2021年新高考数学总复习:中外数学文化专练
- 格式:doc
- 大小:715.50 KB
- 文档页数:10
中外数学文化专练纵观近几年高考,中外优秀的数学文化已成为高考数学命题的重要素材之虚数单位),它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当x =π时,e iπ+1=0被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,e i 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限A [根据欧拉公式e i x =cos x +isin x (i 为虚数单位),得e i =cos 1+isin 1,它在复平面内对应的点为(cos 1,sin 1),且⎩⎪⎨⎪⎧cos 1>0sin 1>0, 所以位于第一象限.故选A.]2.(2019·黄山三模)《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 1=( )A .23B .32C .35D .38C [由题意可知年龄构成的数列为等差数列,其公差为-3,则9a 1+9×82×(-3)=207,解得a 1=35,故选C.]3.中华文化博大精深,我国古代算书《周髀算经》中介绍了用统计概率得到圆周率π的近似值的方法.古代数学家用体现“外圆内方”文化的钱币(如图1)做统计,现将其抽象成如图2所示的图形,其中圆的半径为2 cm ,正方形的边长为1 cm ,在圆内随机取点,若统计得到此点取自阴影部分的概率是p ,则圆周率π的近似值为( )图1 图2A.14(1-p ) B.11-p C.11-4p D.41-p A [圆形钱币的半径为2 cm ,面积为S 圆=π·22=4π;正方形边长为1 cm ,面积为S 正方形=12=1.在圆形内随机取一点,此点取自黑色部分的概率是p =S 圆-S 正方形S 圆=1-14π,则π=14(1-p ).故选A.] 4.(2019·岳麓区校级模拟)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A.112 B.115C.118 D.114D[在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有28种,随机选取两个不同的数,其和等于20有2种,故可得随机选取两个不同的数,其和等于20的概率P=114,故选D.] 5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则芒种日影长为()A.1.5尺B.2.5尺C.3.5尺D.4.5尺B[设此等差数列{a n}的公差为d,则a1+a4+a7=3a1+9d=31.5,9a1+9×82d=85.5,解得d=-1,a1=13.5.则a12=13.5-11=2.5.故选B.]6.(2019·郑州三模)我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.如函数f(x)=x4|4x-1|的图象大致是()A BC DD[根据题意,函数f(x)=x4|4x-1|,则f(-x)=(-x)4|4-x-1|=x4·4x|4x-1|,易得f(x)为非奇非偶函数,排除A、B,当x→+∞时,f(x)=x41-4x→0,排除C;故选D.] 7.(2019·济南模拟)朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②,店务经四处,没了这壶酒,借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.如图是解决该问题的算法程序框图,若输入的x值为0,则输出的x值为()A.5740 B.13380C.5732 D.589320C[由题意,模拟程序的运行,x=0,i=0第一次执行循环体后,x =1920,i =1,不满足退出循环的条件;第二次执行循环体后,x =5740,i =2,不满足退出循环的条件; 第三次执行循环体后,x =13380,i =3,不满足退出循环的条件;第四次执行循环体后,x =5732,i =4,满足退出循环的条件,输出x 的值为5732.故选C.]8.(2019·安徽二模)谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基在1915年提出,先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢尔宾斯基三角形).在如图第5个大正三角形中随机取点,则落在白色区域的概率为( )A.6881B.175256C.81256D.1681B [不妨设第一个三角形的面积为1,则第二个图中黑色部分面积为34,第3个图中黑色部分面积为⎝ ⎛⎭⎪⎫342, 第4个图中黑色部分面积为⎝ ⎛⎭⎪⎫343, 第5个图中黑色部分面积为⎝ ⎛⎭⎪⎫344, 则在第5个大正三角形中随机取点,落在白色区域的概率为P =1-⎝ ⎛⎭⎪⎫344=175256.故选B.]9.电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l ,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte =8bit ,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为( )A .254B .381C .510D .765B [恰有相邻两位数是1其余各位数均是0的二进制数为11000000,1100000,110000,11000,1100,110,11,共7个.转化为十进制并相加得(27+26 )+(26+25 )+(25+24 )+(24+23 )+(23+22 )+(22+21 )+(21+20 )=381,故选B.]10.(2019·东湖区校级三模)“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西-布尼亚科夫斯基-施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4-5中给出了二维形式的柯西不等式:(a 2+b 2)(c 2+d 2)≥(ac +bd )2当且仅当ad =bc (即a c =b d )时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数f (x )=25-x +x -4的最大值及取得最大值时x 的值分别为( ) A.5,215 B.3,215 C.13,6113 D.29,6113 A [由柯西不等式可知: (25-x +x -4)2≤(22+12)[(5-x )2+(x -4)2]=5, 所以25-x +x -4≤5,当且仅当2x -4=5-x ,即x =215时取等号,故函数f (x )=25-x +x -4的最大值及取得最大值时x 的值分别为5,215,故选A.] 11.(2019·马鞍山一模)1642年,帕斯卡发明了一种可以进行十进制加减法的机械计算机.1674年,莱布尼茨改进了帕斯卡的计算机,但莱布尼兹认为十进制的运算在计算机上实现起来过于复杂,随即提出了“二进制”数的概念.之后,人们对进位制的效率问题进行了深入的研究.研究方法如下:对于正整数n ,x (x ≥2),我们准备nx 张不同的卡片,其中写有数字0,1,…,x -1的卡片各有n 张.如果用这些卡片表示n 位x 进制数,通过不同的卡片组合,这些卡片可以表示x 个不同的整数(例如n =3,x =10时,我们可以表示出000…999共103个不同的整数).假设卡片的总数nx 为一个定值,那么x 进制的效率最高则意味着nx 张卡片所表示的不同整数的个数x n 最大.根据上述研究方法,几进制的效率最高?( )A .二进制B .三进制C .十进制D .十六进制B [设nx =k 为定值,则nx 张卡片所表示的不同整数的个数y =x k x,(x ,k ∈N *),假设x ,k ∈R +,则ln y =k x ln x ,即y =e k x ln x ,求导可得:y ′=e k x ln x ·k x 2(1-ln x ),因为e k x ln x ·k x 2>0,所以当0<x <e ,y ′>0,当x >e ,y ′<0,可得x =e 时,函数y 取得最大值,比较2k 2,3k 3的大小即可,分别6次方可得:23k =8k,32k =9k ,可得8k <9k ,∴2k 2<3k 3.∴根据上述研究方法,3进制的效率最高,故选B.]12.黄金分割起源于公元前6世纪古希腊的毕达哥拉斯学派,公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为5-12,把5-12称为黄金分割数.已知双曲线x2(5-1)2-y2m=1的实轴长与焦距的比值恰好是黄金分割数,则m的值为()A.25-2 B.5+1C.2 D.25A[由题意得,在双曲线中a2=(5-1)2,b2=m,∴c2=a2+b2=(5-1)2+m.∵双曲线的实轴长与焦距的比值为黄金分割数5-1 2,∴2a2c=ac=5-12,∴a2c2=⎝⎛⎭⎪⎫5-122=3-52,∴(5-1)2(5-1)2+m=3-52,解得m=2(5-1).故选A.]13.(2019·南昌二模)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x2+y2≤1,若将军从点A(2,0)处出发,河岸线所在直线方程为x+y=3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为()A.10-1 B.22-1C.2 2 D.10A[设点A关于直线x+y=3的对称点A′(a,b),AA ′的中点为⎝ ⎛⎭⎪⎫a +22,b 2,k AA ′=b a -2, 故⎩⎨⎧ b a -2·(-1)=-1a +22+b 2=3解得⎩⎪⎨⎪⎧ a =3b =1, 要使从点A 到军营总路程最短,即为点A ′到军营最短的距离,“将军饮马”的最短总路程为32+12-1=10-1,故选A.]。
