虚拟仪器技术应用基础
- 格式:ppt
- 大小:4.31 MB
- 文档页数:44
虚拟仪器技术的应用与发展随着科技的不断进步,虚拟仪器技术已经成为了现代化实验室的必备工具。
虚拟仪器技术是一种基于计算机软件和硬件技术实现的仪器技术,它可以模拟和替代传统的物理仪器,使得科研人员、工程师和学生能够更加方便、快捷地进行实验和研究。
本文将从虚拟仪器技术的定义、应用、优势和发展等方面进行介绍。
一、虚拟仪器技术的定义虚拟仪器技术是一种基于计算机软件和硬件技术实现的仪器技术,它可以模拟和替代传统的物理仪器,实现测试、控制、监测和分析等功能。
虚拟仪器技术主要包括虚拟测量仪器、虚拟控制仪器和虚拟分析仪器等。
虚拟测量仪器可以通过计算机软件和硬件来模拟传感器、示波器、频谱分析仪等传统的物理测量仪器;虚拟控制仪器可以通过计算机软件和硬件来模拟运动控制器、逻辑控制器等传统的物理控制仪器;虚拟分析仪器可以通过计算机软件和硬件来模拟数据分析仪、图像处理仪等传统的物理分析仪器。
二、虚拟仪器技术的应用虚拟仪器技术的应用非常广泛,可以在各个领域中得到应用。
以下列举几个典型的应用场景:1、科研实验室虚拟仪器技术可以在科研实验室中得到广泛的应用。
科研人员可以通过虚拟测量仪器来模拟实际的测量仪器,进行各种物理量的测量和分析。
虚拟控制仪器可以模拟实际的控制仪器,实现各种运动控制和逻辑控制。
虚拟分析仪器可以模拟实际的数据分析仪器,进行各种数据分析和图像处理。
2、工业自动化虚拟仪器技术可以在工业自动化领域中得到广泛的应用。
工程师可以通过虚拟测量仪器来模拟各种传感器和测量仪器,实现对工业生产过程的实时监测和控制。
虚拟控制仪器可以模拟各种运动控制器和逻辑控制器,实现对工业生产过程的自动化控制。
3、教育培训虚拟仪器技术可以在教育培训领域中得到广泛的应用。
学生可以通过虚拟测量仪器来模拟实际的测量仪器,进行各种物理量的测量和分析。
虚拟控制仪器可以模拟实际的控制仪器,实现各种运动控制和逻辑控制。
虚拟分析仪器可以模拟实际的数据分析仪器,进行各种数据分析和图像处理。
浅谈虚拟仪器技术的应用及发展摘要:虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。
灵活高效的软件能帮助您创建完全自定义的用户界面,模块化的硬件能方便地提供全方位的系统集成,标准的软硬件平台能满足对同步和定时应用的需求。
这也正是NI近30年来始终引领测试测量行业发展趋势的原因所在。
关键词:虚拟仪器滤波一、虚拟仪器技术概述虚拟仪器(Virtual Intrument,简称VI)是计算机技术与仪器技术深层次结合产生的全新概念的仪器,是对传组仪器概念的重大突破,是仪器领域内的一次革命。
虚拟仪器是继第一代仪器——模拟式、仪表器二代仪器——分立元件式仪表、第三代仪器——数字式仪器、第四代仪器——智能化仪器之后的新一代仪器。
虚拟仪器是在计算机的显示屏上虚拟了传统仪器面板的计算机化仪器,它尽可能多的将原来由硬件电路完成的信号调理和信号处理的功能,代替为计算机的程序来完成。
这种硬件功能软件化,是虚拟仪器的一大特征。
操作人员在计算机的屏幕上利用指点设备操作虚拟的仪器,就象操作真实的仪器一样,完成对被测量的采集、显示、分析、处理、存储及数据生成。
是一种以计算机和测试模块的硬件为基础、以计算机软件为核心所构成的,并且在计算机屏幕上显示虚拟的仪器面板,可由用户软件来定义仪器功能的仪器。
虚拟仪器系统可以广泛地应用在通讯、自动化、半导体、航空、电子、电力、生化制药、和工业生产等各种领域。
现有的虚拟仪器系统按硬件工作平台主要可分为基于PC总线的虚拟仪器、基于VXI的虚拟仪器、基于PXI的虚拟仪器,所应用场合不同各有其特点。
虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。
灵活高效的软件能帮助您创建完全自定义的用户界面,模块化的硬件能方便地提供全方位的系统集成,标准的软硬件平台能满足对同步和定时应用的需求。
