哈工大运筹学实验报告-实验三
- 格式:doc
- 大小:255.00 KB
- 文档页数:7
实验三一、实验目的:1)进一步熟悉 Excel 规划求解工具,掌握 Excel 求解 0-1 整数规划问题;2)进一步熟悉 Matlab 软件,掌握 Matlab 求解 0-1 整数规划问题;3)用 Excel 和 Matlab 求解公司选址 0-1 规划问题。
二、实验器材1)PC机: 20 台。
2)Microsoft Excel 软件(具备规划求解工具模块): 20 用户。
3)Matlab 软件(具备优化工具箱):20 用户。
三、实验原理:公司选址属于 0-1 整数规划问题,通过对问题建立数学模型,根据 Excel 自身特点把数学模型在电子表格中进行清晰的描述,再利用规划求解工具设定相应的约束条件,最终完成对问题的寻优过程,具体可参见;在 Matlab 中,根据 Matlab提供的 0-1 整数规划求解函数,将数学模型转换成 0-1 整数规划求解函数可传递的数值参数,最终实现对问题的寻优求解过程,具体可参见中 bintprog 函数描述和示例。
四、实验内容和步骤:用 Excel 和 Matlab 完成下列公司选址问题。
某销售公司打算通过在武汉或长春设立分公司(也许在两个城市都设分公司)增加市场份额,管理层同时也计划在新设分公司的城市最多建一个配送中心,当然也可以不建配送中心。
经过计算,每种选择对公司收益的净现值列于下表的第四列、第五列中记录了每种选择所需的费用,总的预算费用不得超过20 万元。
决策编号问题决策变量净现值(万元)所需资金(万元)1 是否在长春设分公司x1 18 122 是否在武汉设分公司x2 10 63 是否在长春建配送中心x3 12 104 是否在武汉建配送中心x 4 8 4问:如何决策才能使总的净现值最大建立模型:设=0 表示不建立,=1 表示建立,i=1,2,3,4用z表示预算费用总的净现值。
则目标函数 maxz=18 +10 +12 +8先确立约束不等式:总的预算费用不得超过20 万元;设立的分公司数目大于等于 1;且建立配送中心数目一定要小于分公司数目。
《运筹学》实验报告专业:工商管理专业班级:11-2班姓名:***学号:************指导老师:***前言第十一周、十二周,我们在雷莹老师的指导下,用计算机进行了有关运筹学的一系列实验。
本实验报告即是对这次试验的反馈。
本这次试验是为了帮助我们顺利完成有关《运筹学》课程内容的学习。
在先期,雷老师带领我们进行了《运筹学》理论课程的学习,不仅使我们了解和掌握了运筹学的相关知识,而且让我们认识到运筹学的现实意义,认识到现代社会数学与人们生产、生活之间的紧密联系和对人们生产、生活的巨大促进作用。
然而,与此同时,现代社会同时是一个计算机时代,我们只拥有理论知识还不够,必须把理论知识和计算技术结合起来,这样才能进一步提高生产力。
我相信这也是老师要求我们做这次试验的目的和初衷。
在实验中,我们主要是利用WinQSB软件进行相关试验,根据实验指导书中详细给出的各个实验的基本步骤和内容,独立完成各项实验。
本次实验中共包含4个实验,分别是线性规划实验、运输问题实验、整数规划实验,以及网络优化实验。
每个实验均与理论课中讲解的内容相对应。
部分实验内容用于使我们了解WinQSB软件的基本操作,而其它实验内容要求我们能够根据给出的问题,进行分析、建模和求解。
通过完成各项实验任务,使我们得以巩固已有的理论课程学习内容,为将来进一步的学习和实际应用打下基础。
线性规划实验通过对以下问题的分析,建立线性规划模型,并求解:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。
已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表1表2实验报告要求(1)写出自己独立完成的实验内容,对需要建模的问题,给出问题的具体模型;(2)给出利用WinQSB软件得出的实验结果;(3)提交对实验结果的初步分析,给出自己的见解;实验过程:一、建立模型设Ac是A产品中用c材料,同理得出Ap、Ah、Bc、Bp、Bh、Dc、Dp、Dh34⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧≤++≤++≤++≤++≥++≤++≥++++++++++++++++=60Dh Bh Ah 100Dp Bp Ap 100Dc Bc Ac 5.0Bh Bp Bc Bp 25.0Bh Bp Bc Bc 25.0Ah Ap Ac Ap 5.0Ah Ap Ac Ac Dh Bh Ah 35-Dp Bp Ap 25-Dc Bc Ac 65-Dh Dp Dc 25Bh Bp Bc 35)(50 max )()()()()(H P C A A A z二、求解过程三、实验分析实验结果表明,在题目的要求下,该工厂只能生产A产品才能盈利,并且在使用c材料100个单位、p材料50个单位、h材料50个单位时,即生产200个单位的A产品时,才能获得最大利润,最大利润为500。
《运筹学》实验报告成绩:班级:学号:姓名:实验一、线性规划(25分)一、实验目的:安装WinQSB软件,了解WinQSB软件在Windows环境下的文件管理操作,熟悉软件界面内容,掌握操作命令;利用WinQSB软件求解线性规划问题。
二、实验内容:安装与启动软件;建立新问题,输入模型,求解模型,结果的简单分析。
三、操作步骤:(1)安装与启动WinQSB软件(5分)1.安装双击Setup.exe,弹出窗口如下图0—1所示:图0—1输入安装的目标文件夹,点Continue按钮,弹出窗口如图0—2所示:图0—2输入用户名和公司或组织名称,点Continue按钮进行文件的复制,完成后弹出窗口如图0—3:图0—3显示安装完成,点“确定”退出。
WinQSB软件安装完毕后,会在开始→程序→WinQSB中生成19个菜单项,分别对应运筹学的19个问题。
如图0—4所示:图0—42.启动在开始菜单中选择Linear and Integer Programming,运行后出现启动窗口如下图0—5所示:图0—5(2)建立线性规划问题并输入模型(5分)选题:P32例八,题目如下:miz z=-3x1+x2+x3x1-2x2+x3≤11-4x1+x2+2x3≥3-2x1 +x3=1x1,x2,x3≥0输入数据,如下图所示:、(3)分析模型并求解(5分)计算结果:a) 运用软件计算的具体过程:b)计算的最终结果如下:(4)实验结果分析(5分)最优解=[4,1,9],即x1=4,x2=1,x3=9最优值=-2,min z=-2四、实验中遇到的主要问题及解决方法(5分)起初未能正确的Variable Type选择导致了计算结果出现错误,最后仔细的检查了操作过程,改变了Variable Type,得出了正确的结果。
实验二、运输问题(25分)一、实验目的:熟悉运用WinQSB软件求解运输问题和指派问题,掌握操作方法。
