高压电力电缆故障原因和试验方法
- 格式:pdf
- 大小:272.89 KB
- 文档页数:2
10kV电力电缆试验报告引言电力电缆是传输电能的重要设备之一,其质量和性能直接关系到电力系统的安全稳定运行。
为了评估10kV电力电缆的质量和可靠性,本文对其进行了一系列试验,包括绝缘电阻试验、电压持续试验、局部放电试验等。
试验目的1.评估10kV电力电缆的绝缘性能;2.检测电缆在额定电压下的耐压能力;3.检测电缆是否存在局部放电现象。
试验设备和方法1.试验设备:电力电缆、绝缘电阻测试仪、耐压测试仪、局部放电检测仪;2.试验方法:–绝缘电阻试验:使用绝缘电阻测试仪对电缆绝缘进行测试,记录绝缘电阻值;–电压持续试验:使用耐压测试仪对电缆施加额定电压,观察电缆是否能够正常工作;–局部放电试验:使用局部放电检测仪对电缆进行检测,观察是否存在局部放电现象。
试验结果和分析1.绝缘电阻试验结果:经过绝缘电阻试验,10kV电力电缆的绝缘电阻为X兆欧姆,符合规定的标准范围。
说明电缆的绝缘性能良好。
2.电压持续试验结果:经过电压持续试验,电缆在额定电压下能够正常工作,没有发生电弧短路等故障,说明电缆的耐压能力良好。
3.局部放电试验结果:经过局部放电试验检测,未发现电缆存在局部放电现象,表明电缆制造过程中没有产生重大缺陷。
结论根据以上试验结果和分析,可以得出以下结论: 1. 10kV电力电缆的绝缘电阻符合要求,绝缘性能良好; 2. 电缆在额定电压下能够正常工作,耐压能力良好; 3. 电缆制造过程中没有产生重大缺陷,不存在局部放电现象。
建议基于以上结论,建议在电力系统中广泛使用10kV电力电缆,以确保电力系统的安全稳定运行。
参考文献[1] 电力电缆试验技术标准,XXXX标准出版社。
高压电缆故障分析及检测方法研究秘晓梦董政杨碧天摘要:21世纪以来,国内经济社会呈现速增态势,综合国力显著提升,国内国际皆取得了辉煌成就,这无不与中国电力、能源事业的科学、健康发展密切相关。
城市现代化进程的加速发展,对城市的供电系统也提出了更高的要求。
电力能源从发电、输电、变电、配电直至用户侧,电力电缆的作用举足轻重。
详细分析高压电缆故障原因,对给出高压电缆故障防范措施具有指导意义。
归纳高压电缆故障类别,研究故障检测方法,对电缆运行维护具有指导性意义。
关键词:高压电缆;故障;检测方法一、高压电缆产生故障原因(一)电缆自身的问题材料本身具有缺陷会严重影响电缆的质量,造成高压下电缆出现故障。
一般情况下,材料的缺陷主要分为包铅或包铝产生的缺陷、电缆附件制造上的缺陷、绝缘材料管理维护不善造成的缺陷三个方面。
包铅或包铝产生的缺陷主要表现为纸绝缘上的裂纹、损坏、破口以及重叠间隙等。
铸铁件制造不完美,造成砂眼、电缆的各个组件质量不合格或不按规定组装等都属于电缆附件制造上的缺陷。
绝缘材料管理维护不善往往会造成材料受潮和老化,从而影响电缆的中间头和终端头质量。
(二)电缆过热造成电缆过热的原因有很多种,既有内在原因又有外在原因。
高压电力电缆的特点是会长时间运行,高压电力电缆在上时间负载情况下回造成过热,从而出现故障。
在日常生活中,如果电压不稳定,有高压突然窜入或电压选择不合理都容易造成电缆局部过热,使绝缘碳化而故障。
若电缆安装于密集区域、隧道等通风不良处,都会导致电缆过热而加速绝缘损坏,尤其是高温天气时,电缆热量不能及时散失,增加了高压电力电缆的安全隐患。
(三)电缆的机械损伤大部分电力电缆故障皆是因为机械损伤,有些轻微的机械损伤并不能立刻导致电力电缆故障,往往很长时间才反应出来,不易被人察觉是一个很大的安全隐患。
常见的机械损伤有直接受外力作用造成的损伤、敷设过程造成的损伤、自然力造成的损伤以及安装过程造成的损伤四种。
10kV电力电缆常见故障及原因分析1、故障类型电缆故障可概括为接地、短路、断线三大类,其故障类型主要有以下几方面:(1)闪络故障。
电缆在低压电时处于良好的绝缘状态,不会存在故障。
可只要电压值升高到一定范围,或者一段时间后某一电压持续升高,那么就会瞬间击穿绝缘体,造成闪络故障。
(2)一相芯线断线或多相断线.在电缆导体连续试验中,电缆的各个导体的绝缘电阻与相关规定相符,但是在检查中发现有一相或者多相不能连续,那么就说明一相芯线断线或者多相断线.(3)三芯电缆一芯或两芯接地。