热点(十三) 数学文化1.[2020·石家庄模拟](古典概率中的数学文化)古希腊数学家毕达哥拉斯在公元前六世纪发现了“完全数”6和28,后人进一步研究发现后续3个“完全数”分别为496,8 128,33 550 336,现将这5个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( )A. 15B. 25C.35D. 110 2.[2020·山东六地市部分学校线上考试]《九章算术》是我国古代数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4.在此问题中,扇形的圆心角的弧度数是( )A.415B. 158C.154 D .120 3.(函数图象中的数学文化)我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.如函数f (x )=x 4|4x -1|的图象大致是( )4.(概率中的数学文化)我国古代有着辉煌的数学研究成果.《周髀算经》《九章算术》《海岛算经》《孙子算经》……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( )A.1415B.115C.29D.79 5.(数列中的数学文化)《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )A .23岁B .32岁C .35岁D .38岁6.[2020·新高考Ⅰ卷](立体几何中的数学文化)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°7.(解析几何中的数学文化)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题——“将军饮马”的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x2+y2≤1,若将军从点A(2,0)出发,河岸线所在直线方程x+y-4=0,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为()A.10 B.25-1C.2 5 D.10-18.(圆中的数学文化)阿波罗尼斯(约公元前262~190年)证明过这样一个命题:平面内到两定点距离之比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A、B间的距离为2,动点P满足|P A||PB|=2,则|P A|2+|PB|2的最小值为() A.36-24 2 B.48-24 2C.36 2 D.24 29.如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有n个圆盘,较大的圆盘都在较小的圆盘下面,现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将n个圆盘从起始柱移动到目标柱上最少需要移动的次数记为p(n),则p(4)=()A.33 B.31C.17 D.1510.(解三角形中的文化)《数书九章》中对已知三角形三边长求三角形面积的求法填补了我国数学史中的一个空白,虽与著名的海伦公式形式上有所不同,但实质完全等价,由此可以看出我国古代已经具有很高的数学水平.其求法是:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.”把以上这段文字用数学公式表示,即S=14⎣⎡⎦⎤c2a2-⎝⎛⎭⎫c2+a2-b222(S,a,b,c分别表示三角形的面积、大斜、中斜、小斜).现有周长为42+25的△ABC满足sin A︰sin B︰sin C=(2+1)︰5︰(2-1),试用以上给出的数学公式计算△ABC的面积为()A. 3 B.2 3C. 5 D.2 511.(立体几何中的数学文化)我国古代《九章算术》里记载了一个求“羡除”体积的例子,羡除,隧道也,其所穿地,上平下邪.小明仿制羡除裁剪出如图所示的纸片,在等腰梯形ABCD 中,AB=10,BC=CD=DA=8,在等腰梯形ABEF中,EF=6,AF=BE=6.将等腰梯形ABCD 沿AB折起,使DF=CE=26,则五面体ABCDFE中异面直线AC与DE所成角的余弦值为()A.0 B.2 4C.-24 D.2212.(多选题)(生活中的数学文化)《九章算术·衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中正确的是()A.甲付的税钱最多B.乙、丙两人付的税钱超过甲C.乙应出的税钱约为32D.丙付的税钱最少13.(三角函数中的文化)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可表示为m=2sin 18°.若m2+n=4,则1-2cos2 27°3m n=________.14.(数列中的数学文化)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系数数字常被人们称之为神奇数.具体数列为1,1,2,3,5,8…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{a n}为“斐波那契”数列,S n为数列{a n}的前n项和,若a2 020=M,则S2 018=________.(用M表示)15.[2020·山东烟台、菏泽联考](二项式定理中的数学文化)杨辉三角,又称贾宪三角、帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用三角形解释二项和的乘方规律,称之为“杨辉三角”,由杨辉三角可以得到(a+b)n展开式的二项式系数.根据相关知识可求得(1-2x)5展开式中的x3的系数为________.16.[2020·山东肥城一中模拟](立体几何中的数学文化)在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱ABC -A1B1C1是一个“堑堵”,其中AB=BC=BB1=2,点M是A1C1的中点,则四棱锥M-B1C1CB的外接球的表面积为________.热点(十三) 数学文化1.答案:B解析:记5个“完全数”中随机抽出2个为第一组,剩下3个为第二组,则基本事件总数为C 25=10.又6和28恰好在第一组有1种情况,6,28和其他3个数中的1个在第二组有3种情况,所以所求概率为1+310=25,故选B.2.答案:C解析:由题意,根据给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,再由扇形的弧长公式,可得扇形的圆心角α=l r =308=154(弧度),故选C.3.答案:D解析:因为f (x )=⎩⎪⎨⎪⎧x 44x -1,x >0,x41-4x,x <0,f (-x )=x 4|4-x -1|=x 4·4x|4x -1|≠f (x ),且f (-x )≠-f (x ),所以f (x )没有奇偶性,而A ,B 选项中的图象关于y 轴对称,排除A ,B ;当x →-∞时,f (x )=x 41-4x→+∞,排除C ,选D. 4.答案:A解析:设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,所以P (A )=C 23C 210=115,因此P (A )=1-P (A )=1-115=1415,故选A.5.答案:C解析:设这位公公的第n 个儿子的年龄为a n , 由题可知{a n }是等差数列,设公差为d ,则d =-3, 又由S 9=207,即S 9=9a 1+9+82×(-3)=207,解得a 1=35,即这位公公的长儿的年龄为35岁.故选C. 6.答案:B解析:过球心O 、点A 以及晷针的轴截面如图所示,其中CD 为晷面,GF 为晷针所在直线,EF 为点A 处的水平面,GF ⊥CD ,CD ∥OB ,∠AOB =40°,∠OAE = ∠OAF =90°,所以∠GF A =∠CAO =∠AOB =40°.故选B.7.答案:B解析:设点A 关于直线x +y =4的对称点A ′(a ,b ),k AA ′=ba -2, AA ′的中点为⎝⎛⎭⎪⎫a +22,b 2,故⎩⎪⎨⎪⎧ba -2=1a +22+b 2=4解得a =4,b =2,要使从点A 到军营总路程最短,即为点A ′到军营最短的距离,即为点A ′和圆上的点连线的最小值,即为点A ′和圆心的距离减半径, “将军饮马”的最短总路程为 4+16-1=25-1,故选B.8.答案:A解析:以经过A 、B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,则A (-1,0)、B (1,0),设P (x ,y ),∵|P A ||PB |=2,∴(x +1)2+y 2(x -1)2+y2=2,两边平方并整理得x 2+y 2-6x +1=0⇒(x -3)2+y 2=8,所以P 点的轨迹是以(3,0)为圆心,22为半径的圆,则有|P A |2+|PB |2=2(x 2+y 2)+2=2|OP |2+2,如图所示:当点P 为圆与x 轴的交点(靠近原点)时,此时, OP 取最小值,且OP =3-22,因此,|P A |2+|PB |2≥2×(3-22)2+2=36-242,故选A. 9.答案:D解析:由题意,把圆盘从起始柱全部移到目标柱上最少需要移动的次数记为p (n ),则把起始柱上的(除最底下的)圆盘从起始柱移动到辅助柱最少需要移动的次数为p (n -1),则有p (n )=2p (n -1)+1,所以p (n )+1=2[p (n -1)+1],又p (1)=1,即{p (n )+1}是以p (1)+1=2为首项,2为公比的等比数列,由等比数列通项公式可得,p (n )+1=2n ,所以p (n )=2n -1,故p (4)=24-1=15,故选D.10.答案:A解析:因为sin A ︰sin B ︰sin C =(2+1)︰5︰(2-1), 则由正弦定理得a ︰b ︰c =(2+1)︰5︰(2-1). 设a =(2+1)x ,b =5x ,c =(2-1)x , 又周长为42+25,所以42+25=(2+1)x +5x +(2-1)x ,解得x =2. 所以S =14×⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫42×(2-1)2×(2+1)2-⎣⎢⎡⎦⎥⎤22×(2+1)2+22×(2-1)2-2022 = 3.故选A.11.答案:B解析:如图,过点C 作AB 的垂线,H 为垂足,易知BH =1,CH =37,AC =12.同理,在等腰梯形CDFE 中,对角线DE =6 2.过点C 作CG ∥DE 交FE 的延长线于点G ,易知四边形CDEG 是平行四边形,DE 綉CG ,连接AG ,则异面直线AC 与DE 所成的角即直线AC 与CG 所成的角.过点A 作AT ⊥EF ,交EF 的延长线于点T ,则易知AT =42,TG =16,所以AG =12 2. 在△ACG 中,AG =122,AC =12,CG =DE =62,由余弦定理得cos ∠ACG =144+72-2882×12×62=-24.因为异面直线所成的角在⎝⎛⎦⎤0,π2范围内,所以异面直线AC 与DE 所成角的余弦值为24,故选B.12.答案:ACD 解析:甲付的税钱最多、丙付的税钱最少,可知A 、D 正确;乙、丙两人付的税钱占总税钱的53109<12不超过甲。
