中考数学模拟试题二
- 格式:doc
- 大小:498.41 KB
- 文档页数:10
内蒙古呼伦贝尔市中考数学模拟试题二一、选择题(共10小题,每小题3分,共30分) 1、计算|-2| -(-3)的值是 ( )A . 5B .1C .-5D .-1 2、下列运算正确的是( ) A .235xx x += B .222()x y x y +=+C .2336(2)6xy x y = D .()x y x y --=-+3、下列说法正确的是( )A .要了解一批节能灯的使用寿命,采用普查方式B .一组数据2,3,3,6,8,5的众数与中位数都是3.C .“打开电视,正在播放新闻联播”是必然事件.D .若甲组数据的方差31.02=甲S ,乙组数据的方差02.02=乙S ,则乙组数据比甲组数据稳定. 4、已知两圆的半径分别为3cm,和5cm, 圆心距是8cm,则两圆的位置关系( ) A .相离 B .外切 C .相交 D .内切5、函数112-+=x x y 的自变量x 的取值范围是( )A .21-≥xB .1≠xC .121-≠-≥x x 且D .121≠-≥x x 且6、对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限 C .当0x>时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小7、如图,直线a b ∥,则A ∠的度数是( ) A.28B.31C.39D.428、如图, 为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具.移动竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( )m . A .10 B.11 C. 12 D. 13 9、如图,正三角形ABC 内接于圆O ,动点P 在圆周的劣弧AB 上,且不与A B ,重合,则BPC ∠等于( )A.30° B.60°(第7题图) (第8题图) 10、一个几何体的三视图如图所示,这个几何体是() A. 正方体 B. 球 C. 圆锥D. 圆柱二、填空题(共7小题,每小题3分,共21分)11、据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为___ 千克.12、因式分解:32a ab -= . 13、当x=2009时,化简293x x -++2 = .14、不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解是.15、某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为 .16、将一个底面半径为3cm ,高为4cm 圆锥形纸筒沿一条母线剪开,所得的侧面展开图的面积为_______________.(结果用含π的式子表示) 17、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:(第9题)ABDab70°31°左视图俯视图则a n = (用含n 的代数式表示). 三、解答题(共4小题,每小题6分,共24分) 18、计算:1022sin 60--︒++ 19、先化简再求值2111x x x x⎛⎫-÷ ⎪--⎝⎭,其中2x =.20、如图,AD =BC ,请添加一个条件,使图中存在全等三角形并给予证明. 你所添加的条件为: ; 21、AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=,求B ∠的度数.四、(本题满分7分)22、某中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人. (1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,估计全校学生捐款多少元?五、(本题满分7分)23、如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =. 请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明. 猜想: 证明:六、(本题满分8分)24、一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同. (1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.七、(本题满分10分)25、地震发生后,一支专业搜救队驱车前往灾区救援.如图,汽车在一条南北走向的公路上向北行驶,当在A 处时,车载GPS (全球卫星定位系统)显示村庄C 在北偏西25方向,汽车以35km/h 的速度前行2h 到达B 处,GPS 显示村庄C 在北偏西52方向.PACDE FA C D BP/元(1)求B 处到村庄C 的距离;(2)求村庄C 到该公路的距离.(结果精确到0.1km ) (参考数据:sin 260.4384≈ ,cos 260.8988 ≈ ,sin 520.7880 ≈ ,cos520.6157≈ )八、(本题满分12分)26、如图,已知直线1l 的解析式为63+=x y ,直线1l 与x 轴、y 轴分别相交于A 、B 两点,直线2l 经过B 、C 两点,点C 的坐标为(8,0),又已知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 从点C 向点B 移动.点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(101<<t).(1)求直线2l 的解析式.(2)设△PCQ 的面积为S ,请求出S 关于t 的函数关系式. (3)试探究:当t 为何值时,△PCQ 为等腰三角形?内蒙古呼伦贝尔市中考数学模拟试题二一、选择题二、填空题11、5.4×101112、a(a+b)(a-b)13. 2008,14.2, 15.28元;16、15∏,17. 13+n三、解答题 18.解:1022sin 60--︒++12121192=-+=--------分 ……………………………(8分) AN BC(第25题图)白1白2红白2白1第二次摸出 的球第一次摸出 的球开始19、111(1)1(1)1x xx x xx xxx--=÷---=--=-解原式.--------6分当2x=时,原式2=-.--------9分20.解:所添加条件为PA=PB·······························2分得到的一对全等三角形是△PAD≌△PBC ··························4分证明:∵PA=PB ·····································5分∴∠A=∠B ······································6分又∵AD=BC ······································7分∴△PAD≌△PBC ····································9分所添加条件,只要能证明三角形全等,按上面评分标准给分.21PA切⊙O于A AB,是⊙O的直径,∴90PAO∠= .30P∠=,∴60AOP∠= .∴1302B AOP∠=∠= .四、(本题满分7分)22..解:(1)设捐款30元的有6x人,则8x+6x=42.∴x=3.…………………………………………………………2分∴捐款人数共有:3x+4x+5x+8x+6x=78(人).……………………3分(2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元).…………………6分(3) 全校共捐款:(9×10+12×15+15×20+24×25+18×30)×781560=34200(元).……………8分五、(本题满分7分)23.猜想:BE DF∥,BE DF=证明:证法一:如图19-1四边形ABCD是平行四边形.BC AD∴=12∠=∠又CE AF=BCE DAF∴△≌△BE DF∴=34∠=∠BE DF∴∥证法二:如图19-2连结BD,交AC于点O,连结DE,BF.四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥六、24、解:(1)从箱子中任意摸出一个球是白球的概率是23P=(2)记两个白球分别为白1与白2,AB CDEF图19-2OAB CDEF图19-123 41画树状图如右所示:从树状图可看出: 事件发生的所有可能的结果总数为6, 两次摸出球的都是白球的结果总数为2, 因此其概率2163P ==. 七、25、 解:过C 作CDAB ⊥,交AB 于D .(1)52CBD ∠=,26A ∠=,26BCA ∴∠=,70BC AB ∴==,即B 处到村庄C 的距离为70km . (2)在Rt CBD △中,sin 52CD CB =⨯ 700.7880=⨯55.2≈.即村庄C 到该公路的距离约为55.2km . 八、26、解:(1)由题意知B(0,6),C(8,0)8k+b=0设直线l 2的解析式为y=kx+b,则 b=6 解得k=-3/4,b=6. ∴l 2的解析式为y=-3/4x+6 (2)解法一: 如图过P 作P D ⊥l 2于D 则△PD C ∽△BOC ∴PD/BO=PC/BC由题意知OA=2,OB=6,OC=8. ∴BC=10,PC=10-t. ∴PD/6=10-t./10 ∴PD=3/5(10-t)∴S △PCQ=1/2C Q ·PD=1/2t ·3/5(10-t)=-3/10t 2+3t 解法二如图过Q 作QD ⊥x 轴于D, 则△CQD ∽△CBO ∴QD/BO=QC=BC由题意知OA=2,OB=6,OC=8. ∴BC=10 ∴QD/6=t/10 ∴QD=3/5t∴S △PCQ =1/2PC ·QD=1/2(10-t) ·3/5 t=-3/10t 2+3t(3)要想使△PCQ 为等腰三角形,需满足CP=CQ 或QC=QP 或PC=PQ ①当CP=CQ 时,得(10-t)= t,则t=5,②当QC=QP 时,过Q 作QD ⊥x 轴于D,则CD=1/2PC=1/2(10-t) ∵△PD C ∽△BOC∴CD/CO=CQ/CB 即1/2(10-t)/8= t/10则t=50/13③当PC=PQ 时过P 作PD ⊥l 2于D,则CD=1/2CQ=1/2 t, ∵△CDP ∽△COB, ∴CD/CO=CP/CB ∴1/2 t/8=(10-t)/10,则t=80/13.ANBC。
2024年吉林省长春市吉林省实验中学等十校联考中考第二次模拟检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.小慧和小谷玩猜字游戏,规则为:胜一次记作“1+”分,平局记作“0”分,负一次记作“1-”分.猜字两次后,小慧得分为2+分,则小谷此时的得分为( )A .2+B .2-C .1+D .1-2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形3.不等式组3230x x ->-⎧⎨->⎩的解集是( ) A .3x < B .5x >- C .53x -<< D .13x << 4.泰勒斯被誉为古希腊及西方第一个自然科学家和哲学家,据说“两条直线相交,对顶角相等”就是泰勒斯首次发现并论证的.论证“对顶角相等”使用的依据是( ) A .同角的余角相等;B .同角的补角相等;C .等角的余角相等;D .等角的补角相等.5.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里.若驽马先行一十二日,问良马几日追及之?根据题意,若设良马x 天可追上驽马,则下述所列方程正确的是( )A .12240150x x +=B .12240150x x =-C .()24015012x x =+D .()24012150x x -= 6.2024年1月4日,第22届瓦萨国际滑雪节开幕式在长春净月潭国家森林公园启幕.如图,一名滑雪运动员沿着倾斜角为α的斜坡,从点A 滑行到点B .若600m AB =,则这名滑雪运动员下滑的垂直高度AC 为( )A .600sin m αB .600cos m αC .600tan m αD .600m7.如图,在ABC V 中,90,30C B ∠=︒∠=︒,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列三个结论:①AD 是BAC ∠的平分线;②60ADC ∠=︒;③:1:3ACD ACB S S =V V .其中正确的有( )A .只有①B .只有①②C .只有①③D .①②③8.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“杠杆原理”的意义和价值.“杠杆原理”在实际生产和生活中,有着广泛的运用.比如:小明用撬棍撬动一块大石头,运用的就是“杠杆原理”.已知阻力1()F N 和阻力臂1(m)L 的函数图象如图,若小明想用不超过200N 的动力2F 撬动这块大石头,则动力臂2L (单位:m )需满足( )A .203L <≤B .23L <C .23L >D .23L ≥二、填空题9= .10.如图,“L”形图形的面积为7,如果3b =,那么=a .11.如图,有一幅不完整的正多边形图案,小明量得图中一边与对角线的夹角15BAC ∠=︒,那么这个正多边形的中心角是 度.12.2024年3月14日是第五个“国际数学日”,为庆祝这个专属于数学的节日,某校开展主题为“浸润数学文化”的演讲比赛,七位评委为某位同学打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分,则去掉前与去掉后没有改变的统计量是 .(填“平均数”、“中位数”、“众数”、“方差”中的一项)13.小慧同学在学习“图形的相似”一章后,发现学习内容是一个逐步特殊化的过程,下图就是一个特殊化的学习过程,图中横线上应填写的数值是 .14.在平面直角坐标系中,抛物线2()y x m m =--+(m 为常数,且0m >)与x 轴交于A 、B 两点,点C 为抛物线的顶点,当6090ACB ︒<∠<︒时,m 的取值范围是 .三、解答题15.先化简,再求值:22142x x x ⎛⎫÷+ ⎪--⎝⎭,其中2x . 16.一贝不透明的袋子中装有3个小球,分别标有编号1,2,3,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为________(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意执出1个球.用画树状图或列表的方法,求两次摸到的小球编号差1的概率.17.《九章算术》是我国古代经典数学著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大、小器各容几何?”译文“今有大容器5个,小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛,问大、小容器的容积各是多少斛?”18.如图,在ABC V 中,640AB AC BAC ==∠=︒,,以边AB 为直径的O e 与边AC BC 、分别交于点D 、E .求»DE的长.19.如图①、图②、图③均是22⨯的正方形网格每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC V 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留适当的作图痕迹.(1)在图①中的线段AC 上找一点M ,连接BM ,使BMA BMC ∠=∠.(2)在图②中的线段AB 、BC 上分别找一点P 、Q (点P 、Q 不在格点上),连接QA 、PC ,使QA PC =.(3)在图③中,点D 在边AB 上,且22.5ACD ∠=︒,在线段CD 上找一点N ,连接AN ,使CAN BAN ∠=∠.20.某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成锁(单位:m )如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】a______,b=______.(1)由上表填空:=(2)这两人中,_______的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请结合已测定的数据和统计量说明理由.21.小王和小丽在物理课学习了水在标准气压的沸点是100C︒,据此他两在老师指导下进行了有关食用油的沸点探究活动:活动主题:有关食用油沸点探究活动.活动过程:某食用油的沸点温度远高于水的沸点温度.小王想用刻度不超过100C︒的温度计测算出这种食用油沸点的温度.在老师的指导下,他在锅中倒入一些这种食用油均匀加热,并每隔10s测量一次锅中油温,得到的数据记录如下:如果你参与了这个探究学习活动,根据他们的探究情况,请你完成下列任务.任务一:在直角坐标系中描出了表中数据对应的点.经老师介绍,在这种食用油达到沸点前,锅中油温度y(单位:℃)与加热的时间t(单位:s) 符合初中学习过的某种函数关系,填空:可能是函数关系;任务二:请你根据以上判断,求出这种食用油达到沸点前y 关于t 的函数解析式; 任务三:当加热110s 时,油沸腾了,请推算沸点的温度.22.在Rt ABC △中,90ACB ∠=︒,D 是AB 的中点,点F 在边BC 上,过点D 作DF 的垂线交直线AC 与点E .【特例感知】如图①,当点E 与点C 重合时,DEF B ∠=∠,请说明理由;【提出问题】如图②,当点E 与点C 不重合时,DEF B ∠=∠还成立吗?【解决问题】答:图②中的DEF B ∠=∠依然成立;下面是针对点E 在线段AC 上的情形进行的一种证明,请你补充完整;如图③,取EF 中点M ,连结MD MC CD 、、.DE DF ⊥Q ,90EDF ∴∠=︒,Q 点M 是EF 的中点,12MD EF MF ME ∴===.(______________)(填依据) 90C ∠=︒Q ,M 是EF 的中点,12MC EF ∴=, MC ME MD MF ∴===.∴点C 、E 、D 、F 在以_______为直径的圆上,DEF ∠∠∴=________.由(1)可知,B DCB ∠=∠,DEF B ∴∠=∠.【拓展应用】若24AC BC ==,,当DEF V 的面积被ABC V 的一条边平分时,CF 的长为______.23.如图①,在ABCD Y 中,1356A AB ∠=︒=,,ABCD Y 的面积为12,点E 在边AB 上,且2AE =,动点P 从点E 出发,沿折线EA AD DC --以每秒1个单位长度的速度运动到点C 停止.将射线EP 绕点E 逆时针方向旋转45︒得到射线EQ ,点Q 在折线段B C D --上,连接PQ .设点P 运动的时间为t (秒)(0t >).(1)AD 的长为_______;(2)当EQ 将ABCD Y 的面积分为1:2时,求t 的取值范围;(3)如图②,当点Q 在边BC 上时,求PE EQ :的值;(4)如图③,作点Q 关于PE 的对称点Q ',在点P 从点E 出发运动到点C 的过程中,点Q '经过的路径长为_______.24.在平面直角坐标系中,抛物线2y x bx c =++经过点(1,0)A 、(3,0)B .点P 在该抛物线上,且横坐标为m ,当点P 与点A 、B 不重合时,以A 、B 、P 为顶点作PABQ Y ,过点Q 作PQ 的垂线交抛物线于点M ,连接PM .(1)求抛物线的函数表达式;(2)当抛物线的对称轴将线段PM 分成3:2两部分时,求m 的值;(3)当点P 在点A 右侧,PQM V 的面积是PABQ Y 的面积2倍时,求MQ 的长;(4)当点M 在x 轴下方,线段MP MQ 、将PABQ Y 的面积分成1::1n 三部分时,直接出m n +的值.。
中考数学模拟试题一、选择题(每题3分,共30分) 1、-2 021的相反数等于( )A .2 021B .-2 021 C.12 021D .-12 0212、下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( )3、下列运算正确的是( )A .(-m 2n)3=-m 6n 3B .m 5-m 3=m 2C .(m +2)2=m 2+4D .(12m 4-3m)÷3m=4m 34、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是( )个. A.4 B.5 C.6 D.75、关于x 的一元二次方程(a +2)x 2-3x +1=0有实数根,则a 的取值范围是( )A .a <14且a≠-2B .a≤14C .a≤14且a≠-2D .a <146、我国古代某数学著作中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( ) A.{3(y −2)=x2y −9=xB.{3(y +2)=x2y +9=xC.{3(y −2)=x 2y +9=x D.{3(y +2)=x2y −9=x7、如图,D ,E ,F 分别是△ABC 各边中点,则以下说法错误的是( ) A .△BDE 和△DCF 的面积相等 B .四边形AEDF 是平行四边形 C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形( 第7题图)8、关于x 的不等式组{x −m <0,3x −1>2(x −1)无解,那么m 的取值范围为( )A. m ≤-1B.m<-1C.-1<m ≤0D.-1≤m<09、如图所示,已知点A,B 分别在反比例函数y= 1x (x>0), y=- 4x (x>0))的图象上,且OA ⊥OB,则OBOA 的值为( ) A.√2 B.4 C.√3 D.2( 第9题图)10、如图所示,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是 △ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设 BD=x,△BDP 的面积为y,则下列能大致反映y 与x 函数关系图象的是( )二、填空题(每题3分,共21分)11、我国某探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 km.12、一组数据5,2,x,6,4的平均数是4,这组数据的方差_____.13、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a 只,则现年20岁的这种动物活到25岁的概率是 ________. 14、如图所示,在平行四边形ABCD 中,按以下步骤作图: ①以A 为圆心,任意长为半径作弧,分别交AB,AD 于点 M,N;②分别以M,N 为圆心,以大于12MN 的长为半径作弧, 两弧相交于点P;③作射线AP,交边CD 于点Q,若DQ=2QC,( 第14题图)BC=3,则平行四边形ABCD 的周长为 .15、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人 4盒牛奶,那么剩下28盒牛奶;如果分给每位老人 5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有__________人.16、如图,在矩形ABCD 中,AB =3,AD =4,E ,F 分 别是边BC ,CD 上一点,EF⊥AE,将△ECF 沿EF 翻折 得△EC′F,连接AC′,当BE =________时,△AEC′是以AE 为腰的等腰三角形. (第16题图)17、如图,已知正方形ABCD 的边长为6,点F 是正方形内一点,连接CF ,DF ,且∠ADF=∠DCF,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为 ________________.( 第17题图) 三、解答题(共9小题,计69分)18、(5分)(12)-1-√−83+|√3-2|+2sin 60°.19、(5分)先化简,再求值:(3a+1-a+1)÷a 2−4a 2+2a+1,其中a 从-1,2,3中取一个你认为合适的数代入求值.20、(6分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.21、(6分)如图所示,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角为45°,然后沿着坡度为1∶3的坡面AD走了200 m达到D处,此时在D处测得山顶B的仰角为60°,求山BC的高度.(结果保留根号)22、(7分))某校从全体学生中随机抽取部分学生,调查他们平均每周的劳动时间t(单位:h),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D 组“t≥9”.将收集的数据整理后,绘制成如图所示的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是,C组所在扇形的圆心角的大小是;(2)将条形统计图补充完整;(3)该校共有1 500名学生,请估计该校平均每周劳动时间不少于7 h的学生人数.23、(9分)某乡镇对河道进行整治,由甲乙两工程队合做 20天可完成.已知甲工程队单独整治需60天完成.(1)乙工程队单独完成河道整治需多少天?(2)若甲乙两工程队合做a天后,再由甲工程队单独做天(用含a 的代数式表示)可完成河道整治任务;(3)如果甲工程队每天施工费为5 000元,乙工程队每天施工费为1.5万元,先由甲乙两工程队合做,剩余工程由甲工程队单独完成,要使支付两工程队费用最少,并且确保河道在40天内(含 40天)整治完毕,问需支付两工程队费用最少多少万元?24、(9分)如图所示,在Rt△ABC中,∠ABC=90°,以AB 为直径作⊙O,点D 为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.25.(10分)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC =6时,求DE的长.26.(12分)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.。