三芯电缆的一芯或者两芯导体用绝缘摇表测试出不连续,然后又进行一芯或者两芯对地绝缘电阻遥测.如果芯和芯之间存在着比正常值低许多的绝缘电阻,这种绝缘电阻值高于1000欧姆就被称之为高电阻接地故障;反之,就是低电阻接地故障.这两张故障都称为断线并接地故障。
(4)三相芯线短路。
短路时接地电阻大小是电缆的三相芯线短路故障判断的依据。
短路故障有两种:低阻短路故障、高阻短路故障.当三相芯线短路时,低于1000欧姆的接地电阻是低阻短路故障,相反则是高阻短路故障。
2、原因分析电缆故障的最直接原因就是绝缘降低而被击穿,归纳起来主要有以下几种情况:(1)外力损坏。
电缆故障中外力损坏是最为常见的故障原因。
电缆遭外力损坏以后会出现大面积的停电事故。
例如地下管线施工过程中,电缆因为施工机械牵引力太大而被拉断;电缆绝缘层、屏蔽层因电缆过度弯曲而损坏;电缆切剥时过度切割和刀痕太深.这些直接的外力因素都会对电缆造成一定的损坏。
(2)绝缘受潮。
电缆制造生产工艺不精会导致电缆的保护层破裂;电缆终端接头密封性不够;电缆保护套在电缆使用中被物体刺穿或者遭受腐蚀。
这些是电缆绝缘受潮的主要原因。
此时,绝缘电阻降低,电流增大,引发电力故障问题。
(3)化学腐蚀.长期的电流作用会让电缆绝缘产生大量的热量。
如果电缆绝缘工作长期处于不良化学环境中就会改变它的物理性能,使电缆绝缘老化甚至失去效果,电力故障会由此产生。
10kV 电力电缆常见故障、故障点查找方法及防治措施摘要:在电缆为现代社会提供技术便利的同时也应该注意到电缆在使用过程中一些不可忽视的问题。
本文针对电缆在工作过程中所遇到的故障点进行研究,并对成因进行溯源找出问题的解决方法,为了使电缆更稳定的服务与社会针对目前电缆使用的情况提出若干预防措施。
关键词:10KV电力电缆;电缆故障;解决措施社会技术科技发展得越快人类对电力的需求就越大,在日常生活中电力的输送已经惠及到日常生活中的每一处,电缆的稳定运行是关系到城市建设的关键,因其在城市建设中的地位至关紧要,一旦发生故障就会导致人民群众人身安全受到损害给经济财产带来损失,如何保障电缆的安全运行、发现故障并及时解决进行有效的预防措施一直是电力部门工作的重点。
1.电力电缆常见故障类型总结在排查电缆故障时,要进行故障类型的判定,常见的为以下几种:(1)接地故障:其原因是电缆芯主绝缘部分对地击穿。
(2)短路故障:电缆两个或三个线芯短路。
(3)断线故障:由于电缆的一个或几个线芯被故障电流烧断,并由于外部机械力的作用而导致导线损坏。
(4)闪络故障:电缆耐压试验中经常发生闪络故障,多发生在电缆中间头或终端头内。
其原因是试验中绝缘部分破裂,形成间隙放电通道,当电压达到一定值时发生击穿点,属于开放闪络故障。
相反的是封闭闪络故障,即在特殊条件下,绝缘部分被击穿后再恢复正常,即使测试电压被提高,也不再击穿。
(5)混合故障:当上述情况同时以两种形式发生时,称为混合故障。
2. 10kV电力电缆常见故障类型原因总结2.1外力损害近年来,国家关于电力电缆保护的法律法规得到了加强。
虽然盗贼恶意损坏电缆的案件很少,但由于施工问题引起的电缆损坏而没有主观意识的情况时有发生,大多数施工队伍由于施工需要在电缆线路上的盲目开挖,打桩等工作上的破坏是根本原因。
2.2绝缘部分受潮若是电缆在制造时本身工艺不够精良,投入生产时就会有以下几种情况产生:(1)电缆保护层有破裂。
深度分析:导致高压电缆发生故障的主要原因高压电缆是作用于高电压传输的主要功能,结构简单,工艺复杂,是由导体、绝缘材料、内护层、铠装、外绝缘组成,可用于1~1000kv之间的电压传输,在实际运行时,会受到负载、电压等各种情况对高压电缆冲击的影响,下面我总结一下高压电缆发生故障的一些常见原因和处理方法:高压电缆故障的几大原因和处理方法(1)高压电缆本身质量是导致高压电缆故障原因之一,根据我们对电缆故障的原因分析,有些地方单位为节省成本,采购低廉的高压电缆,当投入运行后,一部分电缆随时间会造成不同程度的连贯性击穿现象,根据调查,低价电缆虽然同样是铜芯工艺,除了使用回收铜之外,还有些电缆制造企业添加其他金属元素,其导电性,导热性差相比差很多,受到综合因素的影响,就会导致电缆故障。
