当前位置:文档之家› 重复性故障分析的方法—PM分析法

重复性故障分析的方法—PM分析法

重复性故障分析的方法—PM分析法
重复性故障分析的方法—PM分析法

重复性故障分析的方法—PM分析法

PM分析法,是找寻分析设备所生产的重复性故障及其相关原因的一种手法。

PM分析是把重复性故障的相关原因无遗漏地考虑进去的一种全面分析的方法。

所谓PM,是指下面几个英文单词第一个字母。

PM分析是一种针对设备关联的物理性分析手法。

当我们要求实现设备的故障损失为零的目标时,会发现有些重复性故障一致难以攻克,这时候就可以采用PM分析法来进行故障分析。

PM分析法的特点是以理论来指导事实,要求对设备具有相当的了解。

PM分析的主要步骤包括:

第一步:明确故障现象

正确的认识故障现象是解决故障问题的先决条件。认识和分析故障现象的表现方式、状态、发生部位、设备种类差异等。

并对故障进行层次分析。

在进行故障现象进行探索调查时,要讲究研究方法,根据现象研究确定相关的调查、测定、检验、分析方法,确定调查项目、检测范围、容差、基准、限定值等。

第二步:对故障现象的物理分析、原理分析

所谓对现象的物理分析,就是对现象用物理、化学等探究原理的方法进行分析。

任何故障现象不会是无缘无故发生的,都存在其物理或化学背景。因此要力图用物理或者化学的科学原理来解释发生的故障现象。如果能够通过理化检验、验证的手段来辅助就更好。努力找出故障现象出现的物理、化学原理。

例如:机床主轴出现轴向裂纹,可以通过金相检验找出是原材料缺陷还是热处理应力,抑或是疲劳应力集中。

再如:物体出现伤痕,这是由于物体与物体之间接触、撞击而产生的现象。从物理的角度来看,伤痕肯定出现在物体软弱的部位。这样,通过探讨物体与物体有可能接触的部位,就能清楚地知道所要探讨的部位和发生现象的原因。

如果实在无法解释现象,可以做出假设来加以验证。

为什么要进行物理、化学等原理分析呢?

§从理论上加以考虑并将问题展开,不会将因素遗漏,并能系统地进行解释。

§能防止经常出现的主观感觉的判断。

§对那种尽管采取了很多措施仍没有将慢性损失减少下来的对策,可从根本上对其原因、措施、管理要点重新加以修正。

第三步:故障现象成立的条件

根据科学原理、法则来探讨现象促成的条件。通过穷举方法尽可能多列举促成现象的条件,无论其出现概率大小都应加以考虑,然后再进行分析筛选。

从原理、原则角度探讨现象成立的条件,如果具备这种条件,现象就一定会发生,对此加以整理是解决问题的关键。这就需要从物理的角度来分析现象,说明其产生的机理、成立的条件。

一般对现象成立的条件掌握得不充分,在采取对策时只能对某些条件予以考虑并采取对策,而对其他的成立条件就不予以考虑,其结果是慢性损失往往没有降低。同时还应注意,对各种成立条件。不要考虑其概率的大小。

第四步:对故障原因进行多角度探讨

从生产现场五要素即(机器、工具、材料、方法、环境、作业者)这些方面寻找故障的原因。把与故障现象有关的原因列出来,从人、机、料、法、环等几个方面筛选最有关系的因素,并将所能考虑到的因素都提出来,画出因果关系图。

对设备细分到零件这一层次进行讨论是重要的,有时,各种原因会重复地影响到各自的促成条件。

第五步:确定主要原因

上一步骤中列出的一些原因可能不是主要原因,这一步就是要针对各项故障原因进行验证(调查、检验、分析),找出产生故障现象的主要原因。

针对各种原因,要具体地研究不同的验证方法、调查方法、测定方法、调查范围、标准面的确定方法、调查项目等。因为调查方法及所需调查的因素有所偏差的话,则验证的结果将无法取信他人,那么找出的原因也不是主要原因,这样未来的解决措施就会失效。

第六步:提出改进方案

根据各种验证后的故障要因,都要提出改进的方案

根据掌握的工具、手段和方法,确定如何解决问题或者改善问题。

制定出措施后,就要实施措施。针对故障问题点指定对策,实施改善,使其设备更趋完备。

在实施改善过程中,要作出记录。

HRV心率变异性

心率变异性的分析方法 心率变异性(Heart rate variability,HRV)是指窦性心率在一定时间内周期性改变的现象,是反应交感-副交感神经张力及其平衡的重要指标。HRV测定方法有两种,即时域测定法和频域分析法。HRV分析心电信号长短不一,短者分析5min或1h,长者可分析24h,甚至几天,国内外普遍采用24h法。 时域法以RR间期的变异为基础,可用标准差、方差、极差、变异系数等来表达。常用指标: [1]SDNN:所有窦性RR间期的标准差; [2]SDNN Index:每5min窦性RR间期标准差的均值; [3]SDANN:每5min窦性RR间期均值的标准差; [4]r-MSSD:所有邻近窦性RR间期长度差异平方均值的平方根; [5]pNN50:50毫秒间隔以上临近周期的比例,单位为百分数。 频谱分析法则是把心率变化信号分解为不同的频率成分并将其相对强度定量为功率,提供了各种频率成分的功率谱测定。常用指标有: [1]高频带(HF,0.15-0.40Hz):有迷走神经介导,主要代表呼吸变异。 [2]低频带(LF,0.04-0.15Hz)受交感神经和副交感神经共同影响。 [3]极低频带(VLF,0.01-0.04Hz):可作为交感神经活动的指标。 [4]超低频带(ULF,1.15×10-5-0.0033Hz):生理意义不明。 [5]总频谱(TF):是信号总的变异性。代表HF、VLF、ULF的总和。 [6]LF/HF:代表交感-迷走神经张力的平衡状态。HRV的时域和频域测量是相关的,HF 与r-MDSS、pNN50相关,LF、VLF与SDNN Index相关,ULF与SDNN、SDANN明显相关。