(考试时间:120分钟;满分:150分)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项2024年福建省中考数学模拟试题(二)是符合要求的。
1.计算26a a ÷得?a ,则“?”是()A .1B .2C .3D .42.①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A .①③B .②③C .①④D .③④3.粮食是人类赖以生存的重要物质基础.我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A .46.828510⨯吨B .46828510⨯吨C .76.828510⨯吨D .86.828510⨯吨4.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A .2a >-B .a b >-C .a b->D .0a b ->5.在平面直角坐标系中,点1(0,2)A ,2(1,5)A ,3(2,10)A ,4(3,17)A ,⋯,用你发现的规律确定点20A 的坐标为()A .(19,401)B .(20,399)C .(19,399)D .(20,401)6.如图是路政工程车的工作示意图,工作篮底部与支撑平台平行.若130∠=︒,250∠=︒,则3∠的度数为()A .130︒B .140︒C .150︒D .160︒7.化简21639a a ---的结果是()A .13a +B .13a -C .3a +D .3a-8.如图1,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10.小凯转动转盘做频率估计概率的实验,当转盘停止转动后,指针指向的数字即为实验转出的数字,图2,是小凯记录下的实验结果情况,那么小凯记录的实验是()A .转动转盘后,出现偶数B .转动转盘后,出现能被3整除的数C .转动转盘后,出现比6大的数D .转动转盘后,出现能被5整除的数9.大约在两千四五百年前,墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图所示的小孔成像实验中,若物距为10c m ,像距为15cm ,蜡烛火焰倒立的像的高度是8cm ,则蜡烛火焰的高度是()cmA .92B .163C .6D .810.如图,已知D 是等边ABC ∆边AB 上的一点,现将ABC ∆折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上.如果23AD DB =,则CECF 的值为()A .23B .34C .78D .89二、填空题:本题共6小题,每小题4分,共24分。
2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.在下列图形中,为中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正五边形 D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合; 是中心对称图形的只有B . 故选B .2.下列方程有实数根的是A .4x 20+=B 1=−C .2x +2x −1=0D .x 1x 1x 1=−− 【答案】C【详解】A .∵x4>0,∴x4+2=0B .,无解,故本选项不符合题意;C .∵x2+2x−1=0,∆ =8>0,方程有实数根,故本选项符合题意;D .解分式方程1xx −=11x −,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA +=( ) A .AB ; B .BA ;C .0;D .0.【答案】C【分析】根据零向量的定义即可判断. 【详解】AB BA +=0. 故选C .4.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7 B .5<OB <7C .4<OB <9D .2<OB <7【答案】A【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D , ∴AD OP ⊥,∵∠POQ=30°,⊙A 半径长为2,即2AD =, ∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+−=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<. 故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分) 7.分解因式:2218m −= .【答案】()()233m m +−/()()233m m −+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m −=2(m2-9) =2(m+3)(m -3).故答案为:2(m+3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 8.x −的解是 . 【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验. 【详解】把方程两边平方得x+2=x2, 整理得(x ﹣2)(x+1)=0, 解得:x =2或﹣1,经检验,x =﹣1是原方程的解. 故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根. 9.函数y =x 的取值范围是 . 【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨−≠⎩,解得:0x ≥且2x ≠, 故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b ==,那么BG = (用a b 、表示). 【答案】23a b−+. 【详解】试题分析: ∵在△ABC 中,点G 是重心,AD b =,∴23AG b=,又∵BG AG AB =−,AB a =,∴2233BG b a a b =−=−+;故答案为23a b −+.考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是 . 【答案】13【详解】解: 列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程2234404x x x x+−+=−中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是 .【答案】2430y y ++=【分析】先把方程整理出含有x2-4x 的形式,然后换成y 再去分母即可得解. 【详解】方程2234404x x x x +−+=−可变形为x2-4x+214x x −+4=0,因为24y x x =−,所以340y y ++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是 . 【答案】7r >/7r <【分析】由题意,⊙O1与⊙O2内含,则可知两圆圆心距d r r <−小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r−>,解得7r>.故答案为:7r>.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x,那么可列方程是.【答案】100(1+x)2=200【分析】根据题意,设平均每月的增长率为x,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x的一元二次方程.故答案为:100(1+x)2=200【详解】设平均每月的增长率为x,根据题意可得:100(1+x)2=200.故答案为:100(1+x)2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD中,已知AB=4,∠B:∠C=1:2,那么BD的长是.【答案】【分析】根据题意画出示意图(见详解),由菱形的性质可得BO=12BD,BD⊥AC,在Rt△ABO中,由cos∠ABO即可求得BO,继而得到BD的长.【详解】解:如图,∵四边形ABCD为菱形,∴AB CD∥,∴∠ABC+∠BCD=180°,∵∠ABC:∠BCD=1:2,∴∠ABC=60°,∴∠ABD=12∠ABC=30°,BO=12BD,BD⊥AC.在Rt△ABO中,cos∠ABO=BOAB=,∴BO=AB⋅cos∠ABO=4×=∴BD=2BO=故答案为:【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC = .【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD 中,10AB =,12BC =,5CD =,3tan 4B =,那么边AD 的长为 .【答案】9【分析】连接AC ,作AE BC ⊥交BC 于E 点,由3tan 4B =,10AB =,可得AE=6,BE=8,并求出AC 的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果. 【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点, 3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB+=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8, 又12BC =,∴CE=BC -BE=4,∴AC ==作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又5CD =,∴同理可得DF=3,CF=4,∴6AF ==,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt∆ABC中,∠ACB=90°,BC=4,AC=3,⊙O是以BC为直径的圆,如果⊙O与⊙A相切,那么⊙A的半径长为.2=+可得结论;【分析】分两种情况:①如图,A与O内切,连接AO并延长交A于E,根据AE AO OE=−可得结论.②如图,A与O外切时,连接AO交A于E,同理根据AE OA OE【详解】解:有两种情况,分类讨论如下:①如图1,A与O内切时,连接AO并延长交O于E,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒,根据勾股定理得:OA ,2AE OA OE ∴=+;即A 2;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得2AE AO OE =−,即A 2,综上,A 22.2.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()202201cot 453sin 30π−−︒+−−︒ .【答案】【分析】先化简各式,然后再进行计算即可解答.202201(cot 45)(3)(sin30)π−−︒++−−︒202211(1)1()2−=−+−112=−=【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.(1)求△ABC 的面积; (2)求CE ∶DE .【答案】解:(1);(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积; (2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB=AC=6,cosB=23,AH 是△ABC 的高,∴BH=4,∴BC=2BH=8,=∴△ABC 的面积是;2BC AH ⋅=(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CHAB HB DE HF ==,.∵AD :DB=1:2,BH=CH ,∴AD :AB=1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE=3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =kx的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =kx的图象于点B (点B 与点A 不是同一点).(1)求k 的值; (2)求点B 的坐标. 【答案】(1)2(2)(4,12)【分析】(1)根据题意得到22k k =,解方程求得k =2; (2)先求得A 的坐标,根据正比例函数的解析式设直线AB 的解析式为y12=−x+b ,把A 的坐标代入解得b 52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B 的坐标. 【详解】(1)解:∵点A 是反比例函数y kx =的图象与正比例函数y =kx 的图象在第一象限内的交点,点A的纵坐标为2, ∴22kk =, ∴2k =4,解得k =±2, ∵k >0, ∴k =2; (2)∵k =2, ∴反比例函数为y2x =,正比例函数为y =2x ,把y =2代入y =2x 得,x =1, ∴A (1,2), ∵AB ⊥OA ,∴设直线AB 的解析式为y12=−x+b ,把A 的坐标代入得2112=−⨯+b , 解得b52=,解21522y xy x ⎧=⎪⎪⎨⎪=−+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩, ∴点B 的坐标为(4,12).待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP上,且不能影响到古树的圆形保护区.已知点N距离地面的高度为0.9m,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即AE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B ''的坡度为1:4,即B E A E ''=1:4,∴A 'E =5×4=20(m ), ∴A A '=20﹣9.6=11.4(m ),A 'G =4NG =4×0.9=3.6(m ),∴AG =11.4﹣3.6=7.8(m ),点M 到点G 的最多距离MG =25﹣7.8﹣3=14.2(m ), ∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F .(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形. 【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE=CE .即可以利用“AAS”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE ADCB AC =.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠. 又∵E 是AC 中点, ∴AE=CE ,∴在AED △和CEF △中,ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌, ∴AD CF =,∴四边形AFCD 是平行四边形. (2)∵//AD BC , ∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅, ∴AE ADCB AC =, ∴ADE CAB ∽△△, ∴90AED ABC ∠=∠=︒,即DF AC ⊥. ∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =−++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式; (2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标. 【答案】(1)2312355y x x =−++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2−.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,DF =E 作EK DF ⊥于K,根据等腰直角三角形的性质可得KF KE =DK DF KF =−=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c=−++,得:15503b c c −++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =−++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE =,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==, (4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =−++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒,45DFH ∴∠=︒,DF =过点E 作EK DF ⊥于K ,312EF =−=,KF KE ∴=,DK DF KF ∴=−=在Rt DKE ∆中,cot 2DK EDF KE ∠=;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF EDED EP =,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =−,又2EF =,ED102(1)y ∴=−,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DPPD FP =,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =−,3FP y =−,DP ,29(1)(3)y y y ∴+=−−,解得32y =−,∴点P 的坐标为3(4,)2−; 综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2−. 【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质. 25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时, ①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;② (2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA ABAP OA =,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH x ,利用勾股定理列方程求出OH 的长,从而得出AH ,即可求得面积; (2)联结OC ,AC ,利用圆心角与圆周角的关系得∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,再利用SSS 说明△OAP ≌△OCP ,得∠OAP =∠OCP ,从而解决问题. 【详解】(1)①证明:∵OA =OB , ∴∠OAB =∠OBA , ∵PA =PO , ∴∠BAO =∠POA , ∴∠OAB =∠OBA =∠AOP , ∴∠AOB =∠APO ;②解:∵∠AOB =∠APO ,∠OAB =∠PAO ,∴△AOB ∽△APO , ∴OA AB AP OA =, ∴OA2=AB•AP =1,∵点B 是线段AP 的中点,∴AP作AH ⊥PO 于点H ,设OH =x ,则PH x ,由勾股定理得,12﹣x22x )2,解得x =,∴OH =4,由勾股定理得,AH ,∴△AOP 的面积为1122OP AH ⨯⨯==; (2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP=β+α,∵OA=OC,AP=PC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=β+α,在△OAP中,2(α+β)+β=180°,∴β=60°﹣23.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。