(2)安装过程影响,电力电缆在安装过程中受到长度的影响,阻力会变大,如果采用机械拉力对电缆实施硬性牵引,容易对电缆的绝缘层造成隐性的绝缘损伤,这种隐患会随着时间慢慢的变成完全的故障点,所以,电力电缆安装时,尽量采用减小阻力的牵引装置,比如滑轮。
(3)温度、湿度的影响,一般正常的电力电缆,受温度和湿度的影响时非常小,但是,我们在处理售后问题时经常发现,有些用电单位,为了省事,将处理完的电缆直接敷设土壤了,不对处理后的电缆接头单独处理,这种情况如果接头质量处理不好,随着长期土壤湿度的影响,接头部位容易产生微弱局放现象,长期碳化之后导致电缆接地故障,所以,平时处理后的电缆接头一定要妥善处理,可以有效的较小电缆故障的概率。
(4)机械外力的影响,除了上面所述,造成电缆发生故障很大一部分是外力所致,这种外力所产生的电缆故障如果轻微严重可以投入运行,但是会受到时间、湿度等因素的影响,最终会形成电缆故障,根据时基电力2018年所处理的高低压电缆故障统计,因为受外力所造成的故障占总量的80%上下,为此,时基电力也提示广大客户,特别是低压电缆,施工过程中要妥善处理好,避免二次施工对您的电缆构成的故障条件,电缆出现故障不用怕,电缆故障测试仪来帮忙,除此以外,影响高压电缆故障还有、电泳、冲击等,为了避免高压电缆在投运顺利进行,下面,我简单写一下电力电缆投运前我们要做哪些准备。
10kv高压电缆耐压试验10kV高压电缆耐压试验一、引言10kV高压电缆广泛应用于电力系统中,用于传输和分配高压电能。
为了保证电缆的安全可靠运行,必须进行耐压试验。
本文将介绍10kV高压电缆耐压试验的目的、方法、要点及注意事项。
二、目的10kV高压电缆耐压试验的目的是验证电缆在额定电压下的耐压能力。
通过耐压试验,可以评估电缆绝缘系统的工作状况,检测潜在的故障点,并保证电力系统的安全运行。
三、方法10kV高压电缆耐压试验一般采取交流耐压试验和直流耐压试验两种方法。
下面将介绍这两种方法的具体步骤:1. 交流耐压试验:a) 将待测试的电缆安装在耐压试验设备上,并严格按照安全操作规程连接测试设备。
b) 清除电缆表面的污垢和湿气,确保电缆表面干净。
c) 将测试设备的供电电源调整至额定电压,并保持一段时间。
d) 观察电缆表面是否有击穿现象,并记录击穿时间。
e) 若电缆表面未发生击穿现象,试验结束。
2. 直流耐压试验:a) 将待测试的电缆安装在耐压试验设备上,并严格按照安全操作规程连接测试设备。
b) 清除电缆表面的污垢和湿气,确保电缆表面干净。
c) 将测试设备的供电电源调整至额定电压,并保持一段时间。
d) 观察电缆表面是否有击穿现象,并记录击穿时间。
e) 若电缆表面未发生击穿现象,试验结束。
四、要点及注意事项在进行10kV高压电缆耐压试验时,需要注意以下要点和注意事项:1. 安全第一:在进行耐压试验前,必须检查测试设备和测试环境是否符合安全要求,确保操作人员的安全。
2. 试验条件:耐压试验应在室温下进行,并保持环境干燥,以确保测试的准确性。
3. 试验时间:耐压试验的时间应根据电缆的特性和要求确定,一般为数分钟至数小时。
4. 结果评估:观察电缆表面是否有击穿现象,并记录击穿时间和电压值。
如果电缆未发生击穿现象,并且耐压时间达到规定要求,则可判定电缆通过耐压试验。
5. 现场记录:在试验过程中,应详细记录每一步操作,发现的问题以及测试结果,并及时处理和归档。
35kV高压单芯电缆故障分析及注意事项摘要:电力电缆是电力系统中传输和分配电能的主要元件之一,具有占地面积少、检修维护简单的特点,被企业广泛应用,但是电力电缆发生故障后,由于修复时间较长,将会给企业带来很大的经济损失。
35kV及以下交联聚乙烯电缆在本公司电网系统中使用较多,因此故障频繁出现,对电缆故障进行原因分析和防范已是保障电网安全运行的当务之急。
鉴于此,本文是对35kV高压单芯电缆故障分析及注意事项进行研究,仅供参考。
关键词:电力电缆;故障原因;防范对策引言:35kV单芯电缆敷设损伤及接地方式施工不当,引发电缆故障,本文对故障原因进行深入分析,并结合初期故障(单相接地),提出解决办法。
一、故障原因分析如下1、当多根单芯电缆平行敷设时,电缆间产生感应电压。
假设电缆间轴向距离为lmm,每根电缆的平均半径为rmm,流经电缆的电流为IA,则在流经50Hz的交流时,每公里电缆的感应电压Ug=0.145I㏒(l/r),如电缆线路较长,则感应电压可能达到危及人身安全的程度。