小题基础练(五) 数学文化1.饕餮(tāo tiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为1,有一点P 从A 点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过3次跳动后恰好是沿着饕餮纹的路线到达点B 的概率为( )A.116B.18C.14D.12解析:点P 从A 点出发,每次向右或向下跳一个单位长度,跳3次的所有基本事件有:(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下),共8种不同的跳法(线路),符合题意的只有(下,下,右)这1种,所以3次跳动后,恰好是沿着饕餮纹的路线到达点B 的概率为18. 答案:B2.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,雨水、惊蛰、春分、清明日影之和为三丈二尺,前七个节气日影之和为七丈三尺五寸,问立夏日影长为( )A .七尺五寸B .六尺五寸C .五尺五寸D .四尺五寸解析:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,雨水、惊蛰、春分、清明日影之和为三丈二尺,前七个节气日影之和为七丈三尺五寸,设十二节气第n (n ∈N *)个节气的日影长为a n ,则数列{a n }为等差数列,设其公差为d ,前n 项和为S n ,则⎩⎪⎨⎪⎧a 5+a 6+a 7+a 8=4a 1+22d =32,S 7=7a 1+7×62d =7a 1+21d =73.5,解得⎩⎪⎨⎪⎧a 1=272,d =-1,所以a 10=a 1+9d =272-9=92,因此,立夏日影长为四尺五寸. 答案:D3.《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》中有如下两个问题:[三三]今有宛田,下周三十步,径十六步.问为田几何?[三四]又有宛田,下周九十九步,径五十一步.问为田几何?翻译为:[三三]现有扇形田,弧长30步,直径长16步.问这块田面积是多少?[三四]又有一扇形田,弧长99步,直径长51步.问这块田面积是多少?则下列说法正确的是( )A .问题[三三]中扇形的面积为240平方步B .问题[三四]中扇形的面积为5 0494平方步 C .问题[三三]中扇形的面积为60平方步D .问题[三四]中扇形的面积为5 0492平方步 解析:依题意,问题[三三]中扇形的面积为12lr =12×30×162=120平方步, 问题[三四]中扇形的面积为12lr =12×99×512=5 0494平方步. 答案:B4.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段⎝⎛⎭⎫13,23,记为第一次操作;再将剩下的两个区间⎣⎡⎦⎤0,13,⎣⎡⎦⎤23,1分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于45,则需要操作的次数n 的最小值为________.参考数据:lg 2=0.301 0,lg 3=0.477 1( ) A .3B .4C .5D .6解析:第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉2n -1个长度为13n 的区间,长度和为2n -13n .于是进行了n 次操作后,所有去掉的区间长度之和为S n =13+29+…+2n -13n =1-⎝⎛⎭⎫23n ,由题意,1-⎝⎛⎭⎫23n ≥45,即n lg 23≤lg 15,解得:n ≥3.97,又n 为整数,所以n 的最小值为4.答案:B5.我国古代著名数学家刘徽的杰作《九章算术注》是中国最宝贵的数学遗产之一,书中记载了他计算圆周率所用的方法.先作一个半径为1的单位圆,然后做其内接正六边形,在此基础上做出内接正6×2n (n =1,2,…)边形,这样正多边形的边逐渐逼近圆周,从而得到圆周率,这种方法称为“刘徽割圆术”.现设单位圆O 的内接正n 边形的一边为AC ,点B 为劣弧AC ︵的中点,则BC 是内接正2n 边形的一边,现记AC =S n ,AB =S 2n ,则( )A .S 2n = 2-4-S 2nB .S 2n =2+4-S 2n C .S 2n =22+4-S 2n D .S 2n = 4-34-S 2n解析:法一 设∠AOB =θ,则在△AOB 中,由余弦定理得S 22n =2-2cos θ,设AC 与OB 相交于点D ,则OD ⊥AD ,所以cos θ=OD OA= 1-S 2n 4, 所以S 22n =2-2 1-S 2n 4=2-4-S 2n ,故选A.法二 设AC 与OB 相交于点D ,则OD ⊥AD ,因为AD =12S n ,所以OD =1-S 2n 4,所以BD =1-OD =1- 1-S 2n 4,所以S 2n =BD 2+AD 2=2-4-S 2n ,故选A.答案:A6.玉琮是中国古代玉器中重要的礼器,神人纹玉琮王是新石器时代良渚文化的典型玉器,1986年出土于杭州市余杭区反山文化遗址.玉琮王通高8.8 cm ,孔径4.9 cm 、外径17.6 cm.琮体四面各琢刻一完整的兽面神人图像.兽面的两侧各浅浮雕鸟纹.器形呈扁矮的方柱体,内圆外方,上下端为圆面的射,中心有一上下垂直相透的圆孔.试估计该神人纹玉琮王的体积约为(单位:cm 3)( )A .6 250B .3 050C .2 850D .2 350解析:由题可知,该神人纹玉琮王可看作是一个底面边长为17.6 cm ,高为8.8 cm 的正四棱柱中挖去一个底面直径为4.9 cm ,高为8.8 cm 的圆柱,此时求得体积记为V 1,V 1=(17.6)2×8.8-π×⎝⎛⎭⎫4.922×8.8≈2 560 cm 3, 记该神人纹玉琮王的实际体积为V ,则V <V 1,且由题意可知,V >π×⎝⎛⎭⎫17.622×8.8-π×⎝⎛⎭⎫4.922×8.8≈1 975 cm 3, 故1 975<V <2 560,故选D.答案:D7.南北朝时期的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为V 1、V 2,被平行于这两个平面的任意平面截得的两个截面面积分别为S 1、S 2,则命题p :“V 1、V 2相等”是命题q :“S 1、S 2总相等”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由祖暅原理可知,若S 1、S 2总相等,则V 1、V 2相等,即必要性成立;假设夹在两平行平面间的底面积为S 的棱柱和底面积为3S 的棱锥,它们的体积分别为V 1、V 2,则V 1=V 2,这两个几何体被平行于这两个平面的任意平面截得的两个截面的面积分别为S 1、S 2,但S 1与S 2不总相等,即充分性不成立.因此,命题p 是命题q 的必要不充分条件.答案:B8.我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的天数最小为( )A .2B .3C .4D .5解析:设需要n 天时间才能打通相逢,则2n -12-1+12⎝⎛⎭⎫1-12n 1-12≥8, 化为:2n -12n -8≥0,令2n =t ,则t 2-8t -1≥0⇒t ≤4-17(舍去)或t ≥4+17 所以2n >8,所以n >3,n 的最小整数为4.答案:C9.《周髀算经》中给出了:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二节气的日影长依次成等差数列的结论.已知某地立春与雨水两个节气的日影长分别为10.5尺和9.5尺,现在从该地日影长小于9尺的节气中随机抽取2个节气进行日影长情况统计,则所选取这2个节气中恰好有1个节气的日影长小于5尺的概率为( )A.37B.47C.1321D.57解析:设这十二节气中第n (n ∈N *)个节气的日影长为a n 尺,可知数列{a n }为等差数列,设其公差为d ,由题意得a 4=10.5,a 5=9.5,所以d =a 5-a 4=-1,所以a n =a 4+(n -4)d =10.5-(n -4)=14.5-n .令a n =14.5-n <9,解得n >5.5;令a n =14.5-n <5,解得n >9.5.从该地日影长小于9尺的节气中随机抽取2个节气,所有的基本事件有:(a 6,a 7)、(a 6、a 8)、(a 6、a 9)、(a 6、a 10)、(a 6、a 11)、(a 6、a 12)、(a 7、a 8)、(a 7、a 9)、(a 7、a 10)、(a 7、a 11)、(a 7、a 12)、(a 8、a 9)、(a 8、a 10)、(a 8、a 11)、(a 8、a 12)、(a 9、a 10)、(a 9、a 11)、(a 9、a 12)、(a 10、a 11)、(a 10、a 12)、(a 11、a 12),共21个,其中,事件“所选取这2个节气中恰好有1个节气的日影长小于5尺”所包含的基本事件有:(a 6、a 10)、(a 6、a 11)、(a 6、a 12)、(a 7、a 10)、(a 7、a 11)、(a 7、a 12)、(a 8、a 10)、(a 8、a 11)、(a 8、a 12)、(a 9、a 10)、(a 9、a 11)、(a 9、a 12),共12个,因此,所求事件的概率为1221=47. 