浙江省台州市三门县中考数学模拟试卷(二)一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤33.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A. B.C.D.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.05.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B. C. D.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.129.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.610.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:二.填空题(共6小题)11.因式分解:x3﹣xy2=.12.正十边形的一个外角为度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.三.解答题(共7小题)17.计算:18.解方程:x2﹣5x﹣6=0.19.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B (1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.20.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B 处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.22.我县实施新课程后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D 类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.浙江省台州市三门县中考数学模拟试卷(二)参考答案与试题解析一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣【考点】绝对值.【分析】利用绝对值的定义求解即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤3【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件,即根号下大于等于0,求出即可.【解答】解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.【点评】此题主要考查了函数变量的取值范围,此题是中考考查重点,同学们应重点掌握,特别注意根号下可以等于0这一条件.3.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A. B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】因为k的符号不确定,所以应根据k﹣1的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,k﹣1<0,反比例函数y=的图象在二,四象限,一次函数y=kx+k﹣1的图象过二、三、四象限,故选项C错误,符合题意;而选项D正确,不合题意;当k>0时,k﹣1的符号不确定,则反比例函数y=的图象在一、三象限,一次函数y=kx+k﹣1的图象过一、三、四象限或一、二、三象限故选项A,B正确,不符合题意.故选C.【点评】本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.0【考点】二次函数的最值.【分析】由图可知,x≤1.5时,y随x的增大而减小,可知在﹣1≤x≤0范围内,x=0时取得最大值,然后进行计算即可得解.【解答】解:∵x≤1.5时,y随x的增大而减小,∴当﹣1≤x≤0时,x=0取得最大值,为y=2.故选C.【点评】本题考查了二次函数的最值问题,主要利用了二次函数的增减性求最值,准确识图是解题的关键.5.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处【考点】三角形的外接圆与外心.【专题】应用题;压轴题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:三角形三边垂直平分线的交点到三个顶点的距离相等.故选D.【点评】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=【考点】由实际问题抽象出分式方程.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.【解答】解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,﹣1.5=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B. C. D.【考点】锐角三角函数的定义;勾股定理的逆定理.【专题】常规题型.【分析】找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾股定理逆定理证明△AOC是直角三角形,然后根据余弦=计算即可得解.【解答】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB===.故选B.【点评】本题考查了锐角三角函数的定义,勾股定理,勾股定理逆定理,找出格点C并作辅助线构造出直角三角形是解题的关键.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12【考点】圆的综合题.【分析】易知直线y=kx﹣3k+4过定点D(3,4),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【解答】解:对于直线y=kx﹣3k+4,当x=3时,y=4,故直线y=kx﹣3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD==5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=2×12=24.故选:B.【点评】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.9.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.6【考点】反比例函数综合题.【专题】计算题.【分析】先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数的图象上,可得到A点坐标为(﹣,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即A点坐标为(﹣,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OP=•b=3.故选:A.【点评】本题考查了点在函数图象上,点的横纵坐标满足函数图象的解析式.也考查了与坐标轴平行的直线上的点的坐标特点以及三角形的面积公式.10.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【考点】正多边形和圆;勾股定理.【专题】计算题;压轴题.【分析】先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【解答】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴扇形和圆形纸板的面积比是π÷(π)=.故选:A.【点评】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二.填空题(共6小题)11.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.正十边形的一个外角为36度.【考点】多边形内角与外角.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出答案.【解答】解:正十边形的一个外角为360÷10=36度.【点评】本题主要考查了正多边形的性质:正多边形的各个外角相等,外角和是360度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是6.【考点】频数与频率.【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【解答】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为:6.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总数,各小组频率之和等于1.频率、频数的关系:频率=频数÷数据总数.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是π.【考点】弧长的计算;旋转的性质.【分析】仔细观察顶点O经过的路线可得,顶点O到O′所经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA′=AB的弧长;第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°.所以,O点经过的路线总长S=π+π+π=π.故答案是:.【点评】本题考查了旋转的性质,弧长的计算,根据题意,准确分析得到三段的运动过程是解题的关键.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(2,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,正方形的性质;由点C的横坐标大于3列出不等式求解是解题的关键.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【考点】矩形的性质;平行四边形的判定与性质.【专题】计算题;压轴题.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.【点评】本题考查了矩形的性质,平行四边形的判定与性质,作出辅助线并证明出四边形EGHF是平行四边形是解题的关键.三.解答题(共7小题)17.计算:【考点】实数的运算.【分析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2=.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:x2﹣5x﹣6=0.【考点】解一元二次方程-因式分解法.【分析】把方程左边进行因式分解得到(x﹣6)(x+1)=0,则方程就可化为两个一元一次方程x ﹣6=0,或x+1=0,解两个一元一次方程即可.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.19.如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,其中点A (5,4),B (1,3),将△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(1)画出△A 1OB 1;(2)在旋转过程中点B 所经过的路径长为 π ;(3)求在旋转过程中线段AB 、BO 扫过的图形的面积之和.【考点】作图-旋转变换;勾股定理;弧长的计算;扇形面积的计算.【专题】作图题.【分析】(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB ,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA ,再根据AB 所扫过的面积=S 扇形A1OA +S △A1B1O ﹣S 扇形B1OB ﹣S △AOB =S 扇形A1OA ﹣S 扇形B1OB 求解,再求出BO 扫过的面积=S 扇形B1OB ,然后计算即可得解. 【解答】解:(1)△A 1OB 1如图所示;(2)由勾股定理得,BO==, 所以,点B 所经过的路径长==π;故答案为:π.(3)由勾股定理得,OA==, ∵AB 所扫过的面积=S 扇形A1OA +S △A1B1O ﹣S 扇形B1OB ﹣S △AOB =S 扇形A1OA ﹣S 扇形B1OB , BO 扫过的面积=S 扇形B1OB ,∴线段AB 、BO 扫过的图形的面积之和=S 扇形A1OA ﹣S 扇形B1OB +S 扇形B1OB ,=S 扇形A1OA , =, =π.【点评】本题考查了利用旋转变换作图,弧长公式,扇形的面积,勾股定理,熟练掌握网格结构准确找出对应点的位置是解题的关键,难点在于(3)表示出两线段扫过的面积之和等于扇形的面积.20.如图,⊙O 中,FG 、AC 是直径,AB 是弦,FG ⊥AB ,垂足为点P ,过点C 的直线交AB 的延长线于点D ,交GF 的延长线于点E ,已知AB=4,⊙O 的半径为.(1)分别求出线段AP 、CB 的长;(2)如果OE=5,求证:DE 是⊙O 的切线;(3)如果tan ∠E=,求DE 的长.【考点】切线的判定.【专题】证明题.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.【解答】(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明∵AP=BP,AO=OC∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B 处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.【解答】解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)能.理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.【点评】此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.22.我县实施新课程后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.【解答】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D 女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.【考点】二次函数综合题.【专题】计算题;压轴题.【分析】(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c,列出方程组,即可求出函数解析式.(2)当P在l下方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;当P在l上方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;(3)画出函数图形,利用三角形相似,求出P点坐标,再利用待定系数法求出函数解析式.【解答】解:(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c得,,解得,函数解析式为y=﹣x2+3x+4.(2)P在l下方时,令①△AOC∽△AQP,=,即,由于y=﹣x2+3x+4,则有=,解得x=0(舍去)或x=,此时,y=,P点坐标为(,).②△AOC∽△PQA,,即,由于y=﹣x2+3x+4,则有,解得,x=0(舍去)或x=7,P点坐标为(7,﹣24).③P在l上方时,令△AOC∽△PQA,,即,∵y=﹣x2+3x+4,∴,解得,x=0(舍去)或x=﹣1,P点坐标为(﹣1,0)(不合题意舍去).④△AOC∽△AQP,=,即∴,解得,x=0(舍去)或x=,P点坐标为(,).(3)如图(1),若对称点M在y轴,则∠PAQ=45°,设AP解析式为y=kx+b,则k=1或﹣1,当k=1时,把A(0,4)代入得y=x+4,当k=﹣1时,把A(0,4)代入得y=﹣x+4,此时P在对称轴右侧,符合题意,∴y=x+4,或y=﹣x+4,设点Q(x,4),P(x,﹣x2+3x+4),则PQ=x2﹣3x=PM,∵△AEM∽△MFP.则有=,∵ME=OA=4,AM=AQ=x,PM=PQ=x2﹣3x,∴=,解得:PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,Rt△AOM中,由勾股定理得OM2+OA2=AM2,∴(3x﹣12)2+42=x2,解得x1=4,x2=5,均在抛物线对称轴的右侧,故点P的坐标为(4,0)或(5,﹣6).设一次函数解析式为y=kx+b,把(0,4)(4,0)分别代入解析式得,解得,函数解析式为y=﹣x+4.把(0,4)(5,﹣6)分别代入解析式得,解得,函数解析式为y=﹣2x+4.综上所述,函数解析式为y=x+4,y=﹣x+4,y=﹣2x+4.【点评】本题考查了二次函数解析式的求法、二次函数解析式、相似三角形的性质、翻折变换、待定系数法求一次函数解析式等,题目错综复杂,涉及知识面广,旨在考查逻辑思维能力.。
中考数学模拟试卷(二)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.13-的值是 ( )A .-3B .3C .13D .-132.函数(1)y k x =-中,如果y 随着x 增大而增大,那么常数k 的取值范围是( ) A .1k < B .1k ≤ C .1>k D .1k ≥ 3.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台3.下列计算正确的是 ( )A.422a a a =+; B .236a a a =÷; C .32a a a =⋅; D .532)(a a =. 4.如果b a <,0<c ,那么下列不等式成立的是( ).A. c b c a +<+;B. c b c a +-<+-;C. bc ac <;D.cbc a <. 5.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同. 若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于( ) A .15个 B .8个 C .10个 D .6个6.在平面直角坐标系中,若点P (m ,m+2)在第二象限,则mx 的取值范围为 ( ) A .-2 <m<0 B .m <-2 C .m >0 D .m >-2 7.如图所示,点P 为反比例函数y =2x上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y =k x -1的图像为 ( )8.如图所示,将矩形ABCD 沿对角线BD 折叠,使C 落在C'处, BC'交AD 于E ,则下列结论不一定成立的是 ( ) A .AD =BC' B .∠EBD =∠EDB C .△ABE ∽△CBD D .sin ∠ABE =AEED9.如图所示,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°,AB =3,将△ABC 绕顶点C 顺时针旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上, 则点A 经过的最短路线的长度是 ( )(第3题图)俯视图 主视图左视图A .8cmB .43cmC .323πcm D .83πcm10.如图所示,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°.现给出以下四个结论:①∠A =45°; ②AC =AB ;③AE =BE ;④CE ·AB =2BD 2,其中正确结论的序号是 ( ) A .①②B .②③C .②④D .③④二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.请把最后结果填在题中横线上.11.分解因式:a 3-a =________________.12.如图所示的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(-1, 2),那么白棋B 的坐标是____________.13.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一 场比赛),则总的比赛场数为_______场.14.若关于x 的分式方程311x a x x--=-无解,则a =_______.15.现在一般超市都是使用环保购物袋,某超市有偿..提供可重复使用的三种环保购物袋,每个售价分别为1元、2元和3元,这三种环保购物袋每个最多分别能装大米3kg 、5kg和8kg .6月7日,小明和爸爸在该超市选购了3个环保购物袋用来装刚购买的20kg 散装大米,他们选购的3个环保购物袋至少..应付给超市___________元. 16.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图像,那么a 的值是_______. 17.如图所示,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是________.18.如图所示为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是_______;当字母C 第2n +l 次出现时(n 为正整数),恰好数到的数是_______(用含n 的代数式表示).A B CD E(第10题Ox yE DC A B三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:0183221π⎛⎫-+⎪-⎝⎭20.(本小题5分)先化简,再求值:2239(1)x xx x---÷,其中31x=21.(本小题5分)解不等式组:12,132,2xx x->⎧⎪⎨-≤+⎪⎩………………①…………②22.(本小题6分)如图所示,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2).并求出B点坐标.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.(3)计算△A'B'C'的面积S.23.(本小题6分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图所示:(1)请你完成如左图所示游戏一个回合所有可能出现的结果的树状图.(2)求一个回合能确定两人先下棋的概率.解:(1)树状图为:24.(本题满分6分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数..,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ▲ ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 ▲ . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]25.(本小题8分)如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200m 范围内为原始森林保护区,在MN 上的点A 处测得点C 在点A 的北偏东45°方向上,从A 向东走600m 到达B 处,测得点C 在点B 的北偏西60°方向上. (1)MN 是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.(本小题8分)如图a 所示,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE 、GC .成绩范围60<x 8060<≤x80≥x 成绩等第 不合格合格优良人数 40平均成绩57a b表1:抽样分析分类统计表抽样分析频率分布直方图(图6)成绩0.01 0.04 组距频率0.020.0349.5 0.1 0.20.3 0.15 59.5 69.5 79.5 89.599.5(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图b 所示,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.(本小题9分)如图所示,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q .A 、B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为t s . (1)求PQ 的长.(2)当t 为何值时,直线AB 与⊙O 相切?OPQMNAB28.(本小题9分)某茶厂种植“春蕊”牌绿茶,由历年来市场销售行情知道,从每年的3 月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用图a 中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用图b 所示的抛物线表示.B C D EFG A a 图 B C D E F G A b 图(1)直接写出图a中表示的市场销售单价y(元)与上市时间£(天)(t>0)的函数关系式.(2)求出图b中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式.(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500g.)29.(本小题9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标.(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式.(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案1~10. BCCAB AACDC 11.()()11a a a +- 12.(-3,-2) 13.6 14.1或-2 15.8 16.-1 17.601318.B 603 6n +3 19.0 20.解:原式=9)32(2-⨯--x xx x x x =)3)(3(3-+⨯-x x x x x=31+x 当13-=x 时,原式=231+=32-21.由①,得x>3. 由②,得x ≤10. ∴原不等式的解集为3<x ≤10. 22.(1)图略.B (2,1) (2)图略(3)16 23.(1)如图所示:(2)3424..解:(1) 80 ; (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(.所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) (3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人),依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba 解得 ⎩⎨⎧==.87,72b a(4) D .25.(1)MN 不会穿过原始森林保护区 (2)原计划完成这项工程需要25天 26.(1)AE ⊥GC (2)成立 27.(1)8cm (2)当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切28.(1) ()()2160 0<t<120,380 (120t 150),220 150t 1805t y t ⎧-+⎪⎪=≤≤⎨⎪⎪+≤≤⎩(2)()2111020300z t =-+(t>0)(3)在t =10时,纯收益单价最大,最大值为100元。