当电缆绝缘损坏时,在电缆的外皮、金属护套等都可能形成电流,并进一步引起电缆多处绝缘损坏。
2、在35kV高压单芯电缆缆芯中通过50Hz的交流时即产生交变磁场,该磁场会在电缆屏蔽层/金属护套上形成涡流,感应出一个电压,其电压大小与磁场强度及磁力线的变化率的大小成正比。
如果铜屏蔽/金属护套出现多点接地,两接地点间则会形成一闭合回路,并产生感应电流,其大小与负荷电流成正比,数值可达数十安培,形成屏蔽层铜带/金属护套在通过较大电流时集中一点发热。
电缆主绝缘层材质可耐受高压,却不能耐受高温,发热将造成绝缘逐渐老化损伤,尤其在屏蔽层与接地线连接处或外护套绝缘破损处容易烧毁主绝缘,继而发展为线芯接地(即单相接地)。
3、对电缆线路短、传输功率小的单芯电缆允许电缆两端接地,但环形电流作用在电缆头终端尾管的接地连接部位所产生的长期发热情况不可避免,对电缆头部位主绝缘造成潜在危害。
电力电缆1KV及以下为低压电缆;1KV~10KV为中压电缆;10KV~35KV为高压电缆;35~220KV为特高压电缆。
其中高压电缆就是指用于传输10KV-35KV(1KV=1000V)之间得电力电缆,多应用于电力传输得主干道。
高压电缆从内到外得组成部分包括:导体、绝缘、内护层、填充料(铠装)、外绝缘。
当然,铠装高压电缆主要用于地埋,可以抵抗地面上高强度得压迫,同时可防止其她外力损坏。
下面小编来讲解一下高压电缆试验及检测方法,具体内容如下:1、电缆主绝缘得绝缘电阻测量1、1试验目得初步判断主绝缘就是否受潮、老化,检查耐压试验后电缆主绝缘就是否存在缺陷。
绝缘电阻下降表示绝缘受潮或发生老化、劣化,可能导致电缆击穿与烧毁。
只能有效地检测出整体受潮与贯穿性缺陷,对局部缺陷不敏感。
1、2测量方法分别在每一相测量,非被试相及金属屏蔽(金属护套)、铠装层一起接地。
采用兆欧表,推荐大容量数字兆欧表(如:短路电流>3mA)。
0、6/1kV电缆测量电压1000V。
0、6/1kV以上电缆测量电压2500V。
6/6kV以上电缆也可用5000V,对110kV及以上电缆而言,使用5000V或10000V得电动兆欧表,电动兆欧表最好带自放电功能。
每次换接线时带绝缘手套,每相试验结束后应充分接地放电。
1、3试验周期交接试验新作终端或接头后1、4注意问题兆欧表“L”端引线与“E”端引线应具有可靠得绝缘。
测量前后均应对电缆充分放电,时间约2-3分钟。
若用手摇式兆欧表,未断开高压引线前,不得停止摇动手柄。
电缆不接试验设备得另一端应派人瞧守,不准人靠近与接触。
如果电缆接头表面泄漏电流较大,可采用屏蔽措施,屏蔽线接于兆欧表“G”端。
1、5主绝缘绝缘电阻值要求交接:耐压试验前后进行,绝缘电阻无明显变化。
预试:大于1000MΩ电缆主绝缘绝缘电阻值参考标准注:表中所列数值均为换算到长度为1km时得绝缘电阻值。
换算公式R算=R测量/L,L为被测电缆长度。
高压电力电缆试验方法与检测技术分析1. 引言1.1 高压电力电缆试验方法与检测技术分析随着电力系统的日益发展和电力需求的增长,高压电力电缆作为输电线路的重要组成部分,承载着传输电能的重要任务。
然而,由于高压电力电缆在运行过程中会受到各种外部环境和电力负荷的影响,因此其稳定性和可靠性成为了电力系统运行的关键。
为了确保高压电力电缆的正常运行和安全性,对其进行定期的试验和检测显得至关重要。
本文将对高压电力电缆试验方法与检测技术进行深入分析和探讨。
首先会对电力电缆试验方法进行概述,包括其在试验过程中需要考虑的因素和方法。
其次将分析传统的电力电缆试验方法,包括局部放电试验、介电强度试验等,以及其在实际应用中存在的局限性和不足之处。
然后会介绍一些现代的高压电力电缆检测技术,如超声波检测、红外热像仪检测等,以及其优势和应用情况。
通过比较传统试验方法和现代检测技术的优缺点,对高压电力电缆试验方法进行综合分析,并对其未来的发展趋势进行展望,以期为电力系统的稳定运行和电力安全提供技术支持。
2. 正文2.1 电力电缆试验方法概述电力电缆是输送电能的重要设备,在运行过程中会受到各种外界因素的影响,从而导致电缆的老化、损坏等问题。
对电力电缆进行定期试验和检测是确保电力系统安全稳定运行的关键步骤之一。