答案:B10.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的中心为原点,焦点F 1,F 2均在x 轴上,C 的面积为23π,且短轴长为23,则C 的标准方程为( )A.x 212+y 2=1 B.x 24+y 23=1 C.x 23+y 24=1 D.x 216+y 23=1 解析:由题意可得⎩⎪⎨⎪⎧ab =23ππ,2b =23,解得a =2,b =3, 因为椭圆C 的焦点在x 轴上,所以C 的标准方程为x 24+y 23=1. 答案:B11.我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异.”意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为3的圆的三分之一,则该几何体的体积为( )A.223π B.423π C.42π D.83π 解析:由题意可知,该几何体的体积等于圆锥的体积,因为圆锥的侧面展开图恰为一个半径为3的圆的三分之一,所以圆锥的底面周长为2π×33=2π,所以圆锥的底面半径为1,母线长为3, 所以圆锥的高为32-1=22,所以圆锥的体积V 圆锥=13×π×12×22=223π. 从而所求几何体的体积为V =223π. 答案:A12.据记载,欧拉公式e i x =cos x +isin x (x ∈R)是由瑞士著名数学家欧拉发现的,该公式被誉为“数学中的天桥”.特别是当x =π时,得到一个令人着迷的优美恒等式e πi +1=0,这个恒等式将数学中五个重要的数(自然对数的底e ,圆周率π,虚数单位i ,自然数的单位1和零元0)联系到了一起,有些数学家评价它是“最完美的公式”.根据欧拉公式,若复数z =e 3π4i 的共轭复数为z ,则z =( )A .-22-22i B .-22+22i C .22+22i D .22-22i 解析:欧拉公式e i x =cos x +isin x (x ∈R),则z =e 3π4i =cos 3π4+isin 3π4=-22+22i , 根据共轭复数定义可知z =-22-22i ,故选A. 答案:A13.德国数学家莱布尼兹发现了如图所示的单位分数三角形(单位分数是指分子为1,分母为正整数的分数),称为莱布尼兹三角形.根据前5行的规律,则第6行的左起第3个数为________.11 12 12 13 16 13 14 112 112 14 15 120 130 120 15……解析:由数表可知,第n 行第一个数为1n ,所以第6行的第1个数和最后1个数是16,中间的某个数等于下一行“两个脚”的和,所以第6行的第2个数为15-16=130,第6行的第3个数为120-130=160,故答案为160. 答案:16014.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心在同一条直线上,这条直线称为“欧拉线”.已知△ABC 的顶点A (2,0),B (0,4),其“欧拉线”的直线方程为x -y +2=0,则△ABC 的顶点C 的坐标__________.解析:设C (m ,n ),由重心坐标公式得△ABC 的重心为⎝ ⎛⎭⎪⎫2+m 3,4+n 3, 代入欧拉线方程得2+m 3-4+n 3+2=0 整理得m -n +4=0① 因为AB 的中点为(1,2),k AB =4-00-2=-2,所以AB 的中垂线的斜率为12, 所以AB 的中垂线方程为y -2=12(x -1),即x -2y +3=0, 联立⎩⎪⎨⎪⎧x -2y +3=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以△ABC 的外心为(-1,1) 则(m +1)2+(n -1)2=(2+1)2+12,②联立①②得m =-4,n =0或m =0,n =4,当m =0,n =4时,点B 、C 两点重合,舍去;所以m =-4,n =0即△ABC 的顶点C 的坐标为(-4,0).答案:(-4,0)15.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹记数法中,以“纵式”和“横式”两种方式来表示数字,如下表:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图所示.如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示的三位数的个数为________.解析:按每一位算筹的根数分类一共有15种情况,分别为、(5,0,0)、(4,1,0)、(4,0,1)、(3,2,0)、(3,1,1)、(3,0,2)、(2,3,0)、(2,2,1)、(2,1,2)、(2,0,3)、(1,4,0)、(1,3,1)、(1,2,2)、(1,1,3)、(1,0,4),2根或2根以上的算筹可以表示两个数字,运用分步乘法计数原理,得上面情况能表示的三位数字个数分别为:2、2、2、4、2、4、4、4、4、4、2、2、4、2、2,根据分类加法计数原理,得5根算筹能表示的三位数字个数为:2+2+2+4+2+4+4+4+4+4+2+2+4+2+2=44.答案:4416.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵;将底面为矩形,一侧棱垂直于底面的四棱锥称为阳马;将四个面均为直角三角形的四面体称为鳖臑.如图,在堑堵ABC-A 1B 1C 1中,AC ⊥BC ,AA 1=3,A 1BCC 1外接球的表面积为25π,则阳马A 1-BCC 1B 1体积的最大值为__________.解析:因为鳖臑A 1-BCC 1外接球的直径为A 1B =5,又因为AA 1=3,所以AB =4=AC 2+BC 2,即16=AC 2+BC 2≥2AC ·BC ,所以AC ·BC ≤8,所以阳马A 1-BCC 1B 1的体积为V =13BC ×BB 1×A 1C 1=13AC ·BC ×AA 1≤8. 所以阳马A 1-BCC 1B 1体积的最大值为8.答案:8。
2021年江西省高考数学总复习专题5:数学文化-------------------------------把握考点明确方向-------------------------------高考考点考点解读命题意图数学文化1.数学史的考查:数学史是研究数学科学发生发展及其规律的科学,在数学史中寻找命题背景也一直被推崇2.数学应用的考查:数学应用是数学文化的又一重要组成.学以致用是数学教学的目标之一,简言之,就是用数学的眼光、从数学的角度观察事物、阐释现象、分析问题.3.数学思想方法的考查:数学思想方法是数学知识的精髓和核心,是将数学知识转化为数学能力的桥梁.数学的推理方法、数学的研究方法、数学的思维方式、数学的理性精神等这些都将使一个学习过数学的人终身受益.数学文化渗透于数学教学已成为数学课程的目标,因此,如何将数学文化自然地渗透于数学题,也将是命题者的下一个重要课题--------------------------------经典例题提升能力------------------------------命题方向1 数学史的考查例1.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A.B.C.D.命题方向2 数学应用的考查例2.如图所示,九连环是中国的一种古老的智力游戏,它环环相扣,趣味无穷.它主要由九个圆环及框架组成,每个圆环都连有一个直杆,各直杆在后一个圆环内穿过,九个直杆的另一端用平板或者圆环相对固定,圆环在框架上可以解下或者套上.九连环游戏按某种规则第1 页共20 页。
第1讲数学文化及核心素养类试题「考情研析」数学文化与数学知识相结合,有效考查考生的阅读理解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查,也体现了我国数学文化的源远流长.高考中多以选择题的形式出现,难度中等.热点考向探究考向1三角函数中的数学文化例1(2020·河北省衡水中学第九次调研考试)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在△ABC中,角A,B,C所对的边分别为a,b,c,则△ABC的面积S=14⎣⎢⎡⎦⎥⎤(ab)2-⎝⎛⎭⎪⎫a2+b2-c222.根据此公式,若a cos B+(b+3c)cos A=0,且a2-b2-c2=2,则△ABC的面积为()A. 2 B.2 2C. 6 D.2 3我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S=p(p-a)(p-b)(p-c),其中p=12(a+b+c))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白.(2020·湖南省长郡中学高三第三次适应性考试)上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”“夏(冬)至”的示意图.图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如表:黄赤交角23°41′23°57′24°13′24°28′24°44′正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年A.早于公元前6000年B.公元前2000年到公元元年C.公元前4000年到公元前2000年D.公元前6000年到公元前4000年考向2数列中的数学文化例2(多选)(2020·山东省青岛市高三三模)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为a n ,b n =2an ,对于数列{a n },{b n },下列选项中正确的为( )A .b 10=8b 5B .{b n }是等比数列C .a 1b 30=105D .a 3+a 5+a 7a 2+a 4+a 6=209193本题以传统数学文化为载体考查数列的实际应用问题.解题的关键是将古代实际问题转化为现代数学问题,建立等差、等比数列的模型,探索并掌握它们的一些基本数量关系,利用方程思想求解.(2020·福建省宁德市二模)著名物理学家李政道说:“科学和艺术是不可分割的”.