数 学 模 拟 试 题 二创作单位:*XXX创作时间:2022年4月12日 创作编者:聂明景〔时间是:90分钟 满分是:150分〕一、选择题〔本大题一一共12小题,每一小题3分,一共36分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.〕1.14的算术平方根是〔 〕 A .12- B .12 C .12±D .1162. 以下计算正确的选项是〔 〕A. 02007=0B. 35-=-15C. 236a a a =÷ D. xy xy y x 248452-=÷-3. 以下二次根式中与6是同类二次根式的是〔 〕A. 12B. 16C. 18D. 24 4. 在函数12y x =-+中,自变量x 的取值范围是〔 〕 A .2x ≠B .2x -≤C .2x ≠-D .2x -≥5. 现规定一种新的运算“※〞:a ※b =ab ,如3※2=32=8,那么3※12等于〔 〕 A.18B.8C.16D.326. 假如反比例函数ky x=的图象经过点)2,1(--,那么该函数的图象位于〔 〕A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限7.以下命题中,正确的选项是〔〕A.对顶角相等 B.同位角相等 C.内错角相等 D.同旁内角互补8.等腰三角形的两条边长分别为2和5,那么它的周长为〔〕A. 9 B. 12 C. 9或者12 D. 59. 如图1,⊙O是等边ABC△的外接圆,P是⊙O上一点,那么CPB∠等于〔〕A.30B.45 C.60 D.903cm,5cm,圆心距为8㎝,那么两圆的位置关系为〔〕A.外切B.内含C.相交D.内切11. 某坡面的坡度为1,那么坡角是( )°°°°12. 为分析2000名学生的数学考试成绩,从中抽取100份.在这个问题中,以下说法正确的选项是〔〕A.每名学生是个体 B.从中抽取的100名学生是总体的一个样本C.2000名学生是总体 D.样本的容量是100二、填空题〔本大题一一共6小题,每一小题4分,一共24分〕13. 不等式组10xx-<⎧⎨>⎩的解是____________.14.假设100个产品中有96个正品,4个次品,从中随机抽取一个,恰好是次品的概率图1是 .15. 在半径为3的圆中,50°的圆心角所对的弧长为_______. ___度,才能与原来的图形重合.17. 如图2,点O 是AC 的中点,将周长为4㎝的菱形ABCD 沿对角线AC 方向平移AO 长度得到菱形D C B O ''',那么四边形OECF 的周长是 ㎝ 18. 观察以下各式:3211= 332123+= 23336321=++ 33332123410+++= ……猜测:333312310++++= .三、解答题〔本大题一一共10小题,一共90分.解答须写出文字说明、证明过程和演算步骤.〕19.〔本小题满分是7分〕计算: 023060tan 3)1(2514-÷-+⎪⎪⎭⎫ ⎝⎛+--20.〔本小题满分是7分〕化简:34121311222+++-⋅-+-+x x x x x x x21.〔本小题满分是7分〕解分式方程:1223x x =+.22. 〔本小题满分是7分〕如图,ABCD 中,E 、F 分别是AD 、BC 的中点,AF 与BE 交于点G ,图2CE 与DF 交于点H.求证:四边形EGFH 是平行四边形.23.〔本小题满分是7分〕如图,AB 是⊙O 的弦,CO ⊥OA ,OC 交AB 于点P ,且PC=BC ,BC是⊙O 的切线吗?证明你的结论。
洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。
福建省福州市中考数学模拟试卷(二)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠53.下列交通标志图案是轴对称图形的是()A. B. C. D.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 25.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 46.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 27.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x68.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是度.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.18.先化简,再求值:﹣,其中a=+1,b=﹣1.19.解方程:x2+2x﹣3=0.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.福建省福州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.解答:解;1﹣x>0,解得x<1,故选:A.点评:本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义得出结论.解答:解:∠1与∠5是同位角.故选:D.点评:本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.3.下列交通标志图案是轴对称图形的是()A. B. C. D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 4考点:垂径定理;圆周角定理;解直角三角形.专题:计算题.分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.解答:解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.点评:本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 2考点:因式分解-提公因式法.分析:利用提取公因式法分解因式的方法得出即可.解答:解:∵代数式x2+ax可以分解因式,∴常数a不可以取0.故选:B.点评:此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键.7.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.考点:作图—复杂作图.分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.解答:解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题;压轴题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是a≠﹣1.考点:分式有意义的条件.专题:计算题.分析:使代数式有意义的条件为a+1≠0,就可求得a的取值范围.解答:解:根据题意得:a+1≠0,所以a≠﹣1.故答案为a≠﹣1.点评:此题主要考查了分式的意义,要求掌握.只要令分式中分母不等于0,求得a的取值范围即可.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为y=2x﹣3.考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=2x+b.把代入直线解析式得1=2×2+b,解得 b=﹣3.所以平移后直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为:56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是150度.考点:弧长的计算.分析:直接利用弧长公式l=即可求出n的值,计算即可.解答:解:根据l===20π,解得:n=150,故答案为:150.点评:本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为1.考点:三角形中位线定理.分析:根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.解答:解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.点评:本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.考点:二次函数的图象;反比例函数的图象.专题:压轴题;图表型.分析:首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.解答:解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.点评:本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:﹣,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式===a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:根据三角形全等得到对应角相等即可得出结论.解答:证明:∵FA=FC,∴∠FAC=∠FCA,在△ABC和△EDA中,,∴△ABC≌△EDA,∴∠B=∠D.点评:本题考查了全等三角形的判定与性质,找准对应边和对应角是解题的关键.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)考点:加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图.专题:压轴题;图表型.分析:(1)先求出喝红茶的百分比,再乘总数.先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.解答:解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;补全频数分布直方图如右图所示.(3)(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?考点:二元一次方程组的应用.分析:设运动服、运动鞋的标价分别为x元/套、y元/双,根据标价为480元的某款运动服装价格为400元,列方程组求解.解答:解:设运动服、运动鞋的标价分别为x元/套、y元/双,由题意得,,解得:.答:运动服、运动鞋的标价分别为300元/套、180元/双.点评:本题考查了二元一次方程的应用,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程求解.23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.考点:切线的判定.专题:几何综合题.分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cos∠A==,求出AE=,然后由BE=AB﹣AE即可求解.解答:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=﹣=2.点评:本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.考点:相似形综合题.专题:压轴题.分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.(3)先求出S1=π•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=π•BM2代入计算即可.②当0<x≤2时,S2=π(x2﹣x+),最后根据S=S1+S2=π(x﹣)2+π即可得出S的最小值.解答:解:(1)过点C作CE⊥AB于E,在Rt△BCE中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4×=2,∴AD=CE=2.存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=8.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=π•()2=π•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S2=π•BM2=π(x2﹣x+).②∵当0<x≤2时,S2=π(x2﹣x+)也成立,∴S=S1+S2=π•+π(x2﹣x+)=π(x﹣)2+π.∴当x=时,S=S1+S2取得最小值π.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为x=3;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.考点:二次函数综合题.分析:(1)首先把x=0,y=4代入y=a(x﹣1)(x﹣5),求出a的值是多少;然后求出B、C两点的坐标,确定出该抛物线的对称轴即可.首先过点N作NG∥y轴交AC于G,求出直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5);然后求出△CAN面积的最大值为多少,判断出是否存在一点N,使△NAC的面积为14即可.(3)首先判断出以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,判断出以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6一种情况,然后证明以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,并求出P的坐标是多少即可.解答:解:(1)把x=0,y=4代入y=a(x﹣1)(x﹣5),可得a×(﹣1)×(﹣5)=4,解得a=;∵B、C两点的坐标分别是(1,0)、(5,0),∴该抛物线的对称轴为x=(5+1)÷2=3,即该抛物线的对称轴为x=3.如图1,过点N作NG∥y轴交AC于G,,抛物线y=(x﹣1)(x﹣5)=x2+4,由点A(0,4)和点C(5,0),可得直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5),把x=t代入y=﹣x+4,可得G(t,﹣t+4),此时NG=﹣t+4﹣(t2﹣+4)=﹣t2+5t,∴S△ACN=S△ANG+S△CGN=×(﹣t2+5t)=﹣2+,∴当t=时,△CAN面积的最大值为:,∴存在一点N,使△NAC的面积为14.(3)如图2,,以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2,∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6一种情况.在Rt△AOM中,AM==5,∵抛物线的对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6,∴以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,即P(6,4).故答案为:、x=3.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力;此题还考查了三角形的面积的求法,以及数形结合方法的应用,要熟练掌握.。
安徽省合肥XX中学中考数学模拟试卷(二)一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)63.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为.10.分解因式:a3﹣4ab2=.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为.16.已知关于x的方程的解是负数,则n的取值范围为.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.26.如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.28.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27d(x)3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b安徽省合肥XX中学中考数学模拟试卷(二)参考答案与试题解析一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【点评】本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【考点】多边形内角与外角.【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°【考点】菱形的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】几何综合题.【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.【点评】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为4.5×105.故答案为:4.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.【考点】反比例函数的应用.【分析】首先利用待定系数法求得v与P的函数关系式,然后代入P求得v值即可.【解答】解:∵在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,∴设P=∵当V=200时,p=50,∴k=VP=200×50=10000,∴P=当P=25时,得v==400故答案为:400.【点评】本题考查了反比例函数的应用,解题的关键是利用待定系数法求得反比例函数的解析式.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1200(条).故答案为:1200.【点评】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.【考点】解直角三角形;等腰三角形的性质.【分析】根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.【解答】解:过点A作AD⊥BC于D,如图∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.【点评】本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.【考点】等腰梯形的性质.【分析】首先过点A作AE∥BC于点E,由在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,可得四边形ADCE是平行四边形,△ABE是等边三角形,继而求得AB=AD=CD=BE=CE=6.继而求得答案.【解答】解:过点A作AE∥BC于点E,∵在梯形ABCD中,AD∥BC,∴四边形ADCE是平行四边形,∴AD=EC,AE=CD,∵AB=CD,∴AB=AE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=BE,∵AB=AD,∴AD=AB=CD=BE=CE=BC=×12=6,∴梯形ABCD的周长为:AB+AD+CD+BC=30.故答案为:30.【点评】此题考查了等腰梯形的性质、等边三角形的判定与性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为5π.【考点】弧长的计算;翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.【点评】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.【考点】勾股定理;矩形的性质.【分析】设矩形一条边长为x,则另一条边长为x﹣2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.【解答】解:设矩形一条边长为x,则另一条边长为x﹣2,由勾股定理得,x2+(x﹣2)2=42,整理得,x2﹣2x﹣6=0,解得:x=1+或x=1﹣(不合题意,舍去),另一边为:﹣1,则矩形的面积为:(1+)(﹣1)=6.故答案为:6.【点评】本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.【考点】整式的混合运算—化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂的性质和特殊角的三角函数值代入计算即可;(2)利用整式的乘法和完全平方公式展开化简后代入求值即可.【解答】解(1)原式=4﹣2×+2=4+;(2)原式=2x2﹣x+2x﹣1﹣x2+6x﹣9=x2+7x﹣10,当x=﹣2时,原式=4﹣14﹣10=﹣20.【点评】本题考查了实数的运算、负整数指数幂及特殊角的三角函数值,属于基础题,应重点掌握.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.