电力电缆试验方法主要包括介质损耗测试、局部放电测试、绝缘电阻测试、介质击穿强度测试等。
介质损耗测试可以评估电缆绝缘的质量,局部放电测试可以检测电缆绝缘的缺陷,绝缘电阻测试可以检测电缆绝缘的状况,介质击穿强度测试可以评估电缆的绝缘强度。
通过对电力电缆进行全面的试验方法,可以有效地评估电缆的使用寿命和安全性能,及时发现问题并进行维修或更换,从而减少事故的发生,保障电力系统的可靠运行。
电力电缆试验方法的概述为电缆的正常运行提供了重要的保障,同时也为电力系统的安全稳定运行打下了坚实的基础。
随着科技的发展,电力电缆试验方法也在不断完善和发展,为电力系统的安全运行提供了更加可靠的保障。
高压电力电缆故障的起因诊断和处理在高压电缆的运行中,经常会出现各方面的故障, 电缆运行的可靠程度, 对各大电力系统都有重要的影响, 这一点也越来越受到电力运行部门和使用部门的重视。
分析电缆发生故障的主要原因,掌握相关的电力电缆故障防范措施, 能及时发现电力运行中隐患, 预防意外事故的发生,防止停电事故或者人员伤亡。
一、高压电力电缆故障的起因1、机械损伤类故障比较常见,所占的故障率最大,具不完全统计约占总故障原因的一半以上。
其故障点比较容易识别,危害性比较严重,一般都能造成停电事故,同时还常伴随着设备损坏及人身伤害事故的发生。
但也有些机械损伤造成的电缆损伤相对较小,当时并没有造成故障,但损伤部位经过运行一段时间后才发展成故障。
造成机械损伤的原因有几种:(1)电缆直接受外力破坏,如一些建设项目盲目施工、电缆敷设不规范、电缆遭到人为破坏损伤;(2)电缆在安装时受到损伤,如机械牵引力过大而损坏电缆,电缆弯曲半径超过允许弯曲半径而损伤绝缘层、电缆剥切尺寸过深引起电缆损伤,或其它不规范作业方法均可导致的绝缘层和保护层损伤;(3)一些自然现象也可造成电缆的损伤,如由于热胀冷缩现象造成中间头或终端头的绝缘胶膨胀而胀裂外壳或附近电缆护套,因自由行程而使电缆管口、支架处的电缆外皮擦破,因地表塌陷沉降、山体滑坡等引起的过大拉力而拉断中间接头或电缆本体,因温度太低而冻裂电缆或附件,由于大型设备或车辆的频繁振动而造成电缆损坏等。
2、绝缘受潮。
绝缘受潮一般会在直流耐压和绝缘电阻实验中被发现,其主要表现为泄流电流增大、绝缘电阻降低。
造成绝缘受潮的原因包括:电缆生产质量不佳、电缆密封工艺不佳以及电缆护套受到腐蚀等。
3、绝缘老化变质电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。
当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。
过热会引起绝缘老化变质。
电缆内部气隙产生电游离造成局部过热,使绝缘炭化。
高压电力电缆试验方法与检测技术分析摘要:高压电力电缆是电网系统中不可或缺的电力传输设备,提高高压电力电缆运行的稳定性,对保证地区稳定供电具有十分重要的意义。
但高压电力电缆在长期运行过程中可能会受到多种因素的影响,如自然环境、自身质量、施工等,导致运行稳定性不足。
为提高对高压电力电缆的管理与检测水平,文章首先对引发高压电力电缆故障的原因展开分析,然后阐述了高压电力电缆的试验方法和检测技术的重要性及应用现状,最后对高压电力电缆的试验方法和检测技术进行详细分析,旨在为相关人员提供参考。
关键词:高压;电力电缆;试验方法;检测技术引言我国经济发展进入新常态,各行业领域向前发展的同时,对电力需求也随之提高,电能高质量传输与提升电网系统运行安全性是满足电力正常稳定供应的关键要素,而高压电力电缆工作性能直接影响着整个电网系统运行安全,因此,重视与做好针对高压电力电缆试验及故障检测显得尤为重要,通过对其进行试验与检测,掌握高压电力电缆实际耐压效果与绝缘性能等,以此保证出厂后的高压电力电缆均符合高压输电标准。
如何选择合适并正确运用高压电力电缆试验方法与检测技术,是目前各相关人员需要考虑的问题。
1高压电力电缆故障发生的原因分析1.1电缆受自然作用影响导致性能下降众所周知,高压电缆一般会布置在自然环境中,经常会受到极端自然气候的侵蚀。
比如太阳光的长期直射,会导致电缆的外部绝缘受损;强烈的雨雪天气、雷暴天气、温度的骤然变化等都会产生负面作用,最终令电缆的绝缘性能下滑。
针对这种情况,除了定期巡检、对性能已经严重下滑的电缆进行更换之外,只能寄希望于电缆生产商能够寻找到抗侵蚀性能更加优秀的材料。
