高二数学回归分析1
- 格式:pdf
- 大小:992.00 KB
- 文档页数:9
课时跟踪检测(一)回来分析1.已知两个有线性相关关系的变量的相关系数为r,则r取下列何值时,两个变量的线性相关关系最强( )A.-0.91 B.0.25C.0.6 D.0.86解析:选A 在四个r值中,|-0.91|最接近1,故此时,两个变量的线性相关关系最强.2.依据如下样本数据x 345678y 4.0 2.5-0.50.5-2.0-3.0 得到的回来方程为y=bx+a,则( )A.a>0,b>0 B.a>0,b<0C.a<0,b>0 D.a<0,b<0解析:选B 由表中数据画出散点图,如图.由散点图可知b<0,a>0,选B.3.设某高校的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,依据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回来方程为y=0.85x-85.71,则下列结论中不正确的是( )A.y与x具有正的线性相关关系B.回来直线过样本点的中心(x,y)C.若该高校某女生身高增加1 cm,则其体重约增加0.85 kgD.若该高校某女生身高为170 cm,则可断定其体重必为58.79 kg解析:选D 由于回来直线的斜率为正值,故y与x具有正的线性相关关系,选项A中的结论正确;回来直线过样本点的中心,选项B中的结论正确;依据回来直线斜率的意义易知选项C中的结论正确;由于回来分析得出的是估计值,故选项D中的结论不正确.4.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元) 6.27.58.08.59.8 依据上表可得回来直线方程y=bx+a,其中b=0.76,a=y-b x.据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元解析:选B 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a =8-0.76×10=0.4,∴当x =15时,y =0.76×15+0.4=11.8(万元).5.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若全部样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为________.解析:依据样本相关系数的定义可知, 当全部样本点都在直线上时, 相关系数为1. 答案:16.某咖啡厅为了了解热饮的销售量y (个)与气温x (℃)之间的关系,随机统计了某4天的销售量与气温,并制作了比照表:________.解析:∵x =14(18+13+10-1)=10,y =14(24+34+38+64)=40,∴40=-2×10+a ,∴a =60,当x =-4时,y =-2×(-4)+60=68.答案:687.某种产品的广告费用支出x 与销售额y 之间有如下的对应数据(单位:万元).(1)(2)求回来方程;(3)据此估计广告费用支出为10万元时,销售额y 的值. 解:(1)作出散点图如下图.(2)由散点图可知,样本点近似地分布在一条直线旁边,因此,x ,y 之间具有线性相关关系.由表中的数据可知,x -=15×(2+4+5+6+8)=5,y -=15×(30+40+60+50+70)=50.所以b =∑i =15x i -x-y i -y-∑i =15x i -x-2=6.5,a =y --b x -=50-6.5×5=17.5,因此线性回来方程为y =17.5+6.5x .(3)x =10时,y =17.5+10×6.5=82.5(万元). 即当支出广告费用10万元时,销售额为82.5万元.8.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (件)908483807568(1)求回来直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预料在今后的销售中,销量与单价仍旧听从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80,从而a =y +20x =80+20×8.5=250, 故y =-20x +250.(2)由题意知, 工厂获得利润z =(x -4)y =-20x 2+330x -1 000=-20⎝⎛⎭⎪⎫x -3342+361.25,所以当x =334=8.25时,z max =361.25(元).即当该产品的单价定为8.25元时,工厂获得最大利润.9.在钢铁碳含量对于电阻的效应探讨中,得到如下数据表:碳含量x (%) 0.10 0.30 0.40 0.55 0.70 0.80 0.95 20 ℃时电阻(Ω)1518192122.623.626解:由已知数据得x -=17×∑i =17x i ≈0.543,y -=17×145.2≈20.74,∑i =17x 2i =2.595,∑i =17y 2i =3 094.72,∑i =17x i y i =85.45.∴b ≈85.45-7×0.543×20.742.595-7×0.5432≈12.46, a =20.74-12.46×0.543≈13.97.线性回来方程为y =13.97+12.46x . 下面利用相关系数检验是否显著.∑i =17x i y i -7x - y -=85.45-7×0.543×20.74≈6.62,∑i =17x 2i -7x -2=2.595-7×(0.543)2≈0.531, ∑i =17y 2i -7y -2=3 094.72-7×(20.74)2=83.687. ∴r =6.620.531×83.687≈0.993.由于r 接近于1,故钢铁碳含量对电阻的效应线性相关关系显著.。
高二数学回归分析的初步应用1
一、教学目标
a) 知识与技能
*能根据散点分布特点,建立不同的回归模型。
*知道有些非线性模型通过变换可以转化为线性回归模型。
*通过散点图及相关指数比较体验不同模型的拟合效果。
b) 过程与方法
*通过将非线性模型转化为线性回归模型,使学生体会“转化”的思想。
*让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用。
*通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法。
表了一种“回归分析”的类型。
如何利用这道例题使学生掌握这类问题的解决方法呢?为此,我设计了“引导发现、合作探究”的教学方法。
首先展示“红铃虫”的背景资料来激发学生的学习兴趣;鼓励学生用已有知识解决问题,引导学生检查结果从而发现新问题;通过分组合作来对不同方案进行探索;使学生在合作探索的过程中体会“选择模型——将非线性转化成线性……”方法,体会“化未知为已知、用已知探索未知”思想,同时认识不同模型的效果。
培养学生观察、类比联想,以及分析问题的能力。
在教学过程中让学生自主探索、动手实践,养成独立思考、积极探索的习惯。
在“选模型”这个环节中,我引导将散点分布和已学函数图像进行比较,从而发现二次函数和指数函数模型。
在“转化”这个环节中,通过引导学生观察所选模型,联系已学知识选择“等量变换和对数变换”,从而找到转化的途径。
在运算过程中,如求“相关指数”我引导学生使用转化后的数据,利用计算器求其相关系数即为相关指数,使学生体会使用计算器处理数据的方法和技能。