心率变异性概念

心率变异性概念 1.定义: 心率变异性(heart rate variability,HRV)是指逐次心动周期之间时间的微小变化,即窦性心律不齐的程度。 2.常用指标及正常参考范围 SDNN:全部窦性心搏RR间期(简称NN间期)的标准差。单位为ms 。 正常参考值:141±39,另一种标准值是141.7±29.2. SDANN:RR间期平均值标准差。单位为ms 。 正常参考值130.9±28.3。 RMSSD:相邻RR间期差值的均方根。 正常参考值39.0±15.0 PNN50:相邻NN之差>50ms的个数占总窦性心搏个数的百分比。 正常参考值:16.7±12.3 3.临床意义: HRV是反映自主神经系统活性和定量评估心脏交感神经与迷走神经张力及其平衡性,从而判断其对心血管疾病的病情及预后,可能是预测心脏性猝死和心律失常性事件的一个有价值的指标。致命性的心律失常与交感神经的兴奋性增加、迷走神经的兴奋性减少有关,自主神经系统活动的量化可以通过心率变化的程度表现出来,心率变异(HRV)代表了这样一种量化标测。即通过测量连续正常P-P间期变化的变异性来反映心率变化程度、规律,从而用以判断其对心血管活动的影响。HRV降低为交感神经张力增高,可降低室颤阈,属不利因素;HRV 升高为副交感神经张力增高,提高室颤阈,属保护因素。大多数人认为SDNN、SDANN、SDNNIndex等时域指标小于50ms,为HRV显著减低,病死率大大增高。 4.临床应用的范围: (1)、心脏性猝死(SCD)预测:由于HRV是反映自主神经张力的最敏感的指标,因此HRV降低是预测心脏性猝死最有价值的独立指标。 (2)、急性心肌梗塞后患者危险性评估: HRV的降低是预测急性心肌梗塞后患者发生心脏性猝死和恶性心律失常危险的重要独立指标。一般建议在梗塞后一周开始进行HRV的检测。HRV在梗塞后立即降低,并在几周内开始恢复(2周

作业条件危险性分析和预先危险性分析方法简介

作业条件危险性分析和预先危险性分析方法简介 1、预先危险性分析 1.1 方法简介 预先危险性分析法(Preliminary Hazard Analysis,PHA)又称初步危险分析。主要用于对危险物质和装置的主要工艺区域等进行分析。它常被用于评价项目、装置等开发初期阶段的物料、装置、工艺过程以及能量失控时可能出现的危险性类别、条件及可能造成的后果,作宏观的概略分析,其目的是辨识系统中潜在的危险有害因素,确定其危险等级,防止这些危险有害因素失控导致事故的发生。 1.2 预先危险性分析主要作用 1)大体识别与系统有关的主要危险有害因素; 2)分析、判断危险有害因素导致事故发生的原因; 3)评价事故发生对人员及系统产生的影响,事故可能造成的人员伤害和系统破坏、物质损失情况; 4)确定已识别危险有害因素的危险性等级; 5)提出消除或控制危险有害因素的对策措施。 1.3 预先危险性分析步骤 1)对系统的产生目的、操作条件和周围环境进行调研; 2)搜集同类生产过程中发生过的事故,查找能够造成故障、物质损失和人员伤害的危险性; 3)根据经验、技术诊断等方法确定危险源; 4)识别危险形成条件,研究危险因素转变成事故的触发条件; 5)进行危险性分级,确定其危险程度,找出重点控制的危险源; 6)制定危险防范措施。 1.4 预先危险性危险等级 在分析系统危险性时,为了衡量危险性的大小及其对系统的破坏程度,将各类危险性划分为四个等级,见下表。 危险性等级划分表 2、作业条件危险性分析 2.1 简介 作业条件危险性评价法(格雷厄姆——金尼法)是作业人员在具有潜在危险性环境中进行作业时的一

种危险性半定量评价方法。它是由美国人格雷厄姆(K.J.Graham )和金尼(G.F.Kinney )提出的,他们认为影响作业条件危险性的因素有三个: 1)发生事故或危险事件的可能性(L ); 2)人员暴露于危险环境的频繁程度(E ); 3)事故一旦发生可能产生的后果(C )。 用这三个因素分值的乘积 D =L ×E ×C 来评价作业条件的危险性,D 值越大,作业条件的危险性越大。 式中,D 为作业条件的危险性;L 为事故或危险事件发生的可能性;E 为暴露于危险环境的频率;C 为发生事故或危险事件的可能结果。 2.2 取值与计算方法 1)发生事故或危险事件的可能性 事故或危险事件发生的可能性与其实际发生的概率相关。在实际生产条件中,事故或危险事件发生的可能性范围非常广泛,将事故或危险事件发生可能性的分值从实际上不可能的事件为0.1,经过完全意外有极少可能的分值1,确定到完全会被预料到的分值10为止(表2.2-1)。 表2.2-1 事故发生的可能性分值(L ) 2) 暴露于危险环境的频率 作业人员暴露于危险作业条件的次数越多、时间越长,则受到伤害的可能性也就越大。为此,K ·J ·格雷厄姆和G ·F ·金尼规定了连续出现在潜在危险环境的暴露频率分值为10,一年仅出现几次非常稀少的暴露频率分值为1。暴露于潜在危险环境的分值见表 2.2-2。 表2.2-2 暴露于危险环境的频繁程度分值(E ) 3) 发生事故或危险事件的可能结果 造成事故或危险事故的人身伤害或物质损失可在很大范围内变化,以工伤事故而言,可以从轻微伤害到许多人死亡,其范围非常宽广。因此,K ·J ·格雷厄姆和G ·F ·金尼需要救护的轻微伤害的可能结果, 它值规定为1,以此为一个基准点;而将造成许多人死亡的可能结果规定为分值100,作为另一个参考点。在两个参考点1~100之间,插入相应的中间值,列出表2.2-3 所示的可能结果的分值。 表2.2-3 事故造成的后果分值(C )