二、实验内容:求解实际中某一运输问题,建立、输入并求解模型,结果的简单分析。
运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。
一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。
二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。
它将优化目标函数的线性组合与整数限制相结合。
一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。
最后两个约束条件要求自变量只能是整数。
2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。
Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。
Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。
三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。
运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。
本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。
以下是对本次实践教学的总结和反思。
二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。
通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。
- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。
公司每天可利用机器时间为8小时,人工时间为10小时。
假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。
- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。
人力为50人,物力为100台设备,财力为500万元。
根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。
请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。
一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。
为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。
以下是本次实训的报告。
二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。
三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。
(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。
2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。
(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。
3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。
(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。
4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。
(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。
5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。
(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。
四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。
五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。
六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。
运筹学实验心得(精选5篇)运筹学实验心得篇1实验心得:1.背景与目标:运筹学是一门决策支持学科,它使用数学模型和算法来解决实际生活中的优化问题。
本实验的目标是通过学习运筹学的基本理论和方法,提高自己在实际问题中的决策能力和解决问题的能力。
2.实验内容:本实验包括了几个重要的运筹学主题,包括线性规划、整数规划、非线性规划和动态规划等。
我们首先学习了这些基本概念和算法,然后通过具体案例进行了实践操作,并运用所学知识对实际生活中的一些问题进行了分析和解决。
3.实验结果与收获:通过实验,我们成功地运用运筹学方法解决了一些实际问题。
例如,我们使用线性规划算法解决了货物配送问题,并使用整数规划算法解决了人员调度问题。
同时,我们也收获了一些理论知识和实践经验。
我们学会了如何使用数学模型和算法来解决实际问题,并提高了自己的决策能力和解决问题的能力。
4.反思与建议:在实验过程中,我们遇到了一些困难和挑战。
例如,有时候我们无法理解复杂的数学模型和算法,或者无法找到合适的实际问题来验证我们的知识。
因此,我们建议在学习运筹学时,应该注重基本概念和算法的学习,并积极寻找合适的实际问题来巩固和应用所学知识。
总的来说,这次实验让我们更加深入地了解了运筹学的魅力和价值,也让我们更加坚定了自己的学习方向和目标。
运筹学实验心得篇2当然,我可以帮助您撰写一篇运筹学实验的心得体会。
以下是一个可能的示例:---标题:运筹学实验:理论到实践的桥梁摘要:这篇*分享了一次运筹学实验的经历,描述了实验中的问题、解决方法以及所学到的经验教训。
关键词:运筹学,实验,问题解决,学习经验---运筹学是我在大学期间最喜爱的科目之一。
它提供了一种实用且富有挑战性的方法来理解和解决现实世界中的优化问题。
然而,真正将理论与实际联系起来的,是我的第一次运筹学实验。
实验开始时,我被一大堆复杂的数学模型和计算机程序搞得眼花缭乱。
理论知识和抽象的模型使我有些晕头转向,但我还是勇敢地面对了挑战。
运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。
在这学期的运筹学课程中,我们进行了一系列实验。