【解答】解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.【点评】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得该顾客最少可得20元购物券,最多可得80元购物券;(2)由(1)中的树状图即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.17.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【考点】条形统计图;加权平均数;中位数;方差.【专题】计算题.【分析】(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;(2)观察表格,成绩为7分处于中游略偏上,应为甲组的学生;(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组.【解答】解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,小明是甲组的学生;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.故答案为:(1)6;7.1;(2)甲【点评】此题考查了条形统计图,加权平均数,中位数,以及方差,弄清题意是解本题的关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;正方形的判定;相似三角形的判定与性质.【专题】证明题.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论;(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE,∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,∴△BCD≌△ACE,∴∠B=∠CAE=45°,∴∠BAE=45°+45°=90°,∴AB⊥AE;(2)∵BC2=AD•AB,而BC=AC,∴AC2=AD•AB,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴∠CDA=∠BCA=90°,而∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形,∵CD=CE,∴四边形ADCE为正方形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质、三角形全等、相似的判定与性质以及正方形的判定.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.【考点】分式方程的应用.【分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:﹣=8,解此方程即可求得答案.【解答】解:设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,则:﹣=8,解得:x=25,经检验,x=25是原分式方程的解.九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.【点评】本题考查分式方程的应用.注意分析题意,找到合适的等量关系是解决问题的关键.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)由BF是⊙O的切线,利用弦切角定理,可得∠1=∠C,又由∠ABF=∠ABC,可证得∠2=∠C,即可得AB=AC;(2)首先连接BD,在Rt△ABD中,解直角三角形求出AB的长度;然后在Rt△ABE中,解直角三角形求出AE的长度;最后利用DE=AD﹣AE求得结果.【解答】(1)证明:∵BF是⊙O的切线,∴∠1=∠C,∵∠ABF=∠ABC,即∠1=∠2,∴∠2=∠C,∴AB=AC;(2)解:如图,连接BD,在Rt△ADB中,∠BAD=90°,∵cos∠ADB=,∴BD====5,。
湖北省襄阳市谷城县中考数学模拟试卷(2)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,﹣3的倒数是()A.3 B.C.D.﹣32.(3分)下列运算正确的是()A.a2+a3=a5 B.(a+2b)2=a2+2ab+b2C.a6÷a3=a2D.(﹣2a3)2=4a63.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)下列各数中最小的数是()A.B.﹣1 C.D.06.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.7.(3分)5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人,如表是苏炳添近五次大赛参赛情况:则苏炳添这五次比赛成绩的众数和中位数分别为()比赛日期﹣8﹣4﹣5﹣21﹣9﹣28﹣5﹣20﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒)10.1910.0610.1010.069.99A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.10秒D.10.08秒,10.06秒8.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°9.(3分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是()A.B.C.D.10.(3分)在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.12.(3分)在﹣2、1、﹣3这三个数中,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是.13.(3分)若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间小时.14.(3分)如图,从热气球上看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为90m,则这栋楼高为(精确到0.1 m).15.(3分)四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为.16.(3分)如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为.三.解答题(共9小题,满分59分)17.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.18.(6分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?19.(6分)已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.20.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.22.(8分)如图,在△ABC中,AB=8,BC=5,AC=7,点D在△ABC的外接圆⊙O上,BC=BD,CD交AB于点E.(1)求证:△ABC∽△CBE.(2)求BE的长.23.(10分)重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)5052545658…x(年)12345…(1)求出z与x的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:,,)24.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E 在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.25.已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.湖北省襄阳市谷城县中考数学模拟试卷(2)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵相乘得1的两个数互为倒数,且﹣3×﹣=1,∴﹣3的倒数是﹣.故选:B.2.【解答】解:∵a2+a3≠a5,∴选项A不正确;∵(a+2b)2=a2+4ab+b2,∴选项B不正确;∵a6÷a3=a3,∴选项C不正确;∵(﹣2a3)2=4a6,∴选项D正确.故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选:A.5.【解答】解:根据实数比较大小的方法,可得﹣<﹣<﹣1<0,∴各数中最小的数是:﹣.故选:C.6.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.7.【解答】解:在这一组数据中10.06是出现次数最多的,故众数是10.06;而将这组数据从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19,处于中间位置的那个数是10.06,那么由中位数的定义可知,这组数据的中位数是10.06.故选:A.8.【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选:C.9.【解答】解:设⊙O的半径为r,A、∵⊙O是△ABC内切圆,=(a+b+c)•r=ab,∴S△ABC∴r=;B、如图,连接OD,则OD=OC=r,OA=b﹣r,∵AD是⊙O的切线,∴OD⊥AB,即∠AOD=∠C=90°,∴△ADO∽△ACB,∴OA:AB=OD:BC,即(b﹣r):c=r:a,解得:r=;C、连接OE,OD,∵AC与BC是⊙O的切线,∴OE⊥BC,OD⊥AC,∴∠OEB=∠ODC=∠C=90°,∴四边形ODCE是矩形,∵OD=OE,∴矩形ODCE是正方形,∴EC=OD=r,OE∥AC,∴OE:AC=BE:BC,∴r:b=(a﹣r):a,∴r=;D、解:设AC、BA、BC与⊙O的切点分别为D、F、E;连接OD、OE;∵AC、BE是⊙O的切线,∴∠ODC=∠OEC=∠DCE=90°;∴四边形ODCE是矩形;∵OD=OE,∴矩形ODCE是正方形;即OE=OD=CD=r,则AD=AF=b﹣r;连接OB,OF,由勾股定理得:BF2=OB2﹣OF2,BE2=OB2﹣OE2,∵OB=OB,OF=OE,∴BF=BE,则BA+AF=BC+CE,c+b﹣r=a+r,即r=.故选:C.10.【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.12.【解答】解:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的有2种情况,∴任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是:=.故答案为:.13.【解答】解:设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活x+小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,…,平均每人干活的时间也是小时,根据题设,得=10,解得x=16(小时);设共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得16﹣(y﹣1)t=16×,即(y﹣1)t=12,解此不定方程得,,,,,,即参加的人数y=2或3或4或5或7或13.故答案为:16.14.【解答】解:过点A作AD⊥BC,垂足为D.在Rt△ADC中,有CD=ADtan60°=AD=90,在Rt△ABD中,有BD=ADtan30°=AD=30.故这栋楼高BC为90+30=120≈207.8(m).故答案为:207.8m.15.【解答】解:当AC=AE时,以A为圆心,AC为半径作圆交直线AB于点E,当E在BA的延长线时,∴∠EAC=135°,∴∠BEC=22.5°,∴∠BCE=∠BCA+∠BEC=67.5°当E在AB的延长线时,∴∠EAC=45°,∴∠ACE=67.5°∴∠BCE=∠ACE﹣∠ACB=22.5°当AC=CE时,当以C为圆心AC为半径作圆交直线AB于点E ∴∠EAC=∠CEA=45°,∴∠BCE=45°,故答案为:67.5°或45°或22.5°16.【解答】解:连接BH、BH1,∵∠ACB=90°,∠CAB=30°,BC=2,∴AB=4,∴AC==2,在Rt△BHC中,CH=AC=,BC=2,根据勾股定理可得:BH=;∴S扫=S扇形BHH1﹣S扇形BOO1==π.三.解答题(共9小题,满分59分)17.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.18.【解答】解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,m2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1.19.【解答】解:(1)过P 作PC ⊥y 轴于C , ∵P (,n ), ∴OC=n ,PC=, ∵tan ∠BOP=, ∴n=4, ∴P (,4),设反比例函数的解析式为y=, ∴a=4,∴反比例函数的解析式为y=, ∴Q (4,),把P (,4),Q (4,)代入y=kx +b 中得,,∴,∴直线的函数表达式为y=﹣x +;(2)过Q 作QD ⊥y 轴于D ,则S △POQ =S 四边形PCDQ =×(+4)×(4﹣)=;(3)由图象知, 当﹣x +>时,或x <020.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.21.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.22.【解答】(1)证明:∵BC=BD,∴∠BCE=∠BDC.∵∠BDC=∠BAC,∴∠BCE=∠BAC.∵∠CBE=∠ABC,∴△ABC∽△CBE.(2)解:∵△ABC∽△CBE,∴=,即=,∴BE=.23.【解答】解:(1)由题意,z与x是一次函数关系,设z=kx+b(k≠0)把(1,50),(2,52)代入,得∴,∴z=2x+48.(2)当1≤x≤6时,设收取的租金为W1百万元,则W1=()•(2x+48)=∵对称轴∴当x=3时,W1最大=243(百万元)当7≤x≤10时,设收取的租金为W2百万元,则W2=()•(2x+48)=∵对称轴∴当x=7时,W2最大=(百万元)∵243>∴第3年收取的租金最多,最多为243百万元.(3)当x=6时,y=百万平方米=400万平方米当x=10时,y=百万平方米=350万平方米∵第6年可解决20万人住房问题,∴人均住房为:400÷20=20平方米.由题意:20×(1﹣1.35a%)×20×(1+a%)=350,设a%=m,化简为:54m2+14m﹣5=0,△=142﹣4×54×(﹣5)=1276,∴∵,∴m1=0.2,(不符题意,舍去),∴a%=0.2,∴a=20答:a的值为20.24.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.25.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P′是抛物线与y轴的交点,∴OP′=2,∴MP′==,∴P′在⊙M上,∴P′的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,当P″、A、C″在一条直线上时,周长最小,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.方法二:∵AB、P′C′是定值,∴A、B、P′、C′所构成的四边形的周长最短,只需AC′+BP′最小,①若抛物线向左平移,设平移t个单位,∴C′(﹣t,﹣),P″(﹣2﹣t,﹣2),∵四边形P″ABP′为平行四边形,∴AP″=BP′,AC′+BP′最短,即AC′+AP″最短,C′关于x轴的对称点为C″(﹣t,),C″,A,P″三点共线时,AC′+AP″最短,K AC′=K AP″,,∴t=.②若抛物线向右平移,同理可得t=﹣,∴将抛物线向左平移个单位时,A、B、P′、C′所构成的多边形周长最短.。
山东省济南市2023年各地区中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)②一.分式方程的应用(共1小题)1.(2023•市中区二模)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成,已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装18间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天400元,乙公司安装费每天200元,现需安装教室60间,若想尽快完成安装工作且安装总费用不超过7000元,则最多安排甲公司工作多少天?二.一元一次不等式的应用(共1小题)2.(2023•天桥区二模)“4G改变生活,5G改变社会”,不一样的5G手机给人们带来了全新的体验,某营业厅现有A,B两种型号的5G手机出售,售出1部A型、1部B型手机共获利600元,售出3部A型、2部B型手机共获利1400元.(1)求A,B两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A,B两种型号手机共20部,其中B型手机的数量不超过A型手机数量的,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.三.一元一次不等式组的整数解(共1小题)3.(2023•天桥区二模)解不等式,并写出它的所有整数解.四.反比例函数综合题(共3小题)4.(2023•历下区二模)如图,矩形ABCD的边BC在平面直角坐标系中的x轴上,矩形对角线交于点M(2,2),过点M的反比例函数与矩形的边AD交于点E (1,a),AE=3,直线EM交x射于点F.(1)求反比例函数的表达式和点B的坐标;(2)若点P为x轴上一点,当PM+PD最小时,求出点P的坐标;(3)若点Q为平面内任意一点,若以点B,E,F,Q为顶点的四边形是平行四边形,请直接写出点Q的坐标.5.(2023•长清区二模)如图,一次函数y=x+8的图象与反比例函数的图象交于A(a,6),B两点.(1)求此反比例函数的表达式及点B的坐标;(2)在y轴上存在点P,使得AP+BP的值最小,求AP+BP的最小值.(3)M为反比例函数图象上一点,N为x轴上一点,是否存在点M、N,使△MBN是以MN为底的等腰直角三角形?若存在,请求出M点坐标;若不存在,请说明理由.6.(2023•济南二模)矩形OACB中,OB=4,OA=3,分别以OB、OA为x轴、y轴,建立如图1所示的平面直角坐标系,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,试探究:随着点F的运动,∠EFC的正切值是否发生变化?若不变,求出这个值;若变化,请说明理由;(3)如图2,将△CEF沿EF折叠,点C恰好落在OB边上的点G处,求此时点F的坐标.五.二次函数综合题(共1小题)7.(2023•济南二模)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C,当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当点E、F重合时,P、Q 两点同时停止运动,设运动时间为t秒(t>0),问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形,若能,请求出t的值;若不能,请说明理由.六.切线的性质(共3小题)8.(2023•天桥区二模)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)若AD=8,,求线段BE的长.9.(2023•商河县二模)如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB延长线于点D,E为CD上一点,BE为⊙O的切线.(1)求证:BE=DE;(2)若AM=4,tan A=2,求BE的长.10.(2023•济南二模)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.七.解直角三角形的应用(共1小题)11.(2023•长清区二模)为给人们的生活带来方便,共享单车的租赁在我市正方兴未艾.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB =75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)(1)求AD的长;(2)求点E到AB的距离(结果保留整数).八.解直角三角形的应用-仰角俯角问题(共2小题)12.(2023•历城区二模)如图,有甲乙两座建筑物,从甲建筑物顶部A点处测得乙建筑物顶部D点的俯角α为45°,底部C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为8m,求甲建筑物的高度AB.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数)13.(2023•天桥区二模)如图,某建筑物AD楼顶立有高为6米的广告牌DE,小雪准备利用所学的三角函数知识估测此建筑物的高度.她从地面点B处沿坡度为i=3:4的斜坡BC 步行15米到达点C处,测得广告牌底部点D的仰角为45°,广告牌顶部点E的仰角为53°.(小雪的身高忽略不计,坡面的铅直高度与水平宽度的比称为坡度,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)求点C距离水平地面的高度;(2)求建筑物AD的高度.九.解直角三角形的应用-方向角问题(共1小题)14.(2023•济南二模)如图,某旅游景区为方便游客,修建了一条东西走向的栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西45°方向,在D处测得栈道另一端B位于北偏东32°方向.已知AC=60m,CD=46m,求栈道AB的长(结果保留整数).参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,≈1.414.一十.频数(率)分布直方图(共1小题)15.(2023•平阴县二模)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:75≤x<80,B组:80≤x<85,C 组:85≤x<90,D组:90≤x<95,E组:95≤x<100,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)频数分布直方图中m= ,所抽取学生成绩的中位数落在 组;(2)补全学生成绩频数分布直方图;(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?一十一.列表法与树状图法(共1小题)16.(2023•济南二模)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名生按要求都上交了一份征文,学校为了解选择各种征文主题的生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了 名学生的征文,并把条形统计图补充完整;(2)求扇形统计图中“爱国”所对应扇形的圆心角度数;(3)本次抽取的3份以“诚信”为主题的征文分别是甲、乙、丙的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求甲和乙征文同时被选中的概率.