第九章 心率变异性

第九章心率变异性 Heart Rate Variability(HRV) 9.1 概述 心率变异性(Heart Rate Variability,HRV)是指逐次心搏间期之间的微小变异在生理条件下,HRV的产生主要是由于心脏窦房结自律活动通过交感和迷走神经,神经中枢,压力反射和呼吸活动等因素的调节作用,使得心脏每搏间期一般存在几十毫秒的差异。 在静息状态下,正常人的心电图呈现RR间期周期变化,窦性心律不齐是由于呼吸的不同时相所介导的迷走神经反映性波动所致。导致吸气时心率加快,呼气时心率减慢。许多其它因素也可以引起心率的变化,例如体位、体温、血循环中的儿茶酚胺、内分泌激素以及营养、环境、药物、各种疾病等都会影响心率。 由于对HRV的生理和病理意义进行了广泛和深入的研究,其结果表明心率变异信号中蕴含着有关心血管调节的重要信息,对HRV进行分析可以间接地定量评价心肌交感、迷走神经紧张性和均衡性,而且还能分析自主神经系统的活动情况,在多种心血管疾病中,患者的心率变异性都有降低的趋势。 心率变异性还可以作为一个独立的心源性猝死危险性的预测指标。心率变异性分析对多种恶性心律失常的预后判断和药物治疗效果分析有指导作用。 总之,HRV的生理学基础归因于交感、迷走神经系统,其中迷走神经对HRV起着主要的决定作用,所以,迷走神经功能健全时,心率变异程度大,迷走神经功能受损时,心率变异程度小。 9.2 心率变异性的分析方法 HRV分析的心电信号有长有短,短期的只有5分钟,最长1小时;长期的可达24-48小时。记录可在不同体位(仰卧、倾斜、直立或倒立位)和动作(平静呼吸、深呼吸、Valsava 动作、运动)进行。 HRV分析目前采用的方法有时域分析法,是应用数理统计指标对HRV作时域测量,包括简单法和统计学方法;频域方法或频谱分析方法原理是将随机变化的RR间期或瞬时心率信号分解为多种不同能量的频域成份进行分析,可以同时评估心脏交感和迷走神经活动水平。以上两种分析方法都属于线性分析方法,而人体内的生物过程都属于非线性过程,为此,又提出了第三种分析方法,即以非线性(混沌)分析方法来描述心率变异性的特性。 9.2.1 时域分析法 利用计算机对5分、15分、30分或更长时间同步12导联心电图记录所取的心电信号QRS波进行逐个识别,去除非窦性QRS波,将心电信号数字化,取得一系列有关R-R间期的数理统计指标。 R-R间期直方图和R-R间期差值直方图 ·R-R间期直方图 心电图的R-R间期在心律失常时有较大差异,即使是窦性心律,也因活动及体液因素的影响而有一定波动。分析心电图R-R间期变化可提供许多心理生理的信息。直方图的形状可

作业条件危险性分析法(LEC)

编号: 5.9.1 作业条件危险性分析法(LEC ) 作业条件危险性评价法是一种简单易行的评价操作人员在具有 潜在危险性环境中作业时危险性的半定量的评价方法,它由美国的格 雷厄姆 (K·J·Graham)和金尼 (G·F·Kinney)提出的,因此也称为格 雷厄姆——金尼法。 作业条件危险评价法用与系统风险有关的的三个因素指标值之积来评价操作人员伤亡风险大小,这三个因素是: L —发生事故的可能性大小 E—人体暴露在危险环境中的频繁程度 C—一旦发生事故会造成的损失后果 危险性的大小: D=LEC 作业条件危险性评价法的特点是比较简便,容易在企业内部实行。目前,已在航空工业系统、部分铁路交通系统和石化系统试点使 用,效果较好。它有利于掌握企业内部各危险点的危险状况,有利于 整改措施的实施。评价步骤如下: 1)以类比作业条件比较为基础,由熟悉作业条件的人员组成评价小组; 2)由评价小组人员按照规定标准给L 、E、C 分别打分,取三组分值的平均值作为L 、E、C 的计算分值,用计算的危险性分值 D 来评价作业条件的危险等级。 三个因素的分值和危险性分值及其对应的情况如下。 表 1事故或危险事件发生可能性分值(L) 分值事故或危险事件发生的可能性分值事故或危险事件发生的可能性 10完全会被预料到0.5可以设想,但高度不可能 6相当可能0.2极不可能 1 / 2

3不经常,但可能0.1实际上不可能 1完全意外,极少可能 表 2 暴露于潜在危险环境的分值(E) 分值出现于危险环境的情况分值出现于危险环境的情况 10连续暴露于潜在危险环境2每月暴露一次 6逐日在工作时间内暴露1每年几次出现在潜在危险环境3每周一次或偶然的暴露0.5非常罕见的暴露 表 3 发生事故或危险事件可能结果的分值 (C)分值可能结果分值可能结果 100大灾难,许多人死亡7严重,严重伤害 40灾难,数人死亡3重大,致残 15非常严重,一人死亡1引人注目,需要救护 表 4危险性分值(D) 分值危险程度分值危险程度 >320极其危险,不能继续作业20~70可能危险,需要注意160~320高度危险,需要立即整改<20稍有危险,或许可以接受70~160显著危险,需要整改 2 / 2