音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载堉创立了十二平均律,是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音之间的频率比是常数,如表所示,其中a 1,a 2,…,a 13表示这些半音的频率,它们满足log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12).若某一半音与D #的频率之比为32,则该半音为( ) 频率 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 半音CC #DD #EFF #G G #AA #BC (八度)C .G #D .A考向3 立体几何中的数学文化例3我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b,高皆为a的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d处的平面截这两个几何体,可横截得到S圆及S环两截面.可以证明S圆=S环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.依托立体几何,传播数学文化.立体几何是中国古代数学的一个重要研究内容,从中国古代数学中挖掘素材,考查立体几何的线面的位置关系、几何体的体积等知识,既符合考生的认知水平,又可以引导学生关注中华优秀传统文化.(2020·山东省潍坊市模拟)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,酒杯内壁表面积为143πR2.设酒杯上部分(圆柱)的体积为V1,下部分(半球)的体积为V2,则V1V2=()A.2 B.3 2C.1 D.3 4考向4概率中的数学文化例4(2020·河北省张家口高三5月模拟)角谷猜想,也叫3n+1猜想,是由日本数学家角谷静夫发现的,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2,如此循环最终都能够得到1.如:取n=6,根据上述过程,得出6,3,10,5,16,8,4,2,1,共9个数.若n=5,从根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为()A.37B.715C.25D.35数学文化渗透到概率数学中去,不但丰富了数学的概率知识,还提高了学生的文化素养.解决此类问题的关键是构建合理的概率模型,利用相应的概率计算公式求解.(2020·河南省六市高三一模)五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A.12B.13C.14D.15考向5数学文化与现代科学例52016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a1<c2a2;④c1a2>a1c2.其中正确式子的序号是()A.①③B.①④C.②③D.②④.(1)命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.(2)注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P和一个焦点F,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.(2020·北京市东城区模拟)标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的1010倍,若视力4.1的视标边长为a,则视力4.9的视标边长为()A.104 5aB.109 10aC.D.真题押题『真题检验』1.(2020·新高考卷Ⅰ) 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°2.(2020·全国卷Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块3. (2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.『押题』4.天干地支纪年法(简称干支纪年法)是中国历法上自古以来就一直使用的纪年方法.天干有十,即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支有十二,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.干支纪年法中,天干地支对应的规律如表:2049年是新中国成立100周年.这一百年,中国逐步实现中华民族的伟大复兴.使用干支纪年法,2049年是己巳年,则2059年是________年;使用干支纪年法可以得到________种不同的干支纪年.专题作业一、选择题1.(2020·山东省烟台市模拟)《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为()A.13B.23C.16D.562.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为()A.48里B.24里C.12里D.6里3. (2020·河北六校联考)玉琮是中国古代玉器中重要的礼器,神人纹玉琮王是新石器时代良渚文化的典型玉器,1986年出土于浙江省余杭县反山文化遗址.如图,玉琮王通高8.8 cm,孔径4.9 cm,外径17.6 cm,琮体四面各琢刻一完整的兽面神人图象,兽面的两侧各浅浮雕鸟纹,器形呈扁矮的方柱体,内圆外方,上下端为圆面的射,中心有一上下垂直相透的圆孔.估计该神人纹玉琮王的体积为(单位:cm3)()A.6250 B.3050C.2850 D.23504.中国是发现和研究勾股定理最古老的国家之一,古代数学家称直角三角形较短的直角边为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据称为勾股数.现从1~15这15个数中随机抽取3个数,则这三个数为勾股数的概率为()A.1910B.3910C.4455D.64555.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆的离心率为74,面积为12π,则椭圆C的方程为()A.x29+y216=1 B.x23+y24=1C.x218+y232=1 D.x24+y236=16.(2020·山东省泰安市模拟)我国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱EF=32,EF ∥平面ABCD,EF与平面ABCD的距离为2,该刍甍的体积为()A.6 B.11 3C.314D.127.(2020·江西省九江市二模)算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百、千位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为()A.38B.12C.23D.348.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC-A1B1C1中,AC⊥BC,若A1A=AB=2,当阳马B-A1ACC1体积最大时,堑堵ABC-A1B1C1的体积为()A.83B. 2C.2 D.2 29.(2020·四川省达州市模拟)斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图1、图2是斗拱实物图,图3是斗拱构件之一的“斗”的几何体.本图中的斗由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400 cm2,900 cm2,高为9 cm,长方体形凹槽的体积为4300 cm3,那么这个斗的体积是()注:台体体积公式是V=13(S′+S′S+S)h.A.5700 cm3B.8100 cm3C.10000 cm3D.9000 cm310. (2020·辽宁省葫芦岛市模拟)地球的公转轨道可以看作是以太阳为一个焦点的椭圆,根据开普勒行星运动第二定律,可知太阳和地球的连线在相等的时间内扫过相等的面积.某同学结合物理和地理知识得到以下结论:①地球到太阳的距离取得最小值和最大值时,地球分别位于图中A点和B点;②已知地球公转轨道的长半轴长约为149600000千米,短半轴长约为149580000千米,则该椭圆的离心率约为1,因此该椭圆近似于圆形;③已知我国每逢春分(3月21日前后)和秋分(9月23日前后),地球会分别运行至图中C点和D点,则由此可知我国每年的夏半年(春分至秋分)比冬半年(当年秋分至次年春分)要少几天.以上结论正确的是()A.①B.①②C.②③D.①③二、填空题11.数学与文化有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343,12521等,两位数的回文数有11,22,33,…,99共9个,则三位数的回文数中,偶数的概率是________.12.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是________.13.(2020·山东省泰安市高三一模)《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成,“”表示一根阳线,“”表示一根阴线,从八卦中任取两卦,这两卦的六根线中恰有两根阳线、四根阴线的概率为________.14.我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45 m,依据规定,该小区内住宅楼楼间距应不小于52 m.若该小区内某居民在距离楼底27 m高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________ m.第1讲数学文化及核心素养类试题「考情研析」数学文化与数学知识相结合,有效考查考生的阅读理解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查,也体现了我国数学文化的源远流长.高考中多以选择题的形式出现,难度中等.