山东省济南市2023年各地区中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)②参考答案与试题解析一.分式方程的应用(共1小题)1.(2023•市中区二模)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成,已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装18间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天400元,乙公司安装费每天200元,现需安装教室60间,若想尽快完成安装工作且安装总费用不超过7000元,则最多安排甲公司工作多少天?【答案】(1)甲公司每天安装3间教室,乙公司每天安装2间教室;(2)10天.【解答】解:(1)设乙公司每天安装x间教室,则甲公司每天安装1.5x间教室,根据题意得:,解得:x=2,经检验,x=2是所列方程的解,且符合题意,则1.5x=1.5×2=3,答:甲公司每天安装3间教室,乙公司每天安装2间教室;(2)设安排甲公司工作y天,则乙公司工作天,根据题意得:400y+×200≤7000,解得:y≤10,答:最多安排甲公司工作10天.二.一元一次不等式的应用(共1小题)2.(2023•天桥区二模)“4G改变生活,5G改变社会”,不一样的5G手机给人们带来了全新的体验,某营业厅现有A,B两种型号的5G手机出售,售出1部A型、1部B型手机共获利600元,售出3部A型、2部B型手机共获利1400元.(1)求A,B两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A,B两种型号手机共20部,其中B型手机的数量不超过A型手机数量的,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.【答案】(1)A种型号手机每部利润是200元,B种型号手机每部利润是400元;(2)营业厅购进A种型号的手机12部,B种型号的手机8部时获得最大利润,最大利润是5600元.【解答】解:(1)设A种型号手机每部利润是a元,B种型号手机每部利润是b元,由题意得:,解得.答:A种型号手机每部利润是200元,B种型号手机每部利润是400元;(2)设购进A种型号的手机x部,则购进B种型号的手机(20﹣x)部,获得的利润为w 元,w=200x+400(20﹣x)=﹣200x+8000,∵B型手机的数量不超过A型手机数量的,∴20﹣x≤x,解得x≥12,∵w=﹣200x+8000,k=﹣200,∴w随x的增大而减小,∴当x=12时,w取得最大值,此时w=﹣2400+8000=5600,20﹣x=20﹣12=8.答:营业厅购进A种型号的手机12部,B种型号的手机8部时获得最大利润,最大利润是5600元.三.一元一次不等式组的整数解(共1小题)3.(2023•天桥区二模)解不等式,并写出它的所有整数解.【答案】2<x≤5,3,4,5.【解答】解:,解不等式①,得x≤5,解不等式②,得x>2,所以不等式组的解集是2<x≤5,所以不等式组的整数解是3,4,5.四.反比例函数综合题(共3小题)4.(2023•历下区二模)如图,矩形ABCD的边BC在平面直角坐标系中的x轴上,矩形对角线交于点M(2,2),过点M的反比例函数与矩形的边AD交于点E (1,a),AE=3,直线EM交x射于点F.(1)求反比例函数的表达式和点B的坐标;(2)若点P为x轴上一点,当PM+PD最小时,求出点P的坐标;(3)若点Q为平面内任意一点,若以点B,E,F,Q为顶点的四边形是平行四边形,请直接写出点Q的坐标.【答案】(1)y=,点B(﹣2,0);(2)点P(,0);(3)点Q的坐标为:(﹣4,4)或(0,﹣4)或(6,4).【解答】解:(1)将点M的坐标代入反比例函数表达式得:k=2×2=4,则反比例函数表达式为:y=,将点E的坐标代入上式得:a==4,即点E(1,4),∵AE=3,则点A(﹣2,4),则点B(﹣2,0);(2)作点M关于x轴的对称点N(2,﹣2),连接DN交x轴于点P,则点P为所求点,由矩形的性质知,点M是BD的中点,由中点坐标公式得,点D(6,4),由点D、N的坐标得,直线DN的表达式为:y=x﹣5,令y=x﹣5=0,则x=,则点P(,0);(3)由点E、M的坐标得,直线EM的表达式为:y=﹣2x+6,当y=﹣2x+6=0时,则x=3,即点F(3,0),设点Q(x,y),当BE是对角线时,由中点坐标公式得:,解得:,即点Q的坐标为:(﹣4,4);当BF或BQ是对角线时,由中点坐标公式得:,解得:,则点Q的坐标为:(0,﹣4)或(6,4);综上,点Q的坐标为:(﹣4,4)或(0,﹣4)或(6,4).5.(2023•长清区二模)如图,一次函数y=x+8的图象与反比例函数的图象交于A(a,6),B两点.(1)求此反比例函数的表达式及点B的坐标;(2)在y轴上存在点P,使得AP+BP的值最小,求AP+BP的最小值.(3)M为反比例函数图象上一点,N为x轴上一点,是否存在点M、N,使△MBN是以MN为底的等腰直角三角形?若存在,请求出M点坐标;若不存在,请说明理由.【答案】(1)y=﹣,B(﹣6,2);(2)4;(3)存在,M(﹣4,3)或.【解答】解:(1)将A(a,6)代入y=x+8得:6=a+8,解得:a=﹣2,所以,A(﹣2,6),将A(﹣2,6)代入得:k=xy=﹣12,即反比例函数的表达式为:y=﹣,联立,解得:,所以,B(﹣6,2);(2)作点A关于y轴的对称点A'(2,6),连接A'B交y轴于点P,此时AP+BP的周长最小,则AP+BP的最小值=;(3)存在,理由:设,N(n,0)当点M在点B的右侧时,如图:过点B作BF⊥x轴于点F,交过点M和x轴的平行线于点H,∵△MBN是以MN为底的等腰直角三角形,则∠MBN=90°,MB=NB,∴∠FBN+∠HBM=90°,∠HBM+∠HMB=90°,∴∠FBN=∠HMB,∵∠MHB=∠BFN=90°,MB=NB,∴△MHB≌△BFN(AAS),∴HM=BF,HB=FN,即a﹣(﹣6)=2﹣0且﹣﹣2=n﹣(﹣6),解得:a=﹣4,n=﹣5,即点M(﹣4,3);当M在B点左侧时,同理可得,∴M(﹣4,3)或.6.(2023•济南二模)矩形OACB中,OB=4,OA=3,分别以OB、OA为x轴、y轴,建立如图1所示的平面直角坐标系,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,试探究:随着点F的运动,∠EFC的正切值是否发生变化?若不变,求出这个值;若变化,请说明理由;(3)如图2,将△CEF沿EF折叠,点C恰好落在OB边上的点G处,求此时点F的坐标.【答案】(1)E(2,3);(2)tan∠EFC=;(3)F(4,).【解答】解:(1)∵OB=4,OA=3,∴点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),点F运动到边BC的中点时,点F(4,),将点F的坐标代入y=并解得:k=6,故反比例函数的表达式为:y=,当y=3时,x==2,故E(2,3),故答案为:(2,3);(2)∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC﹣BF=3﹣=,∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==;(3)如图,由(2)知,CF=,CE=,=,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=∵BC=OA=3,∴CF=3﹣BF,∵折叠,∴GF=CF=3﹣BF,由勾股定理得GF2=GB2+BF2,∴BF=,∴F(4,).五.二次函数综合题(共1小题)7.(2023•济南二模)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C,当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当点E、F重合时,P、Q 两点同时停止运动,设运动时间为t秒(t>0),问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形,若能,请求出t的值;若不能,请说明理由.【答案】(1)y=﹣x2+x;(2)m=4;(3)以A、E、F、Q四点为顶点构成的四边形能是平行四边形,t=4或6.【解答】解:(1)由题意得,c=0,将点(8,0)的坐标代入y=﹣x2+bx得:0=﹣82+8b,解得:b=,则二次函数的表达式为:y=﹣x2+x①;(2)设点A的坐标为:(x,﹣x2+x),则点B(8﹣x,﹣x2+x),∵矩形ABCD为正方形,则AB=CD,即8﹣x﹣x=﹣x2+x,解得:x=2(不合题意的值已舍去),当x=2时,m=y=﹣x2+x=4;(3)以A、E、F、Q四点为顶点构成的四边形能是平行四边形,理由:当m=2时,点A的坐标为:(2,4)、点C(6,0),由点A、C得,直线AC的表达式为:y=﹣x+6②,联立①②并解得:x=9,即当x=9时,P、Q停止运动.∵以A、E、F、Q四点为顶点构成的四边形,则EF=AQ,由点A的坐标知,x=2+t,当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,设点E(2+t,﹣t2+t+4),则点F(2+t,﹣t+4),则EF=﹣t2+t+4+t﹣4=﹣t2+t,当0<t≤4时,∵AQ=t,则t=﹣t2+t,解得:t=0(舍去)或4;当4<t≤7时,则AQ=8﹣t,则8﹣t=﹣t2+t,解得:t=4(舍去)或6;综上,t=4或6.六.切线的性质(共3小题)8.(2023•天桥区二模)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)若AD=8,,求线段BE的长.【答案】(1)证明见解析部分;(2)5.【解答】(1)证明:如图,∵CD为⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠1=∠3,∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平分∠DAB;(2)解:连接AE,如图,∵AB是⊙O的直径,∴∠ACB=90°,∠AEB=90°,∵CE平分∠ACB,∴∠ACE=∠BCE=45°,∴∠BAE=∠ABE=45°,∴△AEB为等腰直角三角形,∴BE=AB,∵∠D=∠ACB=90°,∠DAC=∠CAB,∴△ADC∽△ACB,∴=,∴=,∴AB=10,∴BE=×10=5.9.(2023•商河县二模)如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB延长线于点D,E为CD上一点,BE为⊙O的切线.(1)求证:BE=DE;(2)若AM=4,tan A=2,求BE的长.【答案】(1)证明见解析部分;(2).【解答】(1)证明:∵BE为⊙O的切线,∴OB⊥BE,∴∠ABC+∠EBD=90°,∵CD⊥AC,∴∠ACD=90°,∴∠A+∠D=90°,∵AC=BC,∴∠A=∠ABC,∴∠EBD=∠D,∴BE=DE;(2)解:连接BM,∵BC为⊙O的直径,∴BM⊥AC,∵AM=4,tan A==2,∴BM=2AM=8,∵AC=BC,∴CM=BC﹣AM=BC﹣4,∵BC2=BM2+CM2,∴BC2=82+(BC﹣4)2,∴BC=10,∴AC=BC=10,∵BM⊥AC,AC⊥CD,∴BM∥CD,∴∠MBC=∠BCE,∵∠BMC=∠CBM=90°,∴△BMC∽△CBE,∴,∴=,∴BE=,∴DE=BE=,故DE的长为.10.(2023•济南二模)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【答案】见试题解答内容【解答】解:(1)证明:连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.七.解直角三角形的应用(共1小题)11.(2023•长清区二模)为给人们的生活带来方便,共享单车的租赁在我市正方兴未艾.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB =75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)(1)求AD的长;(2)求点E到AB的距离(结果保留整数).【答案】(1)18cm;(2)66cm.【解答】解:(1)在Rt△ADF中,由勾股定理得;(2)过点E作EM⊥AB,垂足为M.AE=AD+CD+EC=18+35+15=68(cm),在Rt△AEM中,∵sin∠EAM=,∴EM=sin∠EAM•AE=sin75°×68≈0.97×68=65.96≈66(cm).答:点E到AB的距离为66cm.八.解直角三角形的应用-仰角俯角问题(共2小题)12.(2023•历城区二模)如图,有甲乙两座建筑物,从甲建筑物顶部A点处测得乙建筑物顶部D点的俯角α为45°,底部C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为8m,求甲建筑物的高度AB.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数)【答案】甲建筑物的高度AB约为21m.【解答】解:延长CD交AE于点F,由题意得:AB=CF,CF⊥AE,设AF=xm,在Rt△AFD中,∠FAD=45°,∴FD=AF•tan45°=x(m),在Rt△AFC中,∠FAC=58°,∴CF=AF•tan58°≈1.6x(m),∵CF﹣DF=CD,∴1.6x﹣x=8,解得:x=,∴AB=CF=1.6x≈21(m),∴甲建筑物的高度AB约为21m.13.(2023•天桥区二模)如图,某建筑物AD楼顶立有高为6米的广告牌DE,小雪准备利用所学的三角函数知识估测此建筑物的高度.她从地面点B处沿坡度为i=3:4的斜坡BC 步行15米到达点C处,测得广告牌底部点D的仰角为45°,广告牌顶部点E的仰角为53°.(小雪的身高忽略不计,坡面的铅直高度与水平宽度的比称为坡度,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)求点C距离水平地面的高度;(2)求建筑物AD的高度.【答案】(1)点C距离水平地面的高度为9米;(2)建筑物AD的高度约为29米.【解答】解:(1)过点C作CF⊥AB,垂足为F,由题意得:BC=15米,∵斜坡BC的坡度为i=3:4,∴=,∴设CF=3x米,则BF=4x米,在Rt△CFB中,BC===5x(米),∴5x=15,∴x=3,∴CF=3x=9(米),∴点C距离水平地面的高度为9米;(2)过点C作CG⊥AE,垂足为G,由题意得:AG=CF=9米,设CG=x米,在Rt△CDG中,∠DCG=45°,∴DG=CG•tan45°=x(米),在Rt△ECG中,∠ECG=53°,∴EG=CG•tan53°≈1.3x(米),∵EG﹣DG=ED,∴1.3x﹣x=6,解得:x=20,∴DG=20米,∴AD=AG+DG=9+20=29(米),∴建筑物AD的高度约为29米.九.解直角三角形的应用-方向角问题(共1小题)14.(2023•济南二模)如图,某旅游景区为方便游客,修建了一条东西走向的栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西45°方向,在D处测得栈道另一端B位于北偏东32°方向.已知AC=60m,CD=46m,求栈道AB的长(结果保留整数).参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,≈1.414.【答案】栈道AB的长度约为115m.【解答】解:如图,过C作CH⊥AB于点H,过点D作DG⊥AB于点G,∵AB∥CD,∴CH∥DG.∴四边形CHGD是矩形.∴CH=DG,HG=CD.在Rt△ACH中,∠ACH=45°,AC=60m,∴CH=AC•cos45°=60×=(m),AH=AC•sin45°=60×=(m).在Rt△BDG中,∠DBG=32°,DG=CH=m,∴BG=DG•tan32°=×tan32°.∴AB=AH+HG+BG≈+46+×0.62≈115(m).答:栈道AB的长度约为115m.一十.频数(率)分布直方图(共1小题)15.(2023•平阴县二模)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:75≤x<80,B组:80≤x<85,C 组:85≤x<90,D组:90≤x<95,E组:95≤x<100,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)频数分布直方图中m= 60 ,所抽取学生成绩的中位数落在 D 组;(2)补全学生成绩频数分布直方图;(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?【答案】(1)60,D;(2)见解答;(3)1680人.【解答】解:(1)本次调查一共随机抽取的学生总人数为:96÷24%=400(名),∴B组的人数为:m=400×15%=60(名),∴m=60,∵所抽取学生成绩的中位数是第200个和第201个成绩的平均数,20+96+60=176,∴所抽取学生成绩的中位数落在D组,故答案为:60,D;(2)E组的人数为:400﹣20﹣60﹣96﹣144=80(人),补全学生成绩频数分布直方图如下:(3)3000×=16800(人),答:估计该校成绩优秀的学生有1680人.一十一.列表法与树状图法(共1小题)16.(2023•济南二模)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名生按要求都上交了一份征文,学校为了解选择各种征文主题的生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了 50 名学生的征文,并把条形统计图补充完整;(2)求扇形统计图中“爱国”所对应扇形的圆心角度数;(3)本次抽取的3份以“诚信”为主题的征文分别是甲、乙、丙的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求甲和乙征文同时被选中的概率.【答案】(1)50,统计图见解答;(2)144°;(3).【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图和扇形统计图如图所示,故答案为:50;(2)“爱国”占,40%×360°=144°;(3)树状图如图所示:共有6种等可能的结果,小义和小玉同学的征文同时被选中的有2种情形,甲和乙同学的征文同时被选中的概率=.。
2023——2024学年度第二学期中段九年级数学学科素养测评卷一、选题题(本大题共10小题,每小题3分,共30分,每小题只有一个正确选项)1. 倒数的绝对值为( )A. B. C. 2021 D. 2. 我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是( ).A. B.C. D.3. 下列运算正确的是( ).A. B. C. D. 4. 用配方法解方程x 2-2x =2时,配方后正确的是( )A B. C. D. 5. 中央财政给某市投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金亿元,将“亿”用科学记数法表示应是( )A. B. C. D. 6. 最近,甘肃“天水麻辣烫”在网上爆火,吸号引了全国很多游客,为了给游客带大更便捷的体验,当地开通了天水火车站和天水南站两条“麻辣烫”公交专线,据介绍,想要成就一份香喷喷美味的麻辣烫,甘谷辣椒、秦安花椒、武山蔬菜、于擀粉缺一不可,为了了解外地游客对麻烫口味的喜爱程度,当地相关部门随机调查了部分游客的意见(A 不满意;B 一般;C 非常满意;D 较满意; E 不清楚.五者任选其一),根据调查情况进行统计,绘制了如图所示的不完整的条形统计图和不完整的扇形统计图.根据统计图中的信息,下列结论错误的是( )的.2021-2021-12021-120214322x x x ÷=()437x x =437x x x +=3412x x x ⋅=()213x +=()216x +=()213x -=()216x -=16921692120.169210⨯121.69210⨯111.69210⨯1016.9210⨯A. 选择“C 满意”的人数最多B. 抽样调查的样本容量是240C. 样本中“A 不满意”的百分比为D. 若周末到天水吃“麻辣烫”的人数为800人,则觉得口味“B 一般”的人数大约为160人7.分式方程的解为( )A. B. C. D. 8. 如图,是的直径,弦交于点,连接,.若,则______.9. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心的光线相交于点,点为焦点.若,则的度数为( )A B. C. D. 10. 如图,在中,,点P 为线段上的动点,以每秒1个单位长度的速度从点A 向点B 移动,到达点B 时停止.过点P 作于点M 、作于点N ,连接,线段的长度y 与点P 的运动时间t (秒)的函数关系如图所示,则函数图象最低点E 的坐标为.10%253x x =+4x =2x =0x =5x =AB O CD AB E AC AD 29BAC ∠=︒D ∠=O P F 1155,230∠=︒∠=︒3∠45︒50︒55︒60︒ABC 1068AB BC AC ===,,AB PM AC ⊥PN BC ⊥MN MN( )A. B. C. D. 二、填空题(本大题共6小题,每小题3分,共18分)11. 分解因式:_______.12. 关于的一元二次方程有两个不相等的实数根,则的取值范围是______.13. 把二次函数先向右平移2个单位,再向下平移3个单位后解析式为__________.14. 近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“米”,那么海平面以下10907米记作“________米”.15. 如图,矩形边,平分交于点,,.以点为圆心,为半径画弧,交于点,则图中阴影部分的面积是________(结果保留).16. 如图,已知正方形的边长为2,点E 是边的中点,点是对角线上的一个动点,则线段的最小值是 _______________.()55,246,5⎛⎫ ⎪⎝⎭3224,55⎛⎫ ⎪⎝⎭32,55⎛⎫ ⎪⎝⎭324x xy -x 2310kx x -+=k ()2231y x =+-9050+ABCD BE ABC ∠AD E 2AB =3AD =B BE BC F πABCD AD P BD PA PE +三、解答题(本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤)17. 计算:18. 解不等式组,并把解集数轴上表示出来.19. 化简:.20. 《九意算术》是我国吉代数学名著,也是东方数学的代表作之一,书中记载了这样一个回题:“今有勾五步,股十二步,问勾中容圆半径几何”译文:如图今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的圆(内切圆)的半径是多少步?(1)如图,已知,请你根据以下步骤完成作图过程:①作的平分线的平分线,两条射线交于点O :②过点O 作的垂线(提示:取点P ,使点P 和点O 位于的异侧,以O 为圆心,长为半径画弧,交于M 、N 两点,线段MN 的垂直平分线即为的垂线),交于点H ;③以点O 为圆心,为半径作,则即为的内切圆.(2)已知中,,求(1)中所作的的半径.21. 2023年9月23日至10月8日在杭州举办第19届亚运会,吉祥物为“宸宸、琮琮、莲莲”.我校举办了“第19届亚运会”知识竞赛活动,拟将一些吉祥物“宸宸、琮琮、莲莲”作为竞赛奖品.主持人在3张完全相同的卡片上分别写上“”后放入一个盒子里.在)2016tan 3012π-⎛⎫-︒++- ⎪⎝⎭()111233121x x x x +-⎧-≤⎪⎨⎪-<+⎩2344111x x x x x ⎛⎫-++-÷ ⎪--⎝⎭Rt ABC △BAC ∠AD ABC ∠,BE AB OF AB OP AB AB AB OH O O Rt ABC △Rt ABC △90512C BC AC ∠=︒==,,O A B C 、、A B C(1)某获奖者随机从盒子里抽取一张卡片恰好抽到“宸宸”的概率为 ;(2)某获奖者随机从盒子里抽取一张卡片后放回,再随机抽取一张卡片.