危险性分析方法

第七章危险性分析方法 对于现代化的化工生产装置须实行现代化安全管理,也就是从系统的观念出发,运用科学分析方法识别、评价、控制危险,使系统达到最佳安全。 应用系统工程的原理和方法预先找出影响系统正常运行的各种事件出现的条件,可能导致的后果,并制定消除和控制这些事件的对策,以达到预防事故、实现系统安全的目的。 辨别危险、分析事故及影响后果的过程就是危险性分析。 危险性分析有定性分析和定量分析两种类型: 定性分析 找出系统存在的危险因素,分析危险在什么情况下能发生事故及对系统安全影响的大小,提出针对性的安全措施控制危险。 它不考虑各种危险因素发生的数量多少。(本章主要介绍定性危险分析方法) 定量分析 在定性分析的基础上,进一步研究事故或故障与其影响因素之间的数量关系,以数量大小评定系统的安全可靠性。定量危险性分析也就是对系统进行安全性评价。(在第八章进行讨论) 7.1 安全检查表 7.1.1 概述 安全检查表(SCL,Safety Check List)是进行安全检查和诊断的清单。 在编制安全检查表时,通常是把检查对象作为系统,将系统分割成若干个子系统, 按子系统制定。 安全检查表是最早开发的一种系统危险性分析方法,也是最基础、最简便的识别危险的方法。该法应用最多且广泛。 在我国目前安全检查表不仅用于定性危险性分析,有的还对检查项目给予量化,用于系统的安全评价。 安全检查表的优点: 1.安全检查是进行安全管理的重要手段,安全检查表是由各种专业人员事先经过充分的分析和讨论,集中了大家的智慧和经验而编制出来的,按照安全检查表进行检查就会避 免传统安全检查时的一些弊端,能全面找出生产装置的危险因素和薄弱环节; 2.它简明易懂,易于掌握,实施方便; 3.应用范围广,项目的设计、施工、验收,机械设备的设计、制造,运行装置的日常操作、作业环境、运行状态及组织管理等各个方面都可应用; 4.编制安全检查表的依据之一是有关安全的规程、规范和标准。 安全检查表还可对系统进行安全性评价。 7.1.2 安全检查表编制的步骤和依据 1、编制的步骤: 先组成一个由工艺、设备、操作及管理人员的编制小组,并大致按以下几步开展工作: (1)熟悉系统:详细了解系统的结构、功能、工艺流程、操作条件、布置和已有的安 全卫生设施等。 (2)搜集有关安全的法规、标准和制度及同类系统的事故资料,作为编制安全检查表 的依据。 (3)按功能或结构将系统划分成若干个子系统或单元,逐个分析潜在的危险因素。 (4)确定安全检查表的检查内容和要点,并按照一定的格式列成表。 2、编制的依据:

心率变异性的测定及其临床意义(1)

心率变异性的测定及其临床意义 050051 河北医科大学第三医院内科 王 燕 张艳玲 张 伟综述 王士昌审校 心率变异性(HRV)是指测量连续心动周期之间的时间变异数,准确地说,应该是测量连续出现的正常P-P间期之间的差异的变异数。然而由于P 波不如R波明显或P波顶端有时宽钝,所以我们通常用与P-P间期相等的R-R间期来代替。由此可以看出,它不同于通常所用的以时间为单位的平均心率变化指标,如每分钟心率100次和60次。研究表明,HRV可做为植物神经系统活动的无创性检测指标,尤其在判断某些心血管疾病的预后方面有重要意义。 1 心率变异的形成 正常情况下,心脏的活动受窦房结支配,窦房结的活动受植物神系统双重调节。交感神经末梢释放去甲肾上腺素兴奋心肌细胞膜Β肾上腺素能受体,使内向离子流isi(由Ca2+携带)和if(主要由N a+携带)激活,使除极速率加快,自律性增高。心率增快即正性变时作用;迷走神经末梢释放乙酰胆碱,作用于心肌细胞膜M型胆碱能受体,提高K+通透性,促进K+外流,使舒张期除极变慢,窦房结自律性降低,心率变慢。〔1〕心率的变化是交感与迷走神经相互作用的结果。它们之间的相互协调维持着心脏的正常活动。这种相互作用一旦失调,将导致心血管系统功能紊乱,这是许多心血管疾病的发病机制之一。〔2〕 2 心率变异性的检测方法 211 时域测定法:记录24小时动态心电图,将全部正常心动周期输入计算机处理,取得一系列有关心率的数理统计指标,用来衡量HRV的大小。〔3〕21111 R2R标准差:①总体标准差(SDNN):即24小时正常R2R间期,由计算24小时所有正常R2R间期的平均值得。②均值标准差(SDANN):即24小时内连续5分钟节段平均正常R2R间期的标准差。③标准差均值(SDNN I DX):即24小时内连续的每5分钟节段正常R2R间期的标准差的平均数。以上标准差值≤50m s为HRV小,若≥100m s为HRV大。21112 差值:①最大差值:每两个相邻正常R2R间期差值的绝对数,若≤50m s,其HRV小〔4〕。②差值>50m s的百分比(PNN50):即差值>50m s的正常R2R间期在特定时间内R2R间期数中所占的百分比,此值越大,则迷走神经张力越高。〔5〕。③差值均方的平方根(Χ-M SSD):即24小时连续正常R-R间期差值均方的平方根。 21113 心率骤增次数:计算单位时间内心率突然增加至少>10次 分且连续3-5分钟的次数。 21114 变异系数(CV):以每分钟连续正常R2R间期标准差除以该段时间的平均正常R2R间期,有利于对比。 21115 心率变异指数:一段时间内R2R间期总数与占比例最大的R2R间期数之比,正常人大于25。 在计算以上指标过程中,应排除房性或室性早搏的干扰,如1分钟内包含的正常R2R间期少于20个或连续5分钟内正常R2R间期少于120个,该节段的R2R间期应全部剔除〔6〕。 212 频域分析法:即用计算机对心率变异的速度或幅度进行频域分析,又称心率功率谱分析(HR PSA)。 首先用心电图机将人体心电信号经放大和模拟 数字(A D)转换器转换成电信号后,输入计算机,计算机对输入的每个Q R S波群进行识别和标记,再将所得256个或512个连续心搏信号进行快速富里叶转换或自回归运算,即得心率功率谱图(HR PS)〔7〕。见图 : 图 正常心率功率谱图 A1=1.399E-04,A2=2.736E-04 (E-04=10-4)