热点考向探究考向1三角函数中的数学文化例1(2020·河北省衡水中学第九次调研考试)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在△ABC中,角A,B,C所对的边分别为a,b,c,则△ABC的面积S=14⎣⎢⎡⎦⎥⎤(ab)2-⎝⎛⎭⎪⎫a2+b2-c222.根据此公式,若a cos B+(b+3c)cos A=0,且a2-b2-c2=2,则△ABC的面积为()A . 2B .2 2C . 6D .2 3答案 A解析 由a cos B +(b +3c )cos A =0,可得sin A cos B +cos A sin B +3sin C cos A =0,即sin(A +B )+3sin C cos A =0,即sin C (1+3cos A )=0,因为sin C ≠0,所以cos A =-13,由余弦定理可得a 2-b 2-c 2=-2bc cos A =23bc =2,所以bc =3,由△ABC 的面积公式可得S =14⎣⎢⎡⎦⎥⎤(bc )2-⎝ ⎛⎭⎪⎫c 2+b 2-a 222=14×(32-12)= 2.故选A .我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白.(2020·湖南省长郡中学高三第三次适应性考试)上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”“夏(冬)至”的示意图.图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如表:黄赤交角23°41′23°57′24°13′24°28′24°44′正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.早于公元前6000年B.公元前2000年到公元元年C.公元前4000年到公元前2000年D.公元前6000年到公元前4000年答案 A解析由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β,则α-β即为冬至日光与春秋分日光的夹角,即黄赤交角,由图3近似画出如图平面几何图形,则tanα=1610=1.6,tanβ=16-9.410=0.66,tan(α-β)=tanα-tanβ1+tanαtanβ= 1.6-0.661+1.6×0.66≈0.457.∵0.455<0.457<0.461,∴估计该骨笛的大致年代早于公元前6000年.考向2数列中的数学文化例2(多选)(2020·山东省青岛市高三三模)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为a n ,b n =2an ,对于数列{a n },{b n },下列选项中正确的为( )A .b 10=8b 5B .{b n }是等比数列C .a 1b 30=105D .a 3+a 5+a 7a 2+a 4+a 6=209193答案 BD解析 由题意可知,数列{a n }为等差数列,设数列{a n }的公差为d ,a 1=5,由题意可得30a 1+30×29d 2=390,解得d =1629,∴a n =a 1+(n -1)d =16n +12929,∵b n =2an ,∴b n +1b n =2an +12an =2an +1-an =2d (非零常数),则数列{b n }是等比数列,B 正确;∵5d =5×1629=8029≠3,b 10b 5=(2d )5=25d ≠23,∴b 10≠8b 5,A 错误;a 30=a 1+29d =5+16=21,∴a 1b 30=5×221>105,C 错误;a 4=a 1+3d =5+3×1629=19329,a 5=a 1+4d =5+4×1629=20929,∴a 3+a 5+a 7a 2+a 4+a 6=3a 53a 4=a 5a 4=209193,D 正确.故选BD.本题以传统数学文化为载体考查数列的实际应用问题.解题的关键是将古代实际问题转化为现代数学问题,建立等差、等比数列的模型,探索并掌握它们的一些基本数量关系,利用方程思想求解.(2020·福建省宁德市二模)著名物理学家李政道说:“科学和艺术是不可分割的”.音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载堉创立了十二平均律,是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音之间的频率比是常数,如表所示,其中a 1,a 2,…,a 13表示这些半音的频率,它们满足log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12).若某一半音与D #的频率之比为32,则该半音为( ) 频率 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 半音CC #DD #EFF #G G #AA #BC (八度)C .G #D .A答案B解析 由题意知log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12), ∴a i +1a i=2112,故数列{a n }是公比q =2112的等比数列. ∵a 4=D #,a 8=a 4q 4=D #×(2112)4=D #×32=G ,∴G D #=32.故选B.考向3 立体几何中的数学文化例3 我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.答案 4π解析 因为S 圆=S 环总成立,则半椭球体的体积为πb 2a -13πb 2a =23πb 2a , 所以椭球体的体积为V =43πb 2a ,因为椭球体的半短轴长为1,半长轴长为3, 所以椭球体的体积为V =43πb 2a =43π×12×3=4π, 故答案是4π.依托立体几何,传播数学文化.立体几何是中国古代数学的一个重要研究内容,从中国古代数学中挖掘素材,考查立体几何的线面的位置关系、几何体的体积等知识,既符合考生的认知水平,又可以引导学生关注中华优秀传统文化.(2020·山东省潍坊市模拟)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为143πR 2.设酒杯上部分(圆柱)的体积为V 1,下部分(半球)的体积为V 2,则V 1V 2=( )A .2B .32C.1 D.3 4答案 A解析由球的半径为R,得半球的内部表面积为2πR2,又酒杯内壁表面积为143πR2,∴圆柱的侧面积为83πR2.设圆柱的高为h,则2πR·h=83πR2,即h=43R.∴V1=πR2·43R=43πR3,V2=23πR3,∴V1V2=43πR323πR3=2.故选A.考向4概率中的数学文化例4(2020·河北省张家口高三5月模拟)角谷猜想,也叫3n+1猜想,是由日本数学家角谷静夫发现的,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2,如此循环最终都能够得到1.如:取n=6,根据上述过程,得出6,3,10,5,16,8,4,2,1,共9个数.若n=5,从根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为() A.37B.715C.25D.35答案 C解析若n=5,根据上述过程得出的整数有5,16,8,4,2,1,随机选取两个不同的数,基本事件总数n=C26=15,这两个数都是偶数包含的基本事件个数m=C24=6,则这两个数都是偶数的概率为P=mn=615=25.故选C.数学文化渗透到概率数学中去,不但丰富了数学的概率知识,还提高了学生的文化素养.解决此类问题的关键是构建合理的概率模型,利用相应的概率计算公式求解.(2020·河南省六市高三一模)五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A.12B.13C.14D.15答案 A解析金、木、水、火、土彼此之间存在相生相克的关系.从5类元素中任选2类元素,基本事件总数n=C25=10,2类元素相生包含的基本事件有5个,则2类元素相生的概率为P=510=12.故选A.考向5数学文化与现代科学例52016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a1<c2a2;④c1a2>a1c2.其中正确式子的序号是( ) A .①③ B .①④ C .②③ D .②④答案 D解析 观察题图可知a 1>a 2,c 1>c 2,∴a 1+c 1>a 2+c 2,即①式不正确;a 1-c 1=a 2-c 2=|PF |,即②式正确;由a 1-c 1=a 2-c 2>0,c 1>c 2>0,知a 1-c 1c 1<a 2-c 2c 2,即a 1c 1<a 2c 2,从而c 1a 2>a 1c 2,c 1a 1>c 2a 2.即④式正确,③式不正确.(1)命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.(2)注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P 和一个焦点F ,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.(2020·北京市东城区模拟)标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的1010倍,若视力4.1的视标边长为a ,则视力4.9的视标边长为( )。