这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。
在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。
实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。
我选择了一个典型的生产调度问题作为实验题目。
通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。
通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。
实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。
在这个实验中,我选择了货物配送路线问题作为研究对象。
通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。
这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。
实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。
在这个实验中,我们学习了动态规划的基本原理和设计思想。
我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。
这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。
实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。
在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。
通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。
实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
在这个实验中,我选择了装箱问题作为研究对象。
通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。
这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。
哈工大运筹学实验报告-实验三
实验三
一、实验目的:
1)进一步熟悉Excel规划求解工具,掌握Excel求解0-1整数规划问题;
2)进一步熟悉Matlab软件,掌握Matlab求解0-1整数规划问题;
3)用Excel和Matlab求解公司选址0-1规划问题。
二、实验器材
1)PC机:20台。
2)Microsoft Excel软件(具备规划求解工具模块):20用户。
3)Matlab软件(具备优化工具箱):20用户。
三、实验原理:
公司选址属于0-1整数规划问题,通过对问题建立数学模型,根据Excel 自身特点把数学模型在电子表格中进行清晰的描述,再利用规划求解工具设定相应的约束条件,最终完成对问题的寻优过程,具体可参见1.2;在Matlab中,根据Matlab提供的0-1整数规划求解函数,将数学模型转换成0-1整数规划求解函数可传递的数值参数,最终实现对问题的寻优求解过程,具体可参见 2.2中bintprog函数描述和示例。
四、实验内容和步骤:
用Excel和Matlab完成下列公司选址问题。
某销售公司打算通过在武汉或长春设立分公司(也许在两个城市都设分公司)增加市场份额,管理层同时也计划在新设分公司的城市最多建一个配送中心,当然也可以不建配送中心。
经过计算,每种选择对公司收益的净现值列于下表的第四列、第五列中记录了每种选择所需的费用,总的预算费用不得超过20万元。
决策问题决策净现值所需资
18 12
1 是否在长春设x
1
10 6
2 是否在武汉设x
2
12 10
3 是否在长春建x
3
4 是否在武汉建x
8 4
4
问:如何决策才能使总的净现值最大?
建立模型:
设=0表示不建立,=1表示建立,i=1,2,3,4 用z表示预算费用总的净现值。
则目标函数maxz=18+10+12+8
先确立约束不等式:总的预算费用不得超过20万元;设立的分公司数目大于等于1;且建立配送中心数目一定要小于分公司数目。
列出约束不等式如下:
12+6+10+4≤20
--≤-1
-+≤0
- +≤0
=0,1
Excel求解过程
打开Excel,选择“Excel选项”通过“工具”菜单的“加载宏”选项打开“加载宏”对话框来添加“规划求解”。
将约束条件的系数矩阵输入Excel中,如下图所示,然后将目标函数的系数输入约束矩阵下方,最下方为最优解的值,输入“0”或不输入。
系数矩阵的右端一列为合计栏,点击合计栏中单元格并在其中输入“=sumproduct(”,用鼠标左键拖动合计栏所在行的系数,选定后输入“,”,然后拖拉选定最下方的空白行,输入“)”,输入“Enter”。
用此方法依次处理整个系数矩阵每一行和目标函数行,合计栏右端输入约束条件右端项,在合计栏和约束条件右端项之间可以输入“≧”符号,也可以不输入。
上述步骤完成后,在菜单栏点击“数据”菜单,选择最右端“规划求解”选项,弹出“规划求解参数”对话框,目标单元格选择目标函数系数所在行和合
计栏交叉处的单元格,选择求最大值,可变单元格选择解所在行。
点击“添加约束条件”按钮,单元格引用位置选择合计那一列,约束关系选择“≦”,约束值选择右端项系数所在列,点击确定。
在“选项”中勾选“采用线性模型”和“假定非负”,如果是用EXCEL2010操作,步骤与基本相同,个别界面会有些区别。
求得最优解和目标函数最小值如下
运算结果报告如下:
Matlab求解过程:
先在command window对建立模型中各个参数矩阵进行赋值,同一行数字用空格分开,换行时用分号分开,矩阵用“【】”表示,分别将目标函数系数f,系数矩阵A,右端项b输入,因matlab的标准0-1求解模型中目标函数为求最小值,因此输入f时要乘以一个负号。
输入一个命令完成后加分号,输入“Enter”,矩阵被储存并在workspace中显示出来。
最后调用0-1线性规划的函数x=bintprog(f,A,b);回车,即可得求解结果.将最优解代入目标函数,输入z=f’*x,然后求出-z即为目标函数最大值。
计算界面如下图所示:
最优解:
当在武汉和长春均设立分公司,两地都不建配送中心时取得最优解。
此时总的净现值最大为28万元。
Excel和matlab优劣性比较:
Excel模型直观明了,但是输入单元格较多,设置参数多,过程较复杂,而matlab有编程的意思,采用专门的操作语言,界面不够清晰明了,但是功能强大,输入快捷,运算迅速。
Excel可用于求解变量较少,较为简单的模型,用于日常使用,matlab则是比较专业的软件,适用于较为复杂的问题求解。