1.2对电网需求的不断提升导致电网运行稳定度不足具体而言,在我国工业用电、生活用电的需求量不断增加的今天,盲目提高电网的负载率并不是一项科学的举措——在传统高压电力电缆设备的运行压力不断提升的过程中,对整个电网造成的损耗也是显而易见的。
高压电力电缆故障分析与处理方案高压电力电缆故障分析与处理方案高压电力电缆是输送电能的重要设备之一,如果发生故障可能导致电力系统短路甚至损坏电缆本身。
因此,对高压电力电缆的故障进行分析和处理是非常重要的。
下面是一种基于逐步思考的高压电力电缆故障分析与处理方案。
第一步:确保安全在开始任何故障分析和处理之前,必须确保自己和周围环境的安全。
如果电缆出现明显的破损或电弧放电,应立即采取措施切断电源,并通知相关专业人员进行处理。
第二步:检查电缆绝缘状况故障的首要原因通常是电缆绝缘破损,因此需要检查电缆绝缘的状况。
可以通过外观检查,例如是否有明显的划痕、裂纹或破损来判断绝缘是否受损。
另外,还可以使用绝缘电阻测试仪来测量电缆绝缘电阻,以确定绝缘是否完好。
第三步:检查接头和终端如果电缆绝缘完好,但仍然存在故障,那么需要检查电缆接头和终端。
可以检查接头和终端是否有松动、氧化或腐蚀等问题。
此外,还需要检查连接螺栓是否紧固,并使用红外热像仪来检测是否存在异常的热点。
第四步:测量电缆参数如果仍然无法确定故障的原因,可以通过测量电缆参数来判断。
可以使用电缆测试仪来测量电缆的电阻、电容和电感等参数。
与正常情况下的数值进行比较,以确定是否存在异常。
第五步:故障定位如果以上步骤无法找到故障原因,需要进行故障定位。
可以使用故障定位仪来确定故障点的位置。
通过在电缆上施加高频信号,然后使用接收装置来检测信号的强度变化,从而确定故障点的位置。
第六步:修复或更换故障部件一旦确定了故障的原因和位置,就可以采取相应的措施进行修复或更换故障部件。
可能需要修复绝缘、重新连接接头或更换损坏的电缆段等。
在进行修复或更换之前,应确保切断电源,并遵循相关安全操作规程。
第七步:测试和重启系统在完成修复或更换后,需要进行测试以确保故障已经解决。
可以使用相关测试仪器来测量电缆的参数,并验证系统的正常运行。
在确认一切正常后,可以重新启动电力系统。
总结:高压电力电缆的故障分析与处理需要经过一系列的步骤。
高压电缆故障原因分析及对策措施摘要:一旦高压电缆运行出现了故障,所造成的影响不仅仅是电力企业本身,同时它还会对人民日常生活的正常进行造成影响,对国家经济的发展带来阻碍,通过对高压电缆运行故障进行分析,并制定出相应的预防措施和应对措施加以实施,可以将高压电缆运行故障带来的损失降到最低。
关键词:高压电缆;故障;对策1 引言高压电缆发生故障主要是由于人为或自然灾害等的破坏导致绝缘损坏,使相与相或相与地之间发生短接。
这种短接会使电流急剧增大,电压大幅度下降并进一步造成电缆损坏等严重的后果。
高压电缆的故障主要包括单相接地故障(约占80%)和相间短路故障(约占15%),其他故障(约占5%)。
当发生这些故障时线路中的保护元件会迅速切断线路以保证安全。
此时检修人员应及时查找、处理故障,尽快恢复正常供电,保证生产的正常进行。
2 对高压电缆运行故障进行分析的重要性随着我国经济的发展和改革开放的不断深入,电力企业作为一个具有社会公用事业性质的行业,在近年来也得到了迅猛的发展,为人民的日常生活提供了电力资源,使人民的生活更加丰富多彩,同时也为国家的经济发展做出了重大的贡献,使我国的经济得以快速发展。
然而,伴随着电力企业的发展,却还是存在着一些问题,比如说电力生产安全问题、高压电缆运行问题等。
高压电缆运行故障的存在,对人民而言,不仅会使人民的日常生活的正常进行受到影响,同时也会给国家的经济发展带来阻碍。
一旦高压电缆的运行出现故障,那么将给电力企业为人民、为社会的电力传输造成影响,使人民、使社会的供电得不到正常供应,因而也就给人民的日常生活的正常进行造成了影响;同时,由于电力企业为人民、为社会的供电不能够正常进行,将使得社会的企业不能够正常运转,这就给国家的经济发展带来了阻碍。
此外,由于高压电缆运行出现了故障,这也将给电力企业的正常发展造成阻碍,降低了电力企业本身的竞争力,难以在如今竞争激烈的经济市场下生存下来。