请借助列表法或树状图求“两次抽取卡片上字母相同”的概率.22. 贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚为起点,沿途修建、两段长度相等的观光索道,最终到达山顶处,中途设计了一段与平行的观光平台为.索道与的夹角为,与水平线夹角为,两处的水平距离为,,垂足为点.(图中所有点都在同一平面内,点在同一水平线上)(1)求索道的长(结果精确到);(2)求水平距离的长(结果精确到).(参考数据:,,)四、解答题(本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤)23. 为了解学生的课外阅读情况,某校调研了七、八年级学生,分别从七、八年级中各随机抽取20名学生了解平均每天课外阅读时长(单位:小时),对调查结果整理、描述和分析,下面给出了部分信息.信息1.七年级20名学生平均每天课外阅读时长如下所示:3.0 2.8 2.6 2.5 2.4 2.3 2.0 2.0 2.0 1.71.6 1.6 1.4 1.2 1.0 1.0 0.8 0.6 0.3 0.2A A AB CD D AF BC 50m AB AF 15︒CD 45︒A B 、AE 576m DF AF ⊥F A E F 、、AB 1m AF 1m sin150.25︒≈cos150.96︒≈tan150.26︒≈ 1.41≈信息2.(1)八年级20名学生平均每天课外阅读时长的频数分布直方图如下图:(阅读时长用表示,数据分为六组:,,,,,).(2)八年级阅读时长范围为的数据如下:1.6 1.8 1.92.0 2.1 2.1 2.1 2.4;信息3.七、八年级抽取学生平均每天课外阅读时长统计表年级平均数中位数众数方差七年级1.651.650.63八年级 1.652.10.61根据以上信息,解答下列问题:(1)填空:__________,__________;请补全频数分布直方图;(2)该校八年级共1800人,估计八年级每天课外阅读不少于1.5小时的学生人数;(3)根据以上数据,你认为该校七、八年级在课外阅读方面哪个年级做得更好?请说明理由.(写出一条理由即可)24. 如图,一次函数与反比例函数的图象交于点,.x 00.5x ≤<0.5 1.0x ≤< 1.0 1.5x ≤< 1.5 2.0x ≤< 2.0 2.5x ≤<2.53x ≤≤ 1.5 2.5x ≤<a b =a b =()110y k x b k =+≠()220k y k x=≠(2,3)A (,1)B a -(1)求反比例函数和一次函数的解析式;(2)判断点是否在一次函数的图象上,并说明理由;(3)直接写出不等式的解集.25. 如图,四边形内接于,是的直径,,垂足为,平分.(1)求证:是的切线;(2)若,求和弧长.26. 已知正方形,E 为对角线上一点.【建立模型】(1)如图1,连接,,求证:;【模型应用】(2)如图2,F 是延长线上一点,,交于点G .的(2,1)P -1y k x b =+21k k x b x+…ABCD O BD O AE CD ⊥E DA BDE ∠AE O 1sin ,12DBC DE ∠==BD CD ABCD AC BE DE BE DE =DE FB BE ⊥EF AB①判断的形状并说明理由;②若G 为的中点,且,求的长.【模型迁移】(3)如图3,F 是延长线上一点,,交于点G ,,请写出与之间的数量关系,并说明理由.27. 如图1,在平面直角坐标系中,抛物线与y 轴交于点A ,与x 轴交于点E ,B (E 在B 的左侧).(1)如图2,抛物线的顶点为点Q ,求的面积;(2)如图3,过点A 作平行于x 轴,交抛物线于点C ,点P 为抛物线上的一点(点P 在上方),作平行于y 轴交于点D 、交于点F ,当点P 在何位置时,最大?求出最大值;(3)在(2)条件下,当最大时,将抛物线沿着射线平移,使得抛物线经过点C ,此时得到新抛物,点N 是原抛物线对称轴上一点,在新抛物线上是否存在一点M ,使以点A ,D ,M ,N 为顶点的四边形为平行四边形,若存在,请直接写出点M 的所有坐标,若不存在,请说明理由.FBG △AB 4AB =AF DE FB BE ⊥EF AB BE BF =GE DE 2246y x x =-++BEQ AC AC PD AB AC PD CF +PD CF +2246y x x =-++AB y 'y '。
2023届江苏省南京市中考数学阶段性适应模拟试题(二模)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.-2的倒数是A.12B.2C.-12D.-22.若不等式的解集为x<1,则以下数轴表示中正确的是3.关于,下列说法正确的是A.是整数B.是分数C.是有理数D.是无理数4.某街道组织居民进行核酸检测,其中五天的志愿者人数安排计划如下表由于检测地点变化,周三的志愿者人数实际有11位.与计划相比,这五天参与的志愿者人数A.平均数增加1,中位数增加5B.平均数增加5,中位数增加1C.平均数增加1,中位数增加1D.平均数增加5,中位数增加55.如图,在△ABC 中,点D 在AC 上,BD 平分∠ABC ,延长BA 到点E ,使得BE =BC ,连接DE 若∠ADE =38°,则∠ADB 的度数是A .68°B .69°C .71°D .72°6.函数y 1、y 2在同一平面直角坐标系中的图像如图所示,则在该平面直角坐标系中,函数y =y 1+y 2的大致图像是二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.若式子13x 在实数范围内有意义,则x 的取值范围是▲.8.新型冠状病毒奥密克戎的最大直径约为0.00000014m ,将0.00000014用科学记数法表示为▲.9.分解因式a 2b -b 的结果是▲.10.设x 1、x 2是方程x 2-mx =0的两个根,且x 1+x 2=-3,则m 的值是▲.11.+的结果是▲.12.如图,在矩形ABCD 中,AD =1,AB =√2,以点A 为圆心,AB 长为半径画弧交CD 于点E ,则阴影部分的面积为▲.13.若函数y 1=-x +6与y 2=kx(k 为常数,且k ≠0)的图像没有交点,则k 的值可以为▲.(写出一个满足条件的的值)14.在平面直角坐标系中,□ABCD 的顶点坐标为A (1,5),B (-1,1),C (3,2),则点D 的坐标是▲.15.如图,在矩形ABCD 中,E 、F 分别是AB 、CD 边的中点,G 为AD 边上的一点,将矩形沿BG翻折使得点A 落在EF 上.若AB =4,则BG 的长为▲.16.如图,在五边形ABCDE 中,∠A =∠B =∠C =90°,AE =2,CD =1,以DE 为直径的半圆分别与AB 、BC 相切于点F 、G ,则DE 的长为▲.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算221124m m m m +⎛⎫-÷ ⎪+-⎝⎭.18.(8分)解方程组35 31 x yx y+=⎧⎨+=-⎩.19.(8分)某中学为落实劳动教育,组织九年级学生进行了劳动技能竞赛,现随机抽取了部分同学的成绩(单位:分),得到如下相关信息.信息一:某校九年级部分学生劳动技能成绩人数统计表某校九年级部分学生劳动技能成绩人数扇形统计图信息二:抽取的这部分同学的劳动技能成绩的平均数是79.7分.信息三:"80≤x<90"这一组的具体成绩为:88、87、81、80、82、88、84、86.根据以上信息,回答下列问题:(1)a=▲,该校九年级部分学生劳动技能成绩的中位数是▲分;(2)"90≤x≤100"对应扇形的圆心角度数为▲°.(3)若将某同学的成绩由80分修改为89分,则抽取的这部分同学的成绩的方差变▲(填"大"或"小").(4)已知该校九年级共有900人,若将竞赛成绩不少于80分的学生评为"劳动达人",请你估计该校九年级学生被评为"劳动达人"的学生人数.20.(8分)2022年冬奥会和冬残奥会在我国举行.如图,冬奥会的会徽和吉祥物为"冬梦"、"冰墩墩",冬残奥会的会徽和吉祥物为"飞跃"、"雪容融",将4张正面分别印有以上图案的卡片随机分成甲、乙两组,每组2张.冬梦冰墩墩(1)"冰墩墩"在甲组的概率是▲;(2)求每组的2张卡片恰是会徽和对应吉祥物的概率.21.(8分)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC、BD交于点O,过点B作BE∥CD交AC于点E.(1)求证:四边形BCDE为菱形;(2)若AB=5,E为AC的中点,当BC的长为▲时,四边形BCDE为正方形.22.(8分)已知关于x的方程x2+2mx+n=0(m、n是常数)有两个相等的实数根.(1)求证:m2=n;(2)求证:m+n≥-1 423.(8分)如图,宝塔底座BC的高度为m,小明在D处测得底座最高点C的仰角为α,沿着DB方向前进n到达测量点E处,测得宝塔顶端A的仰角为β,求宝塔AB的高度(用含α,β,m,n的式子表示)24.(8分)已知一次函数y 1=ax +3a +2(a 为常数,a ≠0)和y 2=x +1,(1)当a =-1时,求两个函数图像的交点坐标;(2)不论a 为何值,y 1=ax +3a +2(a 为常数,a ≠0)的图像都经过一个定点,这个定点坐标是▲(3)若两个函数图像的交点在第三象限,结合图像,直接写出a 的取值范围.25.(8分)如图,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆.D 为BC 延长线上一点,AD 交⊙O于点E ,连接BE .(1)求证:∠D =∠ABE ;(2)若AB =5,BC =6①求⊙O 的半径r ;②DEDC的最大值为▲26.(8分)某农场有100亩土地对外出租,现有两种出租方式:方式一若每亩土地的年租金是400元,则100亩土地可以全部租出.每亩土地的年租金每增加5元土地少租出1亩.方式二每亩土地的年租金是600元(1)若选择方式一,当出租80亩土地时,每亩年租金是(2)当土地出租多少亩时,方式一与方式二的年总租金差最大?并求出最大值:(3)农场热心公益事业,若选择方式一,农场每租出1亩土地捐出a元(a>0)给慈善机构;若选择方式二,农场一次性捐款1800元给慈善机构.当租出的土地小于60亩时,方式一的年收入高于方式二的年收入,直接写出a的取值范围.(注:年收入=年总租金-捐款数)27.(9分)△ABC是一块三角形铁皮,如何按要求从中剪一个面积最大的圆?【初步认识】(1)请用无刻度直尺和圆规在图①中作出面积最大的圆(不写作法,保留作图痕迹)【继续探索】(2)若三角形铁皮上有一破损的孔点D(孔径大小忽略不计),要求剪一个面积最大的圆且圆面无破损,请用无刻度直尺和圆规在图②中作出满足要求的圆(保留作图痕迹,写出必要的文字说明).【问题解决】(3)如图③,若AB=AC=10,BC=12,E、F分别是AB、AC的中点,破损的孔点D位于EF上(孔径大小忽略不计).设DE=x,剪出面积最大的圆(圆面无破损)的半径为r,直接写出x和r的关系式及对应x的取值范围.答案及评分标准说明:本评分标准每题给岀了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.—、选择题(本大题共6小题,每小题2分,共12分)二、填空题(毎小题2分,共20分)7.x ≠38.1.4×10-79.b (a +l )(a -l )10.-312.4π13.答案不唯一,k >9即可14.(5,6)15.83316.10三、解答题(本大题共11小题,共88分)17.(本题7分)22214221(2)(2)2(1)2m m m m m m m m m m m m m m+-⎛⎫=-⨯ ⎪+++⎝⎭++-=⨯++-=解:原式18.解:由①得x =5-3y ③把③代入②得3(5-3y )+y =-1∴.y =2把y =2代入①得x =-1∴原方程组的解12x y =-⎧⎨=⎩19.(本题8分)解:(1)5,81.5分;(2)72,(3)大,(4)900×8420+=540(人)答:该校九年级学生被评为"劳动达人"的学生约有540人20.(本题8分)解:(1)1 2(2)分别把"冬梦"、"冰墩墩"记为A,a,"飞跃"、"雪容融"记为B,b.所有可能出现的结果有:(A,a)、(A,B)、(A,b)、(a,B)、(a,b)、(B,b)共6种,它们出现的可能性相同.所有的结果中,满足"每组的两张卡片恰是会徽和对应吉祥物"(记为事件M)的结果有2种,所以P(M)=21 63=21.(本题8分)(1)证明:∵AB=AD,CB=CD,∴.AC⊥BD,OB=OD.∵BE∥CD,∴∠EBO=∠CDO.又∠EOB=∠COD,∴△EOB≌△COD.∴EO=CO.,∴四边形BCDE为平行四边形.又EC⊥BD∴.口BCDE是菱形.(2)√5.22.(本题8分)(1)证明:方程有两个相等的实数根.b2-4ac=(2m)2-4n=0.∴4m2-4n=0,.∴.m2=n(3)证明:把n =m 2代入m +n 得m +n =m +m 2=m 2+m +14-14=(m +12)2-14≥-1423.(本题8分),tan tan tan tan ,tan tan tan tan tan Rt CDB CDB CBBD CB mBD mBE BD DE nRt AEB AEB ABBEm AB BE n αααααβββββα∠==∴==∴=-=-∠==∴=⋅=- 解:在中在中答:宝塔AB 的高度为tan tan tan m n ββα-24.(本题8分)(1)当a =-1时,y 1=-x -1.y 1=y 2,得-x -1=x +1.解得x =-1.当x =-1时,y 1=-(-1)-1=0.两个函数图像的交点坐标为(-1,0).(2)(-3,2).………(3)a <-1或a >1.25.(本题8分)(1)证明:,AB =AC ,∴ AB AC =.∴.∠AEB =∠ABC 又∠DAB =∠BAE ,∴.△DAB ∽△BAE .∴∠D =∠ABE(2)①连接AO 并延长交BC 于F ,连接OC ,∵AB =AC ,点O 为圆心,∴.BF =CF =3,AF ⊥BC .在Rt △AFC 中,AF =4.在Rt △OFC 中,由勾股定理得:OF 2+CF 2=OC 2,即32+(4-r )2=r 2∴解得r =258②5426.(本题8分)(1)500.(2)设出租的土地为x 亩,方式一年总租金为y 1元.根据题意,得y 1=[400+5(100-x )]·x =-5x 2+900x 方式二年总租金为y 2元.根据题意,得y 2=600x y 1-y 2=-5x 2+900x -600x =-5(x -30)2+4500∴.当x =30时,y 1-y 2有最大值4500,…即年总租金差的最大值为4500元.(3)设方式一的年收入为w 1元,则w 1=-5x 2+900x -ax .(x <60).方式二的年收入为w 2元,则w 2=600x -1800.(x <60).当x =60时,令w 1=w 2,解得a =30.结合图像可以知道0<a ≤30.…27.(本题9分)(1)证明:如图,△ABC 的内切圆⊙O 即为所求.(角平分线,垂线,圆各1分)(2)①作∠ABC 的角平分线BE ,在BE 在取一点O 1,作⊙O 1,与AB 、BC 均相切;②连接BD 交⊙O 1于点D 1,连接D 1O 1,过D 作DO ∥D 1O 1交BE 于点O ;③以O 为圆心,DO 为半径作⊙O .⊙O 即为所求.…(3)情况一:如图,当0≤x ≤3-或3+x ≤6时,r =3;情况二:如图,当3-x ≤3时,x =9-2r -情况三:如图,当3<x ≤3+时,x =2r +。
初三数学中考模拟试题时间:120分钟 分数:120分一、 选择题:(每小题3分,共36分)1. 如果33-=-b a ,那么代数式b a 35+-的值是( ).A .0B .2C .5D .82.“a 是实数, ||0a ≥”这一事件是 ( ).A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件 3. 下列美丽图案,既是轴对称图形又是中心对称图形的个数有( ).A .1个B .2个C .3个D .4个4.据报道,上海世博会上中国馆以其独特的造型吸引了世人的目光.在会展期间,参观中国馆的人次数达到14 900 000,此数用科学记数法表示是( ). A .61049.1⨯ B .810149.0⨯ C .7109.14⨯ D .71049.1⨯5.如图,一个小球由地面沿着坡度i =1∶2的坡面向上前进了10 m , 此时小球距离地面的高度为( ).A .5 mB .25mC .45mD .310m 6.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( ). A . 20° B . 40° C . 60° D . 80° 7.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,(第5题)(第4题)(第6题)图且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( ). A . y 3<y 1<y 2B . y 2<y 1<y 3C . y 1<y 2<y 3D . y 3<y 2<y 18.函数y ax a =-与a y x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .9.如图,将△ABC 绕点C (0,-1)旋转180°得到△A ′B ′C ,设点A 的坐标为),(b a 则点A ′的坐标为( ).A .),(b a --B .)1.(---b aC .)1,(+--b aD .)2,(---b a(第10题)10.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ). A .6个B .7个C .8个D .9个11.如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为( ). A. 48π B. 24π C. 12π D. 6π12.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ',则图中阴影部分的面积是 ( ).A .6πB .5πC .4πD .3πx()(第11题)二、填空题: (每小题3分,共15分)13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为______________.14.如图, 已知△ABC ,6==BC AC ,︒=∠90C .O 是AB 的中点,⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于点G . 则CG = 。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、填空题(每小题3分,共24分)1.如果|a |+a =0,则22(1)a a -+=______.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002的值为______.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.5.如图,某涵洞截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 610.在一次汽车性能测试中,型号不同甲、乙两辆汽车同时从A 地出发,匀速向距离560千米的B 地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A 地的距离s (千米)与行驶时间t (小时)的函数关系对应的图象大致是( )A B.C. D.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是( )A. 外离B. 相交C. 外切D. 内切12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( ) A. 312 B. 1 3 D. 21213.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为()A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米三、解答题(15~19每小题8分,共40分)15.解方程21023x xx x-+=-.16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.17.声音在空气中传播的速度y(米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.气温x/摄氏度0 5 10 15 20音速y/(米/秒) 331 334 337 340 343(1)求y 与x之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值是多少?21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)条件下,当BD为何值时,(S2-S1)最大?答案与解析一、填空题(每小题3分,共24分)1.如果|a |+a =0______.【答案】-2a +1【解析】【分析】由0a a +=得到0,a ≤ 根据0a ≤ 【详解】解:0,a a +=,a a ∴=-0,a ∴≤10,a ∴-<1112.a a a a a =-+=--=-故答案为:12.a -a =是解题的关键.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002值为______.【答案】2003【解析】【分析】由210x x --=得到221,1,x x x x -==+把原多项式降次处理,进而可得答案.【详解】解:210,x x --=221,1,x x x x ∴-==+32222002(1)22002x x x x x ∴-++=-+++22002120022003.x x =-+=+=故答案为:2003.【点睛】本题考查的是代数式的值,把待求值的代数式进行降次处理是解题的关键.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.【答案】1 (答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可. 【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限,200m m -<⎧⎨>⎩解得:02m <<m 值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.【答案】19.6【解析】【分析】由题意可知,在直角三角形中,已知角和邻边,要求出对边,直接用正切即可解答.【详解】解:根据题意可得:旗杆高度为1.6+18×tan45°=1.6+18=19.6(m ).故答案为:19.6.【点睛】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.如图,某涵洞的截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.【答案】y =-154x 2 【解析】 【详解】解:设涵洞所在抛物线的解析式为y=ax 2,由题意可知点B 坐标为(0.8,-2.4),代入得-2.4=a×0.82 解得a=-154, 所以y=-154x 2 故答案为:y =-154x 2 【点睛】本题考查二次函数的应用.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.【答案】80°【解析】【分析】根据题意画出图形,利用切线的性质与等腰三角形的性质可得答案.