专题二十二 数学文化本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分80分,考试时间60分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·攀枝花一模)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( )A .1.5尺B .2.5尺C .3.5尺D .4.5尺 答案 C解析 设从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{a n },冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴⎩⎪⎨⎪⎧a 1+(a 1+3d )+(a 1+6d )=31.5,S 9=9a 1+9×82d =85.5,解得a 1=13.5,d =-1,∴小满日影长为a 11=13.5+10×(-1)=3.5(尺).故选C.2.(2019·郴州一模)如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明,图中包含四个全等的直角三角形及一个小正方形(阴影).设直角三角形有一内角为30°,若向弦图内随机抛掷500颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .134B .67C .200D .250 答案 B解析 设大正方形的边长为1,则小直角三角形的直角边长为12,32,则小正方形的边长为32-12,小正方形的面积S =⎝⎛⎭⎫32-122=1-32.则落在小正方形(阴影)内的米粒数大约为1-321×1×500=⎝⎛⎭⎫1-32×500≈(1-0.866)×500=0.134×500=67.故选B.3.(2019·全国卷Ⅰ) 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝ ⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例.著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm 答案 B解析 设某人身高为m cm ,脖子下端至肚脐的长度为n cm ,则由腿长为105 cm ,可得m -105105>5-12≈0.618,解得m >169.890.由头顶至脖子下端的长度为26 cm ,可得26n >5-12≈0.618,得n <42.071.所以头顶到肚脐的长度小于26+42.071=68.071.所以肚脐到足底的长度小于68.0715-12≈68.0710.618≈110.147.所以此人身高m <68.071+110.147=178.218.综上,此人身高m满足169.890<m <178.218.所以其身高可能为175 cm.故选B.4.(2019·四川省自贡市第一次诊断)如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为63,36,则输出的a =( )A .3B .6C .9D .18 答案 C解析 由a =63,b =36,满足a >b ,则a =63-36=27,由a <b ,则b =36-27=9,由a >b ,则a =27-9=18,由a >b ,则a =18-9=9,由a =b ,则退出循环,输出a =9.故选C.5.(2019·四川省绵阳市一诊)古代数学著作《九章算术》中有如下问题:“今有女子善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”其意为:有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织五尺,一月织了九匹三丈,问每天比前一天多织多少尺布?已知1匹=40尺,1丈=10尺,若一月按30天算,则每天织布的增加量为( )A.12尺B.815尺C.1629尺D.1631尺 答案 C解析 根据题意知,该数列为等差数列,则设公差为d ,由于a 1=5,所以30a 1+30×(30-1)2d =9×40+30,解得d =1629.故选C.6.(2019·榆林模拟)《九章算术》是我国古代数学文化的优秀遗产,数学家刘徽在注解《九章算术》时,发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,为此他创立了割圆术.利用割圆术,刘徽得到了圆周率精确到小数点后四位3.1416,后人称3.14为徽率.如图是利用刘徽的割圆术设计的程序框图,则结束程序时,输出的n 为( )(3≈1.7321,sin15°≈0.2588,sin7.5°≈0.1305)A .6B .12C .24D .48 答案 C解析 n =3,S =12×3×sin120°=334<3.1,不满足条件,进入循环;n =6,S =12×6×sin60°=332≈2.5982<3.1,不满足条件,继续循环;n =12,S =12×12×sin30°=3<3.1,不满足条件,继续循环;n =24,S =12×24×sin15°≈12×0.2588=3.1056>3.1,满足条件,退出循环,输出n 的值为24.故选C.7.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 设太阳的星等为m 1,天狼星的星等为m 2,则太阳与天狼星的亮度分别为E 1,E 2,由条件m 1=-26.7,m 2=-1.45,m 2-m 1=52lg E 1E 2,得52lg E 1E 2=-1.45+26.7=25.25.∴lg E 1E 2=25.25×25=10.1,∴E 1E 2=1010.1,即太阳与天狼星的亮度的比值为1010.1.故选A.8.(2019·百校联盟联考)我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.这种用极限思想解决数学问题的方法是数学史上的一项重大成就,现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )A .x +(2-1)y -2=0B .(1-2)x -y +2=0C .x -(2+1)y +2=0D .(2-1)x -y +2=0 答案 C解析 如图所示,可知A (2,0),B (1,1),C (0,2),D (-1,1),所以直线AB ,BC ,CD 的方程分别为y =1-01-2(x -2),y =(1-2)x +2,y =(2-1)x +2,整理成一般式为x +(2-1)y -2=0,(1-2)x -y +2=0,(2-1)x -y +2=0,分别对应题中的A ,B ,D 选项.故选C.9.(2019·南昌二模)在《周易》中,长横“__”表示阳爻,两个短横“__”表示阴爻,有放回地取阳爻和阴爻三次合成一卦,共有23=8种组合方法,这便是《系辞传》所说:“太极生两仪,两仪生四象,四象生八卦”,有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有4种不同的情况,有放回地取阳爻和阴爻三次有8种不同的情况即为八卦,在一次卜卦中,恰好出现两个阳爻一个阴爻的概率是( )A.18B.14C.38D.12 答案 C解析 由题意知,所有可能出现的情况有:(阳,阳,阴),(阳,阴,阳),(阴,阳,阳),(阴,阴,阳),(阴,阳,阴),(阳,阴,阴),(阳,阳,阳),(阴,阴,阴),共8种,恰好出现两个阳爻、一个阴爻的情况有3种,利用古典概型的概率计算公式,可得所求概率为38.故选C.10.(2019·合肥质检)我国古代的《九章算术》中将上、下两面为平行矩形的六面体称为“刍童”.如图所示为一个“刍童”的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该“刍童”的表面积为( )A .12 5B .40C .16+12 3D .16+12 5答案 D解析 易得侧面梯形的高为22+12=5,所以一个侧面梯形的面积为12×(2+4)×5=3 5.故所求为4×35+2×(2×4)=125+16.故选D.11.(2019·桂林一模)如图所示的是欧阳修的《卖油翁》中讲述的一个有趣的故事,现模仿铜钱制作一个半径为2 cm 的圆形铜片,中间有边长为1 cm 的正方形孔.若随机向铜片上滴一滴水(水滴的大小忽略不计),则水滴正好落入孔中的概率是( )A.2πB.1πC.12πD.14π 答案 D解析 利用面积型几何概型公式可得,圆形铜片的面积S =4π,中间方孔的面积为S =1,水滴正好落入孔中的概率为正方形的面积与圆的面积的比值,即水滴正好落入孔中的概率为P =14π.故选D. 12.(2019·商丘二模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A .①②B .①③C .②④D .①④ 答案 D解析 设截面与底面的距离为h ,则①中截面内圆的半径为h ,则截面圆环的面积为π(R 2-h 2);②中截面圆的半径为R -h ,则截面圆的面积为π(R -h )2;③中截面圆的半径为R -h2,则截面圆的面积为π⎝⎛⎭⎫R -h 22;④中截面圆的半径为R 2-h 2,则截面圆的面积为π(R 2-h 2).所以①④中截面的面积相等,故其体积相等,故选D.第Ⅱ卷 (非选择题,共20分)二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·广东茂名综合测试)《九章算术》中记载了一个“折竹抵地”问题,今年超强台风“山竹”登陆时再现了这一现象(如图所示),不少大树被大风折断.某路边一树干被台风吹断后(没有完全断开),树干与地面成75°角,折断部分与地面成45°角,树干底部与树尖着地处相距10米,则大树原来的高度是________米(结果保留根号).答案 52+5 6 解析 如图所示,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠AOB =75°,∠ABO =45°,所以∠OAB=60°.由正弦定理知,AO sin45°=AB sin75°=10sin60°,所以OA =1063(米),AB =152+563(米),得大树高为OA +AB =52+56(米).14.(2019·温州市高考适应性测试)我国古代三国时期吴国的数学家赵爽创制了一幅如图所示的“勾股圆方图”,四个相同的直角三角形与边长为1的小正方形拼成一个边长为5的大正方形,若直角三角形的直角边分别记为a ,b ,有⎩⎪⎨⎪⎧a 2+b 2=25,12ab =6,则a +b =________,其中直角三角形的较小的锐角θ的正切值为________.答案 7 34解析 (a +b )2=a 2+b 2+2ab =25+24=49,所以a +b =7,不妨设a <b ,由a +b =7,a 2+b 2=25,可解得⎩⎪⎨⎪⎧a =3,b =4,所以tan θ=34.15.