(完整版)心率变异性及其相关算法

目录 1. 概念介绍----------------------------------------------------------------------------- 3 2. 疾病诊查与研究意义------------------------------------------------------------ 4 3. 基本原理与具体算法------------------------------------------------------------ 5 3.1 QRS波群提取的微分阈值法--------------------------------------------- 5 3.2 时域参数的计算方法----------------------------------------------------- 10 3.3 频域参数的计算方法----------------------------------------------------- 11 4. 计算结果与结果分析----------------------------------------------------------- 12 4.1 时域参数结果分析-------------------------------------------------------- 12 4.2 频域参数结果分析-------------------------------------------------------- 13 5. 算法总结-------------------------------------------------------------------------- 15 6. 附加功能-------------------------------------------------------------------------- 16 7. 参考文献-------------------------------------------------------------------------- 16

危险性分析方法

第八章危险性分析方法 辨别危险、分析可能发生的事故及其影响后果的过程就是危险性分析。 危险性分析是为防止危险造成事故所采取的手段,其作用是为制定防止事故发生的对策提供依据。 危险性分析需要运用系统工程的原理和方法。危险性分析有定性分析和定量分析两种类型: ①定性分析:找出系统存在的危险因素,分析危险在什么情况下能发生事故,以及对系统安全影响的大小,提出针对性的安全措施控制危险。定性分析不对各种危险因素作定量评价,本章主要介绍定性危险性分析方法。 ②定量分析:在定性分析的基础上,进一步研究事故或故障与其影响因素之间的数量关系,以数量大小评定系统的安全可靠性。在第八章介绍。 危险、危害因素 8.1.1危险因素与危害因素 危险因素是指突发性造成人身伤亡和财产损失的因素。危险因素强调突发性和瞬间作用; 危害因素是指可能造成人身伤害、职业病、财产损失和作业环境破坏的因素。危害因素强调在一定时间范围内的积累作用。 危险因素和危害因素二者有时难以区分,故有时统称为危险因素,更多的是并称为危险、危害因素。 8.1.2危险、危害因素分类 根据GB/T 13816—92《生产过程危险和危害因素分类与代码》的规定,按导致事故和职业危害的直接原因,将生产过程中的危险、危害因素分为6 类: 1、物理性危险、危害因素 (1)设备、设施缺陷如强度不够、刚度不够、运动件外露、制动器缺陷、外形缺陷等。 (2)防护缺陷如无防护、防护不当、防护距离不够、防护设施缺陷等。 (3)电危害 (4)噪声危害 (5)振动危害 (6)电磁辐射 如电离辐射:X 射线、高能电子束等;非电离辐射:激光、紫外线等。 (7)运动物危害如固体抛射物、液体飞溅物、气流冲击、岩土滑动等。 (8)明火 (9)能造成灼伤的高温物质 (10)能造成冻伤的低温物质 (11)粉尘与气溶胶(不包括爆炸性、有毒性粉尘与气溶胶) (12)作用环境不良如采光照明不良、安全过道缺陷、通风不良、气温过高或过低、空气质量差等。 (13)信号缺陷如无信号设施、信号不清、信号失准、信号选用不当等。 (14)标志缺陷如无标志、标志不清、标志不规范、标准位置不当等。 (15)其他物理危险和危害因素 2、化学危险和危害因素

心率变异性

心率变异性(HRV)是指测量连续心动周期之间的时间变异数,准确地说,应该是测量连续出现的正常P-P间期之间的差异的变异数。然而由于P波不如R波明显或P波顶端有时宽钝,所以我们通常用与P-P间期相等的R-R间期来代替。由此可以看出,它不同于通常所用的以时间为单位的平均心率变化指标,如每分钟心率100次和60次。研究表明,HRV可做为植物神经系统活动的无创性检测指标,尤其在判断某些心血管疾病的预后方面有重要意义。 差值:①最大差值:每两个相邻正常R2R间期差值的绝对数,若≤50ms,其HRV小〔4〕。②差值>50ms的百分比(PNN50):即差值>50ms的正常R2R间期在特定时间内R2R间期数中所占的百分比,此值越大,则迷走神经张力越高。 (以下这些感觉咱们没有统计,不过下面的剔除规则貌似可以借鉴) 心率骤增次数:计算单位时间内心率突然增 加至少>10次分且连续3-5分钟的次数。 变异系数(CV):以每分钟连续正常R2R间 期标准差除以该段时间的平均正常R2R间期,有利于对比。 心率变异指数:一段时间内R2R间期总数 与占比例最大的R2R间期数之比,正常人大于25。 在计算以上指标过程中,应排除房性或室性早搏的干扰,如1分钟内包含的正常R2R间期少于20个或连续5分钟内正常R2R间期少于120个,该节段的R2R间期应全部剔除 (大部分的疾病相关联的都和频谱分析有关) 频域分析法:即用计算机对心率变异的速度或 幅度进行频域分析,又称心率功率谱分析 (HRPSA)。 首先用心电图机将人体心电信号经放大和模拟数字(A D)转换器转换成电信号后,输入计算机,计算机对输入的每个QRS波群进行识别和标记,再将所得256个或512个连续心搏信号进行快速富里叶转换或自回归运算,即得心率功率谱图(HRPS)〔7〕 图中横坐标代表频率(单位Hz),纵坐标代表功率谱的密度(HR2H2),HRPS一般分为3个区域: (1)低频带0.02~0.09Hz之间;(2)中频带0.09~0.15Hz之间;(3)高频带0.15~0.40Hz之间。计算功 率谱带曲线下的面积的积分,可做为定量测定数据也可计算低高频带成分的功率比值(LF HF),一般HRPS的波幅越高,表示心率变异的幅度越大;波峰所处的频域越低,表示心率变异的速度