【详解】解:如图,AB 为O 的切线,切点为,40,DAB ∠=︒,OA AB ∴⊥90,OAB ∴∠=︒50,OAD ∴∠=︒,OA OD =50,OAD ODA ∴∠=∠=︒80.AOD ∴∠=︒故答案为:80°.【点睛】本题考查了切线的性质定理,等腰三角形的性质,掌握以上知识点是解题的关键.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.【答案】12【解析】分析】 过'C 作''C H AB ⊥,利用轴对称的性质求解''',,,BC AB AC 利用勾股定理求解',C H 由''''''A B C ABB AB C S S S ∆∆∆=-可得答案.【详解】解:如图:过'C 作''C H AB ⊥,结合题意知:'AC H ∆是等腰直角三角形,由对折知:'1,BC BC ==Rt△ABC 中,腰AC =BC =1, 2,AB ∴='21,AC ∴=-'22(21)1,22C H ∴=-=- ''12212(1),2222AC B S ∆∴=⨯-=- 由对折知:'2,AB AB =='1221,22ABB S ∆∴=⨯⨯= ''''''2211(),2222A B C ABB AB C S S S ∆∆∆∴=-=--= 故答案为:12.【点睛】本题考查的是轴对称的性质,勾股定理,图形面积的计算,掌握轴对称的性质是解题的关键. 8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.【答案】24°【解析】【分析】连接2BO ,得到等腰21O O B ∆,结合已知条件求解21O O B ∠,从而可得答案.【详解】解:如图,连接2,BOAB 的度数是48°, 248,AO B ∴∠=︒212,O O O B =212124,O O B O BO ∴∠=∠=︒AC ∴的度数是24︒,故答案是:24.︒【点睛】本题考查的是等腰三角形的性质,弧的度数等于它所对的圆心角的度数,掌握以上知识点是解题的关键.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 6【答案】D【解析】【分析】本题主要考查了多边形内角与外角.n 边形的内角和可以表示成(n-2)•180°,外角和为360°,根据题意列方程求解.【详解】解:设多边形的边数为n ,依题意,得(n-2)•180°=2×360°,解得n=6,故选D【点睛】错因分析较易题.失分原因:没有掌握多边形的内角和与外角和公式.逆袭突破多边形的性质,详见逆袭必备P24必备23.10.在一次汽车性能测试中,型号不同的甲、乙两辆汽车同时从A地出发,匀速向距离560千米的B地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A地的距离s(千米)与行驶时间t(小时)的函数关系对应的图象大致是()A. B.C. D.【答案】C【解析】【分析】由甲乙列车同时出发,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,从而可得答案.【详解】解:因为甲乙列车同时出发,所以两个图像都经过原点,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,而图表示乙车还没有到达地,不符合题意,所以正确答案为C.故选C.【点睛】本题考查的是实际问题中的一次函数图像问题,掌握自变量的范围对函数图像的影响,以及路程与时间图像中,速度的大小对图像的影响,掌握以上知识是解题的关键.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是()A. 外离B. 相交C. 外切D. 内切【答案】C【解析】【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).【详解】解:∵两圆直径分别为4和6,∴两圆的半径分别为2和3.∵两圆的圆心坐标分别为(3,0)、(0,4),∴根据勾股定理,得两圆的圆心距离为5.∵2+3=5,即两圆圆心距离等于两圆半径之和, ∴这两圆的位置关系是是外切.故选C .【点睛】本题考查勾股定理,两圆的位置关系.12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( )B. 1 【答案】C【解析】解:∠B =90°﹣∠A =90°﹣30°=60°,则cos A +sin B =22+.故选C . 13.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】有三种情况:当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点;当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点;当OP=AP 时,根据线段垂直平分线的性质作OA 的垂直平分线,交x 轴于点P ,综上即可得答案.【详解】如图,当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点(P 2、P 3),当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点(P 1),当OP=AP 时,作OA 的垂直平分线,交x 轴于一点(P 4).∴符合使△AOP 为等腰三角形的点P 有4个,故选A.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为( )A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米【答案】C【解析】【分析】 科学记数法的形式是:10n a ⨯ ,其中110,a ≤<为整数,所以4,a =,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数,本题小数点往右移动到4的后面,所以10.n =-【详解】解:0.4纳米910810.40.4104101010--=⨯=⨯=⨯⨯ 米. 故选C .【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响. 三、解答题(15~19每小题8分,共40分)15.解方程21023x x x x -+=-. 【答案】x 1=-1,x 2=3.【解析】【分析】去分母把方程化为整式方程,得到整式方程的解,检验可得答案.【详解】解:21023x x x x -+=- 223(2)310(2),x x x x ∴-+=-2230,x x ∴--=(3)(1)0,x x ∴-+=121, 3.x x ∴=-=经检验:121,3x x =-=都是原方程的根,所以原方程的根是121,3x x =-=.【点睛】本题考查的是分式方程的解法,掌握把分式方程化为整式方程再求解,并检验是解题关键. 16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.【答案】三班.【解析】【分析】由条形统计图得到各班的男女学生人数,由每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,计算剩下的男生与女生种的数的数量即可得到答案.【详解】解:由图可知一班 二班 三班 四班 女生数(人)22 18 13 15 男生数(人)18 20 22 21因为每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,比较结果不变,每个班减去13个女生和18个男生,一班余下女生9人,可植树35×9=525(棵).二班余下女生5人和男生2人,可植树35×5+53×2=613(棵).三班余下男生4人,可植树53×4=623(棵).四班余下女生2人和男生3人,可植树35×2+53×3=615(棵).所以种树最多的班级是三班. 【点睛】本题考查的是条形统计图的应用,掌握条形统计图的特点是解题的关键.17.声音在空气中传播的速度y (米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.(1)求y 与 x 之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?【答案】(1)33315y x =+(2)1721 【解析】【分析】(1)由表中的数据可知,温度每升高5℃,声速就提高3米/秒,所以y 是x 的一次函数,利用待定系数法即可求出该函数解析式;(2)令x=22,求出此时的声速y ,然后利用路程=速度×时间即可求出该距离.【详解】(1)根据表中数据可知y 与x 成一次函数关系,故设y=kx+b ,取两点(0,331),(5,334)代入关系式得 3313345b k b =⎧⎨=+⎩,解得35331k b ⎧=⎪⎨⎪=⎩, ∴函数关系式为y=35x+331; (2)把x=22代入y=35x+331, 得y=35×22+331=344.2, 334.2×5=1721m ,∵光速非常快,传播时间可以忽略,故此人与燃放烟花的所在地相距约1721m .【点睛】本题考查了一次函数的应用,解题的关键是仔细分析表中的数据,利用待定系数法求出函数解析式.18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).【答案】x 的值约取3.9米.【解析】【分析】如图,设计成下图所示,设设花坛的边与空地之间的距离为米,由题意列出方程求解即可.【详解】解:设计成如下图方案.设花坛的边与空地之间的距离为米,由题意可列方程: (502)30(5024)(302),2x x -⨯---=227900,x x ∴-+= 解得: 123.93,2.1x x ≈≈(舍去),x 的值约取3.9米.花坛四周与空地的距离,中间与道路的距离都约为3.9米.【点睛】本题考查轴对称图形与中心对称图形,考查了一元二次方程的解法,掌握以上知识是解题的关键. 19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【答案】(1)证明见解析;(2)对谁成立,证明见解析【解析】【分析】(1)利用圆周角、弦切角间的关系证明△APF ∽△BPE ,根据相似三角形的性质证明 PA •PB=PE •PF 成立.(2)当点P 在线段BA 的延长线上时,(1)的结论仍成立.先证明∠AFP=∠PBE ,再由∠BPE=∠FPA ,可得△PAF ∽△PEB ,根据成比例线段证明 PA •PB=PE •PF 成立.【详解】证明:(1) 如图1,连接,BO 延长BO 与圆交于,H∵EB 为⊙O 的切线,90,ABE HBA ∴∠+∠=︒ BH 为⊙O 的直径,90,BAH ∴∠=︒90,AHB ABH ∴∠+∠=︒,AHB ACB ∠=∠90,ACB ABH ∴∠+∠=︒∴∠ACB=∠ABE ,∵EF ∥BC ,∴∠AFP=∠ACB ,故∠AFP=∠ABE .∠APF=∠EPB ,∴△APF ∽△BPE , ,PA PF PE PB∴= ∴PA•PB=PE•PF .(2)结论成立,理由如下:∵EB 为⊙O 的切线,结合(1)问:∴∠ACB=∠ABT ,∵EF ∥BC ,∴∠ACB =∠AFP ,,ACB ABT AFP ∴∠=∠=∠∴∠AFP=∠PBE .∠BPE=∠FPA ,△PAF ∽△PEB ,,PA PF PE PB ∴= ∴PA•PB=PE•PF .当点P 在线段BA 的延长线上时,(1)的结论仍成立.【点睛】本题主要考查圆的相交弦及切线的性质,用三角形全等证明线段间的关系,体现了数形结合的数学思想,属于中档题.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 的算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值多少?【答案】(1)V =4x (15-x )2(0<x <15);(2)当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【解析】【分析】(1)由剪去的小正方形边长为x cm ,表示纸盒的底边与高,利用容积公式得到答案,(2)利用3a b c ++3abc 【详解】解:(1) 设剪去的小正方形边长为x cm ,纸盒底边为(302),x cm -纸盒的高是,xcmV =x (30-2x )(30-2x )=4x (15-x )2(0<x <15),(2) V =332(15)(15)22(15)(15)2210,3x x x x x x +-+-⎡⎤••--≤=⨯⎢⎥⎣⎦这时,当2x =15-x ,即x =5时取等号.∴ 当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【点睛】本题考查的是阅读题型,掌握题干给的信息解决实际问题,同时考查了列函数关系式,求函数的最大值等问题,知识迁移能力是解题关键.21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)的条件下,当BD 为何值时,(S 2-S 1)最大?【答案】(1)证明见解析;(2)S 2-S 1=-2πx 2+4x ;(3)BD 244ππ+. 【解析】【分析】(1)由抛物线的顶点在轴上,得到0,∆= 从而可得结论.(2)利用a 是z 2+z -20=0的根,求解的值,再利用S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆,从而可得答案,(3)由(2)的函数关系式求解(21S S -)最大时,,a b c ,利用直径所对的圆周角是直角,得到,BCD BAC ∆∆利用相似三角形的性质可得答案. 【详解】(1)因为二次函数y =12(a +c )x 2-bx +12(c -a )的顶点在x 轴上, ∴ Δ=0,即:b 2-4×12(a +c )×12(c -a )=0, ∴ c 2=a 2+b 2,得∠ACB =90°.(2)∵ z 2+z -20=0.∴ z 1=-5,z 2=4,∵ a >0,得a =4.设b =AC =2x ,有S △ABC =12AC ·BC =4x ,S 半圆=12π x 2∴ S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆=-2πx 2+4x (3) S 2-S 1=-2π(x -4π)2+8π, ∴ 当x =4π时,(S 2-S 1)有最大值8π. 这时,b =8π,a =4,c =244ππ+, 如图,连接,CDAC 为圆的直径,90,90,ADC CDB ∴∠=︒∠=︒90,ACB ∠=︒,BCD BAC ∴∆∆,BC BD BA BC∴= BD =22244BC a BA c ππ+==. 当BD 为22444ππ++时,(S 2-S 1)最大. 【点睛】本题考查二次函数与轴只有一个交点的性质,考查一元二次方程的解法,二次函数的最值,三角形相似的判定与性质,直径所对的圆周角是直角等知识点,掌握相关的知识点是解题的关键.。
全新中考数学模拟试题二题 号 一 二 三 四 五 六 总 分 得 分一、选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是 【 】 A. 21-B. 21C. -2D. 22.8月7日,甘南藏族自治州舟曲县发生特大山洪泥石流地质灾害,造成重大的经济损失。
就房屋财产损失而言,总面积超过4.7万平方米,经济损失高达21000元人民币。
21000用科学记数法应记为 【 】 A. 72.1210⨯ B. 82.1210⨯ C. 92.1210⨯ D. 90.21210⨯3. 下列运算正确的是 【 】A .22a a a =⋅B .33()ab ab = C .632)(a a = D .5210a a a =÷4.如图,直线l 1∥l 2,则α为 【 】 A .150° B .140° C .130° D .120°5.二元一次方程组20x y x y +=⎧⎨-=⎩的解是 【 】A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩6..如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边 OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为 (6-,4),则△AOC 的面积为 【 】A .12B .9C .6D .47.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足22(20)1558y x =--+,由于某种原因,价格只能15≤x ≤22,那么一周可获得最大利润是 【 】 A .20. B. 1508 C. 1550 D. 15588.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的 【 】第4题第6题A. B. C. D.二、填空题 (本大题共8小题,每小题3分,共24分) 9.计算的结果是 。
10. (在下面两题中任选一题完成填空,若两题都做按第一小题计分) (Ⅰ). 不等式642-<x x 的解集为 .(Ⅱ). 用计算器计算:3sin25°= (保留三个有效数字).在直角坐标系中,点P (-3,2)关于X 轴对称的点Q 的坐标是 . 11. 因式分解:224a a -= . 12.已知方程2520x x -+=的两个解分别为1x 、2x , 则1212x x x x +-⋅的值为 .13.如图,现有一个圆心角为90°,半径为16cm 的扇形纸片, 用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥 底面圆的半径为 cm.14.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线2y ax =经过C 、D 两点,则图中阴影部分的面积是 cm 2.15.将正方形纸片ABCD 按下图所示折叠, 那么图中∠HAB 的度数是 .16.如图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是 (多填或错填得0分,少填酌情给分)818-A CBDPOxy第13题第8题第12题第15题三、(本大题共3个小题,第17小题6分,第18、19小题各7分,共20分) 17.计算: 60tan 342010)31(01--+18.解分式方程 212423=---x x x19.有3张背面相同的纸牌A ,B ,C ,其正面分别画有三个不同的几何图形(如图).将这3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张. (1)求出两次摸牌的所有等可能结果(用树状图或列表法求解,纸牌可用A ,B ,C 表示); (2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.四、(本大题共2个小题,每小题各8分,共16分)20. 统计上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.上海世博会前20天日参观人数的频数分布表组别(万人) 组中值(万人) 频数 频率 7.5~14.5 11 5 0.25 14.5~21.5 6 0.30 21.5~28.5 25 0.3028.5~35.5 32 3A 正三角B 圆C 平行四边形 第19题21.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?五、(本大题共2个小题,第22小题8分,第23小题9分,共17分)22. 如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km . (1)判断AB 、AE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈ 1.73, sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)23. 如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:AC ·CD=PC ·BC ;(2)当点P 运动到AB 弧中点时,求CD 的长;(3)当点P 运动到什么位置时,△PCD 的面积最大?并求出这个最大面积S 。
第23题ABEF QP第22题六、(本大题共2个小题,第24小题9分,第25小题10分,共19分)24. 如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的, 当四边形ABCD 是菱形时,试判断点C 和点D 是 否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个 动点,过点M 作MN 平行于y 轴交CD 于点N .设点M的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系 式,并求l 取最大值时,点M 的坐标.25. (1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点.求证:△ABM 与△ABN 的面积相等.②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.ABDCMN图 ①第24题(2)结论应用:如图③,抛物线c bx ax y ++=2的顶点为C (1,4),交x 轴于点A (3,0),交y 轴于点D .试探究在抛物线c bx ax y ++=2上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等? 若存在,请求出此时点E 的坐标,若不存在,请说明理由.参考答案:一、1.A 2. B 3. C 4.D 5.C 6.B 7.D 8.A二、9.2 10. (Ⅰ)3x > (Ⅱ)0.845 11.2(2)a a - 12.3 13.4 14.98π 15.15 16.①②③ 三、17.233+ 18.53x = 19.解:(1)9种(图略) (2)94 四、20. (1)C图 ②A BDMF EG图 ③A备用图 CDBO xy(2)日参观人数不低于22万有9天,所占百分比为45%.(3)世博会前20天的平均每天参观人数约为2040920332625618511=+++⨯⨯⨯⨯=20.45(万人). 20.45×184=3762.8(万人)∴估计上海世博会参观的总人数约为3762.8万人.21.解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得: 0.50.8(6000)3600x x +-=,解这个方程,得:4000x =∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.(2)由题意得:0.50.8(6000)4200x x +-≤,解这个不等式,得: 2000x ≥,即购买甲种鱼苗应不少于2000尾.(3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+,由题意,有909593(6000)6000100100100x x +-≥⨯,解得:2400x ≤,在0.34800y x =-+中, ∵0.30-<,∴y 随x 的增大而减少 .∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.五、22.(1)相等,证明:∵∠BEQ =30°,∠BFQ =60°,∴∠EBF =30°,∴EF =BF . 又∵∠AFP =60°,∴∠BFA =60°.在△AEF 与△ABF 中,EF =BF ,∠AFE =∠AFB ,AF =AF ,∴△AEF ≌△ABF ,∴AB =AE . (2)作AH ⊥PQ ,垂足为H ,设AE =x ,则AH =x sin74°,HE =x cos74°,HF =x cos74°+1.Rt △AHF 中,AH =HF ·tan60°,∴x cos74°=(x cos74°+1)·tan60°,即0.96x =(0.28x +1)×1.73,∴x ≈3.6,即AB ≈3.6 km .答:略.23.(1)由题意,AB 是⊙O 的直径;∴∠ACB =90。