这也正是NI近30年来始终引领测试测量行业发展趋势的原因所在。
5)虚拟仪器(NI ELVIS)基础实验[实验目的]1.了解虚拟仪器概念2.学习NI ELVIS软面板仪器的使用,并进行实际测量3.了解G语言,LabVIEW编程初步[实验原理]一.虚拟仪器简介1.软件即仪器虚拟仪器(Virtual Instrument,简称VI)是基于计算机的软硬件测试平台。
虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。
20世纪80年代,随着计算机技术的发展,个人电脑可以带有多个扩展槽,就出现了插在计算机里的数据采集卡。
它可以进行一些简单的数据采集,数据的后处理由计算机软件完成,这就是虚拟仪器技术的雏形。
1986年,美国National Instruments公司(简称NI公司)提出了“软件即仪器”的口号,推出了NI-LabVIEW开发和运行程序平台,以直观的流程图编程风格为特点,开启了虚拟仪器的先河。
2.与传统仪器比较虚拟仪器∙使用者定义功能∙软件定义的界面∙网络/互联网的连接传统仪器∙制造商定义功能∙固定的界面∙有限的扩展功能3.LabVIEW图形化开发环境LabVIEW是一种图形化的编程语言和开发环境。
它功能强大且灵活,包含内容丰富的数据采集、分析、显示和存储工具。
LabVIEW用于实现对实际物理量的采集、分析和表达,利用它可以方便快捷地建立自己的虚拟仪器。
以LabVIEW为代表的图形化程序语言,又称为G语言。
使用这种语言编程时,基本上不需要编写程序代码,而是“绘制”程序流程图。
LabVIEW与虚拟仪器有着紧密联系,在LabVIEW中开发的程序都被称为VI(或虚拟仪器),其扩展名为vi。
VI包括三个部分:前面板(Front Panel)、程序框图(Block Diagram)和图标/连接器(Icon and Connector Pane)。
程序前面板用于设置输入数值和观察输出量,用于模拟真实仪表的前面板。
在程序前面板上,输入量称为控制器(Control),输出量称为显示器(Indicator)。
虚拟仪器技术的应用与发展虚拟仪器技术是一种基于计算机技术的新型仪器技术,它将传统的仪器与计算机技术相结合,实现了仪器的数字化、智能化和网络化。
虚拟仪器技术的应用范围非常广泛,包括物理、化学、生物、医学、环境等多个领域。
本文将从应用和发展两个方面来探讨虚拟仪器技术的现状和未来。
一、虚拟仪器技术的应用1. 物理领域在物理实验中,虚拟仪器技术可以模拟各种物理现象,如光学、电学、热学等,使学生能够更加直观地理解物理原理。
同时,虚拟仪器技术还可以帮助研究人员进行物理实验的设计和优化,提高实验效率和准确性。
2. 化学领域在化学实验中,虚拟仪器技术可以模拟各种化学反应,如酸碱中和、氧化还原等,使学生能够更加深入地理解化学原理。
同时,虚拟仪器技术还可以帮助研究人员进行化学反应的模拟和预测,提高实验效率和准确性。
3. 生物领域在生物实验中,虚拟仪器技术可以模拟各种生物现象,如细胞分裂、基因表达等,使学生能够更加生动地理解生物原理。
同时,虚拟仪器技术还可以帮助研究人员进行生物实验的设计和优化,提高实验效率和准确性。
4. 医学领域在医学实验中,虚拟仪器技术可以模拟各种医学现象,如心电图、脑电图等,使医学学生能够更加直观地理解医学原理。
同时,虚拟仪器技术还可以帮助医学研究人员进行医学实验的设计和优化,提高实验效率和准确性。
5. 环境领域在环境实验中,虚拟仪器技术可以模拟各种环境现象,如大气污染、水污染等,使学生能够更加深入地理解环境原理。
同时,虚拟仪器技术还可以帮助环境研究人员进行环境实验的设计和优化,提高实验效率和准确性。
二、虚拟仪器技术的发展虚拟仪器技术的发展已经取得了很大的进展,但仍然存在一些挑战和机遇。
1. 挑战虚拟仪器技术的发展面临着以下挑战:(1)技术难题:虚拟仪器技术需要涉及多个学科领域,如计算机科学、物理学、化学等,技术难度较大。
(2)成本问题:虚拟仪器技术需要大量的计算机硬件和软件支持,成本较高。