预先危险性分析法

3.3 预先危险分析方法 预先危险性分析( Preliminary Hazard Analysis,简称 PHA )是在进行某项工程活动(包括设计、施工、生产、维修等)之前,对系统存在的各种危险因素(类别、分布)、出现条件和事故可能造成的后果进行宏观、概略分析的系统安全分析方法。其目的是早 期发现系统的潜在危险因素,确定系统的危险等级,提出相应的防范措施,防止这些危险 因素发展成为事故,避免考虑不周所造成的损失,属定性评价。即:讨论、分析、确定系 统存在的危险、有害因素,及其触发条件、现象、形成事故的原因事件、事故类型、事故 后果和危险等级,有针对性地提出应采取的安全防范措施。 (1)预先危险性分析法的功能主要有: ① 大体识别与系统有关的主要危险; ② 鉴别产生危险的原因; ③ 估计事故出现对系统产生的影响; ④ 对已经识别的危险进行分级,并提出消除或控制危险性的措施。 (2)预先危险性分析步骤 ① 对分析系统的生产目的、工艺过程以及操作条件和周围环境进行充分的调 查了解; ② 收集以往的经验和同类生产中发生过的事故情况,判断所要分析对象中是 否也会出现类似情况,查找能够造成系统故障、物质损失和人员伤害的危险性; ③ 根据经验、技术诊断等方法确定危险源; ④ 识别危险转化条件,研究危险因素转变成事故的触发条件; ⑤ 进行危险性分级,确定危险程度,找出应重点控制的危险源; ⑥ 制定危险防范措施。 (3)危险、有害因素的危险性等级 PHA分析的结果用危险性等级来表示。危险性可划分为四个等级,见表附3.1。表 附 3.1 危险性等级划分表 级别危险程度可能导致的后果 Ⅰ安全的不会造成人员伤亡及系统损失 Ⅱ临界的处于事故的边缘状态,暂时还不至于造成人员伤亡、系统损失或降低系统性能,但应予以排除或采取控制措施 Ⅲ危险的会造成人员伤亡和系统损失,要立即采取防范对策措施

心率变异性分析

心率变异性分析 时域 SDNN:141+39ms (102-180) (交、迷)所用窦性RR间期标准差 SDANN:127+35ms (92-162)(交感)每5分钟窦性RR间期均值标准差 Rmssd:37+15ms (22-52)(迷走)所用邻近窦性RR间期长度差异平均值的平方根 PNN50 0/0 50MS间期以上临近周期的比例 SDNNinder:每5分钟窦性RR间期标准差均值 频域 TP:3466+1018(2448-4484)(总频) LF:1170+416 (754-1586)(交、付) HF:975+203 (772-1178)(迷走) LF/HF:1.5+2.0 (-0.5-3.5)(动态平衡) 白天夜晚 LF:286+203MS 147+197MS HF:117+63MS 369+151MS LF/HF:2.4+1.2 0.3+0.8 5分钟能谱分析法正常值 5分钟平均心率标准差LF HF LF/HF 2.34+0.45 0.02-0.15HZ 0.15-0.35HZ 0.35-0.5HZ (1.89-2.79) 6.06+0.64 5.27+0.65 3.37+0.64 2.09+1.01 (5.42-6.70) (4.62-5.92) (2.73-4.01) (1.08-3.10) 标准差法:CD 117.02+16.16MS (100.86-133.18MS) HRV指数法:HRVinder 18.37+2.02 (16.35-20.39ms) 心肌缺血定位P:60-100 P-R:120-200 前间壁:V1-2或3 前壁:V2-4或5 QRS:60-100 Q-T:360+40 U:160-250 前侧壁:V4-6 高侧壁:I avL ST:肢体上抬<0.1 胸导:V1-4<0.25 下移:<0.1 广泛前壁:V1-6 I avL 下壁:II III avF 心尖部:II III avF V3-5 后壁:V7-9 V1-2 R增高ST下降T直立 右室:V3R V4R V5R呈QS V4RST抬高>=0.1 起搏器感知障碍(即起搏器事件):感知失败(包括感知不良和感知过度),夺获失败,输出失败。 FTO(输出失败):PP ,RP, RR ,中的任何一个均长于预先设定的值。 FTC(夺获失败):起搏脉冲后没有相应的心电活动。P-R间期大于指定的值。 FTS(感知失败):对自身P波或QRS波不能感知,按起搏器自身的基础周期发放起搏脉冲。RP间期小于指定值。: 起搏器编码(共5位数)Ⅰ:起搏心腔 A心房 V心室 D双腔S特殊部位。Ⅱ:感知心腔, O无, A心房, V心室。 D双腔。S特殊部位。Ⅲ:感知反应, O无,I抑制, T触发,D双重。Ⅳ:程控方式,O无,P简单程控,M多项程控,C遥测程控,R频率调整。Ⅴ:其他

预先危险性分析(PHA)法

分析及评价方法-预先危险性分析(PHA)法 本文作者佚名 预先危险分析也称初始危险分析,是在每项生产活动之前,特别是在设计的开始阶段,对系统存在危险类别、出现条件、事故后果等进行概略地分析,尽可能评价出潜在的危险性。因此,该方法也是一份实现系统安全危害分析的初步或初始的计划,是在方案开发初期阶段或设计阶段之初完成的。 1.预先危险分析的主要目的 (1)识别危险,确定安全性关键部位; (2)评价各种危险的程度; (3)确定安全性设计准则,提出消除或控制危险的措施。 此外,预先危险分析还可提供下述信息: (1)为制(修)定安全工作计划提供信息; (2)确定安全性工作安排的优先顺序; (3)确定进行安全性试验的范围; (4)确定进一步分析的范围,特别是为故障树分析确定不希望发生的事件; (5)编写初始危险分析报告,作为分析结果的书面记录; (6)确定系统或设备安全要求,编制系统或设备的性能及设计说明书。 2.分析内容 由于初始危险分析从寿命周期的早期阶段开始,因此,分析中的信息仅是一船性的,不会太详细。这些初始信息应能指出潜在的危险及其影响,以提醒设计师们要通过设计加以纠正。这种分析至少应包括以下内容: (1)审查相应的安全性历史资料; (2)列出主要能源的类型,并调查各种能源,确定其控制措施; (3)确定系统或设备必须遵循有关的人员安全、环境安全和有毒物质的安全要求及其它有关的规定;

