2.14y a=- 3.64.210x y -+=5.2-67.38. 16(去分母)9.2(2OA OB ⋅=u u u r u u u r ,3AOB π∠=)10.38(树状图,616)11.[2,2]-(x a ≥:0x a ≤;x a <:0x a ≥)12(由射影公式得222()a m c c c =+2222c a =+,222()a n c c c=-22b =,代入222216m n a b =)或(2ab h c=,中线PO c =,2222()a h c c =-)。
2020届高三数学小题狂练十七姓名 得分1.集合{3,2}aA =,{,}B a b =,若{2}A B =I ,则A B =U .2.已知函数)1(log )(+=x x f a 的定义域和值域都是[0,1],则实数a 的值是 . 3.若(1,1)a ∈-,则方程20x x a -+=有实根的概率等于 . 4.若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是 .5.若方程02)1(22=-+++a x a x 有一根比1大,另一根比1-小,则a 的取值范围是 .6.若函数()sin()f x x ωφ=+对任意的实数x 都有)3()3(x f x f -=+ππ,则)3(πf 的值等于 .7.若锐角α,β满足4)tan 31)(tan 31(=++βα,则βα+= . 8.设曲线3233+-=x x y 上任一点处的切线的倾斜角为α,则α的取值范围是 .9.已知1F ,2F 为椭圆2212x y +=的两个焦点,过1F 作倾斜角为4π的弦AB ,则2F AB ∆的面积为 .10.已知()f x 为奇函数,且(31)f x +是周期为3的周期函数,(3)2f =,则(60)f 的值等于 .11.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,若此双曲线的离心率为e ,且12||||PF e PF =,则e 的最大值为 . 12.已知数列{}n a 满足1111n n n n a a n a a +++-=-+(n 为正整数),且26a =,则数列{}n a 的通项公式为n a =__________.答案1.{1,2,3} 2.2 3.584.)0,1[- 5.)0,1(- 6.1±7.3π 8.),32[)2,0[πππY9.4310.()f x 周期为9,(60)(3)f f =- 11.21+(2em m a -=,2em m c +≥,相除得11e e e +≥-) 12.22n n -(由1111n n n n a a n a a +++-=-+得)2(11111≥---=++n n n a n a n n ,令na b n n =,则)2(1111≥---=+n n b n n b n n ,故)1(111---=+n n n b n b n n ,…,1211223⨯-=b b ,累加得)1)(12(1++=+n n a n ,)3(22≥-=n n n a n .又11a =,26a =也满足n n a n -=22,故对n ∈N *都有n n a n -=22)。
2020届高三数学小题狂练十六姓名 得分1.设复数112z i =-,2x x i =+(x ∈R ),若12z z 为实数,则x = .2.双曲线过点P,且渐近线方程为y x =,则此双曲线的方程为 . 3.已知212cos 2sin =+θθ,则cos 2θ= . 4.若关于x 的方程3sin 4cos 21x x m +=-有解,则实数m 的取值范围是 .5.与圆22(3)(1)2x y -++=相切,且在两坐标轴上有相等截距的切线共有________条.6.已知向量a r ,b r ,c r 满足0a b c ++=r r r r ,||1a =r ,||2b =r ,且a r ⊥c r ,则a r 与b r 的夹角大小是 . 7.在数列}{n a 中,21=a ,其前n 项和为n S ,若数列{}n S n是公差为2的等差数列,则}{n a 的通项公式为 . 8.若函数2()lg 22f x x a x =⋅-+在区间(1,2)内有且只有一个零点,那么实数a 的取值范围是 .9.已知()f x 是以2为周期的偶函数,且当[0,1]x ∈时,()f x x =.若在区间[1,3]-内,方程()1f x kx k =++有4个实数解,则实数k 的取值范围是 .10.已知(,)P x y 满足约束条件30,10,10,x y x y x +-≤⎧⎪--≤⎨⎪-≥⎩O 为坐标原点,(3,4)A ,则||cos OP AOP ⋅∠u u u r 的最大值是 .11.抛物线C :2y x =上两点M ,N 满足12MN MP =u u u u r u u u r ,若(0,2)OP =-u u u r ,则||MN u u u u r = . 12.若0x y >>323xy y +-的最小值为 .答案1.12- 2.2212x y -= 3.81- 4.[2,3]-5.36.120o7.42n a n =-8.9.1(,0)3-10.115:1(34)5x y +11(,)N m n ,(2,22)M m n +)12.10(4)(22x y x y y xy ≤-=-,3212()f x x ≥+,再求导)。
2020届高三数学小题狂练二十四姓名 得分1.设230.0310x y -==,则11xy ---的值为 .2.已知函数()f x 对任意的x ∈R 都有11()()222f x f x ++-=成立,则127()()()888f f f +++L 的值为 . 3.设直线0=++C By Ax 与圆422=+y x 相交于M ,N 两点,若222A B C +=,0C ≠,则OM ·ON (O 为坐标原点)的值等于 . 4.若222xy ax y ≤+对任意[1,2]x ∈及[2,3]y ∈恒成立,则实数a 的范围是 .5.设数列{}n a 的通项公式为3n a n n λ=+(n ∈N *),若123n a a a a <<<<<L L ,则实数λ的取值范围是 . 6.若()2sin()f x ax =在区间[,]34ππ-上的最小值为2-,则实数a 的范围是 .7.若等比数列{}n a 满足354321=++++a a a a a ,且122524232221=++++a a a a a ,则54321a a a a a +-+-的值等于 .8.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边的长,若a ,b ,c 成等差数列,4sin 5B =,且ABC ∆的面积为32,则b = . 9.已知函数21,0,()(1),0,x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是 .10.已知1F ,2F 分别为双曲线C :12222=-by a x 的左、右焦点,P 是C 左支上的一点,若2218||PF a PF =,则C 的离心率的取值范围是 .11.已知1()41()xf x f x +=-,正实数1x ,2x 满足12()()1f x f x +=,则12()f x x +的最小值为 .12.已知实数x ,y 满足x y ,则x y +的最大值为 .答案 1.1- 2.7 3.2- 4.[1,)-+∞([1,3]yx∈) 5.(7,)-+∞(10n n a a +->)6.3(,2][,)2-∞-+∞U (讨论a 的正负) 7.4(求和公式,整体)8.2(154ac =,3cos 5B =,再用余弦定理) 9.(,1)-∞10.(1,3](设1PF m =,22PF a m =+,代入2218||PF a PF =得2m a =,利用m c a ≥-,解不等式)11.45(41()41x x f x -=+,12124443x x x x +=++,121224141(41)(41)4()2x x x x-+---=≤,于是12446xx +≥,1249x x +≥,再由增函数)12.4X =Y =,224x y X Y X Y +=+=+-,d ≤,或圆的参数方程,13sin()4X Y πα+=++)。