(3)标准化问题:虚拟仪器技术的标准化问题尚未得到解决,不同厂家的虚拟仪器之间存在兼容性问题。
虚拟仪器基础知识什么是虚拟仪器?与传统仪器相比,虚拟仪器(V irtual Instruments)是一种全新的仪器概念,是仪器与计算机深层次结合的产物。
虚拟仪器是把计算机资源(处理器、存储器、显示器)、仪器硬件(A/D转换器、D/A转换器、数字输入输出、定时和信号处理)及用于数据分析、数据计算、过程通讯及仪器界面等软件有效结合起来的综合系统。
这种仪器系统不仅保留了传统仪器的基本功能,而且提供了传统仪器所不能及的各种高级功能。
虚拟仪器的工作过程完全受控于软件,仪器功能的实现在很大程度上取决于应用软件的功能设计,因此仪器的功能是用户而不是厂家定义的,一套虚拟仪器硬件可以实现多种不同仪器功能。
常用名词解释●AC: Alternating Current,交流电流,泛指交流信号。
●DC: Direct Current,直流电流,泛指直流信号。
●ADC: Analog-to-Digital Conversion,模数变换,有时也表示为A/D。
●DAQ: Data Acquisition,数据采集。
●DMA: Direct Memory Access,直接内存访问。
它允许将采集的数据直接送给计算机的内存,数据传输速率较高。
●GPIB: General Purpose Interface Bus,也称为IEEE 488.2总线。
它是一种应用最广泛的仪器总线。
●SCXI: Signal Conditioning extensions for Instrumention,信号调理器。
●VISA: Virtual Instrument Standard Architecture,虚拟仪器软件体系结构。
它是控制GPIB、VXI、RS-232和其他类型仪器的接口库。
并行采集卡的价位为什么比串行高?采用并行采集有什么优点?所谓并行采集指每个采集通道都有自己的继电器、滤波电路、放大电路、A/D转换器和存储器。
因此成本较高。
虚拟仪器的应用原理什么是虚拟仪器?虚拟仪器是一种基于计算机技术和软件开发的测量设备。
虚拟仪器的工作原理是利用计算机进行数据采集、信号处理和结果展示,它能够模拟和实现传统的物理仪器所具备的功能。
虚拟仪器的应用领域虚拟仪器的应用越来越广泛,涉及到科学研究、工程制造、医疗保健等多个领域。
以下是虚拟仪器在各个领域的应用示例:1. 科学研究领域•虚拟仪器在物理学研究中可以模拟光谱仪、天文望远镜等仪器,用于观测和分析天体现象。
•虚拟仪器在化学研究中可以模拟色谱仪、质谱仪等仪器,用于分析化学物质的组成和性质。
•虚拟仪器在生物学研究中可以模拟显微镜、免疫分析仪等仪器,用于观察和研究生物组织和生物分子。
2. 工程制造领域•虚拟仪器在电子工程中可以模拟示波器、频谱分析仪等仪器,用于测试电子电路的性能和信号分析。
•虚拟仪器在机械工程中可以模拟测力计、压力计等仪器,用于测试机械系统的力学性能和质量控制。
3. 医疗保健领域•虚拟仪器在医学影像学中可以模拟X射线机、超声波仪等仪器,用于诊断和监测疾病。
•虚拟仪器在生物医学工程中可以模拟心电图仪、脑电图仪等仪器,用于监测和分析人体的生理信号。
虚拟仪器的工作原理虚拟仪器的工作原理可以简单描述为:采集-处理-显示。
1.采集:虚拟仪器通过传感器采集待测物理量的信号。
传感器可以是硬件传感器,如温度传感器、压力传感器,也可以是软件传感器,如模拟信号生成器、模拟信号接口等。
2.处理:虚拟仪器将采集到的信号进行数字化处理。
数字化处理包括滤波、放大、满足采样定理等过程,以得到准确的测量结果。
3.显示:虚拟仪器通过计算机软件将处理后的信号结果进行可视化展示。
这种展示方式可以是波形图、频谱图、图像等形式。
虚拟仪器的优势与传统的物理仪器相比,虚拟仪器具有以下优势:1.灵活性:虚拟仪器可以根据需求进行定制,添加新的功能和特性。
这使得虚拟仪器在应用中更加灵活和可扩展。
2.成本效益:虚拟仪器不需要额外的硬件设备,只需要计算机和软件即可实现多种功能。