(4)提出纠正措施建议,在完成识别危险、评价危险的严重程度及可能性之后,还应提出如何控制危险的建议。 为了能全面地识别和评价潜在的危险,分析中还必须考虑的如下项目: (1)危险物品,例如:燃料、激光、炸药、有毒物、有危险的建筑材料、放射性物质等; (2)系统部件间接口的安全性,例如:材料相容性、电磁干扰、意外触发、火灾或爆炸的发生和蔓延、硬件和软件控制(包括软件对系统或分系统安全的影响)等; (3)确定控制可靠性的关键软件命令和响应,例如:错误命令、不适时的命令或响应、或由订购方指定的不希望事件等; (4)与安全有关的设备、保险装置和应急装置等,例如:联锁装置、硬件或软件故障安全设计、分系统保护、灭火系统、人员防护设备、通风装置、噪声或辐射屏蔽等; (5)包括生产环境在内的环境约束条件,如:坠落、冲击、振动、极限、温度、噪声、接触有毒物、静电放电、雷击、电磁环境影响、电离和非电离辐射等; (6)操作、试验、维修和应急规程等。 进行预先危险分析需要如下资料: (1)各种设计方案的系统和分系统部件的设计图纸和资料; (2)在系统预期的寿命期内,系统各组成部分的活动、功能和工作顺序的功能流程图及有关资料; (3)在预期的试验、制造、储存、修理、使用等活动中与安全要求有关的背景材料。 4.分析步骤 (1)参照过去同类产品或系统发生事故的经验教训,查明所开发的系统(工艺、设备)是否也会出现同样的问题; (2)了解所开发系统的任务、目的、基本活动的要求、包括对环境的了解; (3)确定能够造成受伤、损失、功能失效或物质损失的初始危险; (4)确定初始危险的起因事件; (5)找出消除或控制危险的可能方法;

心率变异性HRV信号提取及时频域分析(包含程序)..

课程设计报告 题目:心率变异性(HRV)信号的提取及时频域分析专业:生物医学工程 班级: XXXXXXX 学号: XXXXXXX 姓名: XXXXXXX 指导教师: XXXXXXX XXXXXX大学 XXXXX学院 2016年 9月 29日

一、开题背景 (一)HRV简介 传统的医学观点认为,正常的心率为规则的窦性节律;后来发现在健康状态下,许多生理系统中存在自然的变异性,人的心率正常情况下也是呈不规则性变化的,而心率变异就是指窦性心率的这种波动变化的程度。心率变异性(Heart Rate Variability,HRV)是指逐次心搏间期之间的微小变异特性。在生理条件下,HRV的产生主要是由于心脏窦房结自律活动通过交感和迷走神经,神经中枢,压力反射和呼吸活动等因素的调节作用,使得心脏每搏间期一般存在几十毫秒的差异。 (二)HRV的研究现状 心率变异性(HRV)是近年来比较受关注的无创性心电监测指标之一,对HRV的生理和病理意义进行了广泛和深入的研究,其结果表明心率变异信号中蕴含着有关心血管调节的重要信息,对HRV进行分析可以间接地定量评价心肌交感、迷走神经的紧张性和均衡性,而且还能分析自主神经系统的活动情况。心率变异性还可以作为一个独立的心源性猝死危险性的预测指标。同时心率变异性分析对多种恶性心律失常的预后判断和药物治疗效果分析有指导作用。所以,对HRV的研究能够极大的促进人类对于心血管疾病的了解,从而在预防、治疗心血管疾病等领域取得成果。 (三)HRV的研究方法 随着对HRV研究的不断深入,其蕴含的生理病理信息将进一步被揭示,使得HRV 有更多的应用空间和应用价值。目前,心率变异性分析方法主要有时域分析法、频域分析法、时频分析法以及非线性分析法[1]。 (四)HRV的临床应用 (1)心脏性猝死(SCD)预测:由于HRV是反映自主神经张力的最敏感的指标,因此HRV降低是预测心脏性猝死最有价值的独立指标。 (2)急性心肌梗塞后患者危险性评估: HRV的降低是预测急性心肌梗塞后患者发生心脏性猝死和恶性心律失常危险的重要独立指标。一般建议在梗塞后一周开始进行HRV 的检测。HRV在梗塞后立即降低,并在几周内开始恢复(2周后逐渐回升),大约6-12个月恢复正常。因此,多次测定HRV可能比单次测定价值更大。梗塞后HRV恢复的快慢对以后死亡的危险性也有预测价值。 (3)对糖尿病患者自主神经系统损伤的评估:糖尿病患者不论病情轻重,均存在不同程度的自主神经功能紊乱。HRV是判断糖尿病患者是否伴有自主神经系统损害最准确,最敏感的指标。 (4)心力衰竭(CHF)患者危险性评估。