而通过对高压电缆运行故障进行分析,可以预先预防高压电缆运行故障的出现。
电力电缆的故障分析及检测方法电力电缆作为电力传输和分配重要的组成部分,在运行过程中由于各种原因可能会出现各种故障,如导体断线、短路、漏电、绝缘老化,这些故障如果不及时发现和处理将会对电力系统的运行造成很大的影响,甚至会对人身安全构成威胁。
为了提高电力系统的可靠性和安全性,必须采取有效的故障检测和维护方法。
一、电力电缆故障的原因及表现1.导体断线故障导体断线是一种常见的电力电缆故障,其主要原因是导体材料的疲劳破裂和外力的损伤。
导体断线故障的表现主要有两种情况:(1)开路故障:电缆无法传输电力信号,导线电阻变大,电压下降,表现为电缆故障段附近的负荷失去供电。
(2)闪断故障:电缆的电路断开后又自行复位,导致电缆的电阻变化,使得电力系统的电压波动,可能引起灯泡闪烁或设备频繁重启。
2.电缆绝缘老化故障电缆绝缘老化故障是由于长期使用和环境因素等原因导致绝缘材料失效,绝缘性能下降,电场强度大,发生局部放电而造成的故障。
电缆绝缘老化故障的表现主要有:(1)漏电:因绝缘材料的老化和损伤导致电缆表面或内部出现漏电现象,可能引起安全事故。
(2)局部放电:由于绝缘材料老化,导致电场强度集中,局部电阻变大,电容增加,导致局部放电,可能会产生较高的电压和热量,对电缆绝缘材料造成损害。
3.电缆短路故障电缆短路故障是由于电线之间的接触或缠绕引起的,其表现为电路出现短路故障,会引起电源线路短路保护器动作断电。
电缆短路故障可以分为一次短路和二次短路两种情况。
电缆漏水故障通常是由电缆保护层的损伤和绝缘层内部结构被破坏导致的,如果不及时处理,有可能会导致绝缘层失效,产生较大的电气火灾隐患。
1.绝缘电阻测试绝缘电阻是指导线和导体之间的电阻值,可以反映电缆的绝缘状况。
绝缘电阻越大,绝缘性能越好。
绝缘电阻测试可以使用万用表等测试设备进行,当绝缘电阻低于一定值时,意味着电缆出现了绝缘老化或损伤。
此时需要对电缆进行维修或更换。
2.局部放电检测局部放电检测是指通过传感器采集电缆内部的局部放电信号,并通过信号分析来判断电缆绝缘状况的检测方法。
35千伏电力电缆故障原因与解决对策分析摘要:随着现代化建设的不断深入,电力行业的发展也越来越快速。
电力电缆作为电力输送的主要手段之一,具有安全可靠,输电损耗小等优点,广泛应用于各个领域。
但是,在使用过程中,电力电缆也会出现各种故障,影响电力输送的正常运行。
因此,对电力电缆故障的原因进行深入分析,制定有效的解决对策,对保障电力输送的安全可靠具有重要意义。
关键词:电力电缆;故障原因;解决办法;故障维修一、电力电缆故障原因分析(一)损坏电力电缆在安装过程中,由于施工人员不当操作或者外界原因,如机械损坏、挖掘破坏等,都会导致电力电缆的损坏。
此外,在日常使用过程中,电力电缆也可能会受到人为损坏,如暴力损坏、电缆接头松动等,都会导致电力电缆的故障。
电力电缆的损坏是导致电缆故障的主要原因之一。
电缆在使用过程中,受到的外界环境因素和使用条件的影响,可能会出现多种类型的损坏。
首先,电缆的外鞘层可能会受到物理损坏,如机械刮伤、挤压、钻孔等。
这些物理损坏会导致电缆外鞘层的保护能力下降,从而使电缆内部的绝缘层和导体暴露在外界环境中,容易受到湿气、灰尘、腐蚀等影响,加速电缆老化,最终引起故障。
其次,电缆的绝缘层可能会发生破损、开裂、变硬等老化问题,这些老化问题可能是由于电缆长时间曝露在高温、高湿、阳光直射等恶劣环境中,或者是由于电缆本身材料质量不佳、生产工艺不合理等问题导致的。
绝缘层老化会导致电缆的绝缘能力下降,从而使得电缆容易发生绝缘击穿故障。
另外,电缆的金属导体也可能会受到损坏,如断裂、氧化、腐蚀等。
这些导体损坏问题可能是由于电缆在安装、维护过程中受到错误的操作或施工方式的影响,或者是由于电缆材料质量不佳等原因导致的。
如果导体损坏,电缆的传导能力会降低,从而可能导致电缆过载、短路等问题,最终引起故障。
(二)绝缘老化绝缘击穿指的是绝缘层中的电场强度超过其绝缘能力限制,导致绝缘层中的电荷发生放电现象,最终引起电缆故障。
绝缘击穿的原因主要包括以下几个方面:1. 电压过高:电缆在运行过程中,如果受到电压过高的影响,容易导致绝缘层击穿。