(2019·四川六市联考)中国古代数学著作《九章算术》中有这样一题:今有男子善走,日增等里,九日走1260里,第一日、第四日、第七日所走之和为390里,则该男子第三日走的里数为________.答案 120解析 根据“男子善走,日增等里”,可知每天走的里数符合等差数列,设这个等差数列为{a n },其公差为d ,前n 项和为S n .根据题意可知,S 9=1260,a 1+a 4+a 7=390, 解法一:S 9=9(a 1+a 9)2=9a 5=1260,∴a 5=140,a 1+a 4+a 7=3a 4=390,∴a 4=130,∴d =a 5-a 4=10,∴a 3=a 4-d =120.解法二:⎩⎪⎨⎪⎧S 9=1260,a 1+a 4+a 7=390,即⎩⎪⎨⎪⎧9a 1+9×82d =1260,a 1+a 1+3d +a 1+6d =390,解得⎩⎪⎨⎪⎧a 1=100,d =10,所以a 3=a 1+2d =120.16.(2019·邯郸模拟)中国传统文化中有很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O 的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O ,其“优美函数”有无数个;②函数f (x )=ln (x 2+x 2+1)可以是某个圆的“优美函数”; ③函数y =1+sin x 可以同时是无数个圆的“优美函数”; ④函数y =2x +1可以同时是无数个圆的“优美函数”;⑤函数y =f (x )是某个圆的“优美函数”的充要条件为函数y =f (x )的图象是中心对称图形.其中正确的命题是________. 答案 ①③④解析 ①对于任意一个圆O ,其过圆心的对称轴有无数条,所以其“优美函数”有无数个,故正确;②函数f (x )=ln (x 2+x 2+1)的定义域为R ,在(-∞,0)上单调递减,在(0,+∞)上单调递增且图象为曲线,故不可以是某个圆的“优美函数”,故不正确;③当圆经过函数y =1+sin x 的对称中心时,根据y =1+sin x 的图象可知可以将圆分成优美函数,图象可以延伸,所以可以同时是无数个圆的“优美函数”;④函数y =2x +1只要过圆心,即可以同时是无数个圆的“优美函数”;⑤函数y =f (x )是某个圆的“优美函数”的充要条件为函数y =f (x )的图象是中心对称图形,不对,有些函数图象是中心对称图形,但该函数不一定是某个圆的“优美函数”,比如y =1x ;故答案为①③④.。
主题二提素养·数学文化1.[干支纪年法]干支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.干支纪年法是按顺序将一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起.例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立80周年时为()A.丙酉年B.戊申年C.己亥年D.己酉年2.[高斯算法]德国数学家高斯在年幼时进行的1+2+3+…+100的求和运算中体现了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律而产生,此方法也称为高斯算法.现有函数f (x) =2x3m+6 057(m>0),则f (1)+f (2)+f (3)+…+f (m+2 018)等于()A.m+2 0183B.2m+4 0363C.m+4 0366D.2m+4 03763.[中国剪纸]中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,蕴含了数学美和丰富的文化信息.现有一幅剪纸的设计图(如图2-1),其中的4个圆均过正方形的中心,且内切于正方形的邻边,图2-1若在该正方形内任取一点,则该点取自阴影部分的概率为()A.(3 - 2√2)(π - 2)2B.π16C.(3 - 2√2)(π - 2)D.π84.[影壁]影壁,也称照壁,古称萧墙,是我国传统建筑中用于遮挡视线的墙壁.如图2-2是一面影壁的示意图,该图形是由一个正八边形和一个正方形组成的,该正八边形的边长和中间正方形的边长相等,图2-2在该示意图内随机取一点,则此点取自阴影部分的概率是()A.√2 - 12B.√22C.2√23D.√2+145.[幻方]我国古代的《洛书》中记载着世界上最古老的一个幻方(如图2-3(1)所示).将1,2, (9)入3×3的方格内(如图2-3(2)所示),使三行、三列及两条对角线上的三个数字之和都等于15,这个方阵叫作3阶幻方.一般地,将连续的正整数1,2,3,…,n2填入n×n的方格中,使得每行、每列及两条对角线上的数字之和都相等,这个方阵叫作n(n≥3)阶幻方.记n阶幻方的对角线上的数的和为N n,如N3 =15,那么N9 =()图2-3A.41B.45C.369D.3216.[刍童]“刍童”是中国古代的一个数学名词,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高若深乘之,皆六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为()A.392B.752C.39D.60187.[割圆术]刘徽(约公元225年—295年)是魏晋期间伟大的数学家,是中国古典数学理论的奠基人之一.他提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”(即割圆术),蕴含了极限思想.割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(图2-4为n =9时的情形),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,得到sin 2°的近似值为()图2-4A.π90B.π180C.π270D.π360主题二提素养·数学文化1.D易知到2029年,中华人民共和国成立80周年.从1949年到2029年经过80年,且1949年为“己丑”年,80÷10=8,则2029年对应的天干为2.A因为函数f(x)=2x3m+6 057(m>0),所以f(1)+f(2)+f(3)+…+f(m+2 018)=23m+6 057+2×23m+6 057+…+2(m+2 018)3m+6 057=2×(m+2 018)(1+m+2 018)23m+6 057=(m+2 018)(m+2 019)3(m+2 019)=m+2 0183.3.C设正方形的顶点分别为A,B,C,D,中心为O,四个圆的圆心分别为O1,O2,O3,O4,其中一个切点为E,连接AC,BD,O2E,如图D 2 - 1所示,设正方形的边长为2,4个圆的半径为r,图D 2 - 1则BE=O2E=O2O=r,所以BO2=√2r.因为BO 2+O 2O =BO =12BD =√2,所以√2r +r =√2,得r =2 - √2.将如图D 2 - 1中的阴影部分看作8个弓形,易得每一个弓形所对圆心角为π2,则阴影部分的面积为8×[14π×(2 - √2)2 − 12×(2 - √2)2]=4(3 - 2√2)(π - 2).又正方形的面积为4,故所求概率P =4(3 - 2√2)(π - 2)4=(3 - 2√2)(π - 2).故选C .4.A 设正八边形的边长为√2a ,则其面积S =(2+√2)a ×√2a +2×12(√2a +2a +√2a )×a =(4√2+4)a 2. 又中间正方形的面积为2a 2,故在题中示意图内随机取一点,此点取自阴影部分的概率P =2√2=√2 - 12.故选A .则根据等差数列的性质可知对角线上的首尾两个数相加恰好等于1+n 2. 根据等差数列的求和公式得N n =n(1+n 2)2,则N 9=9×(1+92)2=369.故选C .6.B 设下底面的长为x (92≤x <9),则下底面的宽为18 - 2x 2=9 - x.由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9 - x )]= - x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为 - (92)2+172×92+392=752.故选B .7.A 将一个单位圆等分成180个扇形,则每个扇形的圆心角度数均为2°.因为这180个扇形对应的等腰三角形的面积之和近似等于单位圆的面积,所以180×12×1×1×sin 2°=90sin 2°≈π,所以sin 2°≈π90,所以选A.。
第 1 页 共 10 页 2021年新高考数学总复习:中外数学文化
纵观近几年高考,中外优秀的数学文化已成为高考数学命题的重要素材之一,命题者常常结合统计、函数、数列、立体几何、算法等内容,通过创设新的情境、改变设问方式,选取适合的知识内容等多种方法渗透中外优秀的数学文化.以数学文化为背景的问题,不仅让人耳目一新,同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开. 随着高考改革的深入,命题者仍会适当加大对中国传统文化进行考查的内容,如将四大发明、勾股定理等所代表的中国古代科技文明作为试题背景材料,遵循继承、弘扬、创新的发展路径,注重传统文化在现实中的创造性转化和创新性发展,体 现中国传统科技文化对人类发展和社会进步的贡献,践行社会主义核心价值观.
1.瑞士著名数学家欧拉发现公式e i x =cos x +isin x (i 为虚数单位),它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当x =π时,e iπ+1=0被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,e i 表示的复数在复平面中位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
A [根据欧拉公式e i x =cos x +isin x (i 为虚数单位),
得e i =cos 1+isin 1,
它在复平面内对应的点为(cos 1,sin 1),且⎩⎨⎧
cos 1>0sin 1>0
, 所以位于第一象限.故选A.]
2.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 1=( )。