危险与可操作性分析研究_杜廷召

July 2010现代化工第30卷第7期M oder n Che m ica l Industry 2010年7月 分析测试 危险与可操作性分析研究 杜廷召,田文德,任 伟 (青岛科技大学化工学院,山东青岛266042) 摘要:危险与可操作性分析(HAZOP)是过程工业中广泛应用的识别危险与操作性问题的安全分析技术之一,尤其是在化工、石化等高危行业。概述了危险与可操作性分析方法基本原理的基础上,将HAZOP 产生以来的相关研究做出分类并进行了综述,包括HAZ OP 特征研究、扩展HAZ OP 分析领域、开发自动化HAZ OP 分析专家系统和动态模拟辅助的HAZOP 分析。最后对HAZ OP 技术的研究前景做出了展望。 关键词:HAZ OP ;危险与可操作性分析;过程危险性分析;安全分析中图分类号:X937 文献标识码:A 文章编号:0253-4320(2010)07-0090-04 P rogress and pros pect in hazard and operability analysis DU Ting zhao ,TI AN W en de ,RE N W ei (Co llege of Che m ica l Eng ineer i ng ,Q i ngdao U niversity of Science &T echno l ogy ,Q ingdao 266042,Ch i na)Ab stract :H azard and Operab ility Ana l ys i s(HA ZOP )is one o f t he techn i ques m ost w ide l y used i n safety ana l ys i s to i dentify hazards and ope rability prob l em s in process i ndustry ,especiall y i n i ndustry w ith h i gh risk li ke che m i ca l i ndustry ,petrochem i ca l industry et al .T he funda m enta l pr i nciple ofHA ZOP i s rev ie w ed .T he resea rch re lated to HAZOP around the w orld is c lassified i nto four ca tego ries acco rd i ng to its research scope ,i nc l ud i ng character i stics study ,HAZOP scope ex tendi ng ,deve l opi ng auto m ated HAZOP expert system s and HAZOP aided w it h dyna m ic si m u l a ti on .T he resea rch prospect o fHAZOP i s prev i ewed i n the end . K ey w ords :HAZOP ;hazard and operability ana l y si s ;pro cess hazard analysis ;safe t y ana l ysis 收稿日期:2010-02-08 基金项目:山东省自然科学基金(ZR2009B M 033) 作者简介:杜廷召(1986-),男,硕士生,研究方向为化学工程,du ti ngz h ao @g m ai.l co m;田文德(1973-),男,副教授,博士,硕士生导师,研究方 向为过程系统工程。 HAZOP (H azar d and Operability Analysis)技术 最早是在20世纪60年代中期由英国帝国化学公司(I CI)首先开发应用的。最初定义为:HAZ OP 分析是由各专业人员组成的分析组对工艺过程的危险和操作性进行分析,即对新建或者已有的过程装置及工程本质进行正式的、系统的严格审查来评估单个装置的危险可能性和可能对整套装置造成的影响。HAZOP 分析的目的在于识别已有的高危险性装置的潜在危险,除去导致重大安全的问题,例如有毒物质泄漏、火灾和爆炸等。经过几十年的发展,HAZOP 分析不仅能够识别危险,而且可以辨识操作问题,其应用范围已经扩大到其他领域,例如医疗诊断系统、路况安全监测、可再生能源系统、可编程电子系统等。 1 HAZOP 分析基本原理 HAZOP 的理论依据是:工艺流程的状态参数(如温度、压力、流量等)一旦偏离规定的基准状态,就会发生问题或出现危险。它需要由一个由多学科 且经验丰富的成员组成的分析团队,首先依据过程 流程图和管道装置图将流程分为易处理的节点,以此确保对过程中的每一个装置进行分析;然后针对节点内的每个设备、操作逐一进行检验:匹配引导词(none ,less ,m ore 等)与工艺参数(fl o w,pressure ,te m perature 等)组成有意义的偏差及操作问题,并由偏差进行事故剧情的向前向后分析,最终辨识偏差原因并分析偏差后果。 常规HAZOP 分析流程 [1] 见图1 。 图1 常规HAZOP 分析流程图 90

作业条件危险性评价法

作业条件危险性评价法 对于一个具有潜在危险性的作业条件,K·J·格雷厄姆和G·F·金尼认为,影响危险性的主要因素有3个: ①发生事故或危险事件的可能性; ②暴露于这种危险环境的情况; ③事故一旦发生可能产生的后果。用公式来表示,则为:D=L×E×C式中,D为作业条件的危险性;L为事故或危险事件发生的可能性;E为暴露于危险环境的频率;C为发生事故或危险事件的可能结果。 发生事故或危险事件的可能性具体方法 事故或危险事件发生的可能性与其实际发生的概率相关。若用概率来表示时,绝对不可能发生的概率为0;而必然发生的事件,其概率为1。但在考察一个系统的危险性时,绝对不可能发生事故是不确切的,即概率为0的情况不确切。所以,将实际上不可能发生的情况作为“打分”的参考点,定其分数值为0.1。 此外,在实际生产条件中,事故或危险事件发生的可能性范围非常广泛,因而人为地将完全出乎意料之外、极少可能发生的情况规定为1;能预料将来某个时候会发生事故的分值规定为10;在这两者之间再根据可能性的大小相应地确定几个中间值,如将“不常见,但仍然可能”的分值定为3,“相当可能发生”的分值规定为6。同样,在0.1与1之间也插入了与某种可能性对应的分值。于是,将事故或危险事件发生可能性的分值从实际上不可能的事件为0.1,经过完全意外有极少可能的分值1,确定到完全会被预料到的分值10为止(表1)。 表1 事故或危险事件发生可能性分值 2)暴露于危险环境的频率 众所周知,作业人员暴露于危险作业条件的次数越多、时间越长,则受到伤害的可能性也就越大。为此,K·J·格雷厄姆和G·F·金尼规定了连续出现在潜在危险环境的暴露频率分值为10,一年仅出现几次非常稀少的暴露频率分值为1。以10和1为参考点,再在其区间根据在潜在危险作业条件中暴露情况进行划分,并对应地确定其分值。例如,每月暴露一次的分定为2,每周一次或偶然暴露的分值为3。当然,根本不暴露的分值应为0,但这种情况实际上是不存在的,是没有意义的,因此毋须列出。关于暴露于潜在危险环境的分值见表2。 表2 暴露于潜在危险环境的分值 3)发生事故或危险事件的可能结果

相关主题
文本预览
相关文档 最新文档