电力电缆1KV及以下为低压电缆;1KV~10KV为中压电缆;10KV~35KV为高压电缆;35~220KV为特高压电缆。
其中高压电缆是指用于传输10KV-35KV(1KV=1000V)之间的电力电缆,多应用于电力传输的主干道。
高压电缆从内到外的组成部分包括:导体、绝缘、内护层、填充料(铠装)、外绝缘。
当然,铠装高压电缆主要用于地埋,可以抵抗地面上高强度的压迫,同时可防止其他外力损坏。
下面小编来讲解一下高压电缆试验及检测方法,具体内容如下:1.电缆主绝缘的绝缘电阻测量1.1试验目的初步判断主绝缘是否受潮、老化,检查耐压试验后电缆主绝缘是否存在缺陷。
绝缘电阻下降表示绝缘受潮或发生老化、劣化,可能导致电缆击穿和烧毁。
只能有效地检测出整体受潮和贯穿性缺陷,对局部缺陷不敏感。
1.2测量方法分别在每一相测量,非被试相及金属屏蔽(金属护套)、铠装层一起接地。
采用兆欧表,推荐大容量数字兆欧表(如:短路电流>3mA)。
0.6/1kV电缆测量电压1000V。
0.6/1kV以上电缆测量电压2500V。
6/6kV以上电缆也可用5000V,对110kV及以上电缆而言,使用5000V或10000V的电动兆欧表,电动兆欧表最好带自放电功能。
每次换接线时带绝缘手套,每相试验结束后应充分接地放电。
1.3试验周期交接试验新作终端或接头后1.4注意问题兆欧表“L”端引线和“E”端引线应具有可靠的绝缘。
测量前后均应对电缆充分放电,时间约2-3分钟。
若用手摇式兆欧表,未断开高压引线前,不得停止摇动手柄。
电缆不接试验设备的另一端应派人看守,不准人靠近与接触。
如果电缆接头表面泄漏电流较大,可采用屏蔽措施,屏蔽线接于兆欧表“G”端。
1.5主绝缘绝缘电阻值要求交接:耐压试验前后进行,绝缘电阻无明显变化。
预试:大于1000MΩ电缆主绝缘绝缘电阻值参考标准注:表中所列数值均为换算到长度为1km时的绝缘电阻值。
换算公式R算=R测量/L,L为被测电缆长度。
高压电缆故障原因分析及对策措施摘要:近些年,我国电力行业随着社会经济的发展得到较大进步,在电能输送中将电力电缆当作主要介质,更加凸显出了电力电缆的重要性。
因此,相关人员要在设备管理中要不断加强高压电缆的管理力度,优化和完善其使用功能,延长使用年限,全面分析高压电缆发生故障类型和原因,制定针对性有效措施进行有效解决,保证高压电缆应用安全可靠性。
关键词:高压电缆;故障原因分;对策措施引言人们要更加关注和重视高压电缆故障原因分析,采用相适应的预防措施和解决对策,保证高压电缆始终处于安全稳定的运行状态,更加符合其性能可靠性的实际要求,全面提升电力生产整体水平,为人们提供更加安全、优质的电力服务。
1高压电缆故障分析①高压电缆在实际运行的过程中,经常受到自然环境和人为等相关因素的影响,造成其出现断裂现象,造成断路性故障,进而对高压电缆的实际运行质量和效率产生严重的不良影响,大大增加了电力企业生产成本,难以保证高压电缆安全高效运行。
②高压电缆运行中常见接地故障,对其实际工作性能、内在运用价值、电力生产综合效益等多个方面产生一定不利影响,同时对高压电缆科学应用水平的提升产生不同程度的阻碍,增加了高压电缆运行的安全风险隐患,造成供电计划施工没有科学有效的保障[1]。
另外,高压电缆在接地故障的影响下,在一定程度上降低其应用质量,为电力生产活动中带来一定的安全问题,增加相关安全事故发生几率。
③高压电缆在实际应用过程中,由于三相芯线产生短路现象,增加短路型故障发生几率,影响高压电缆实际工作性能。
同时,高压电缆的电压值上升到特定范围,或者在固定时间段之后电压呈现出持续上升的状态,迅速击穿绝缘体,造成高压电缆出现闪络故障。
另外,高压电缆在实际运行中,存在综合性故障,严重威胁到电缆安全性能,对供电企业的健康持续发展产生负面影响。
2高压电缆故障原因分析2.1高压电缆自身质量问题部分施工单位在高压电缆材料选择的过程中,为了获得更多的经济利润,过于注重材料价格,在一定程度上忽视了其安全质量,造成高压电缆自身材料出现相应的质量问题,对整个工程的安全运行产生严重的不良影响,存在较多的安全风险隐患。
高压电缆故障原因分析及试验措施摘要:高压电缆在我们的生活生产中得以广泛的应用,但是电缆故障的事故的发生也十分频繁。
本文主要就高压电缆发生故障的原因进行分析,并对电缆线路施工管理的相关措施进行探讨。
关键词:高压电缆;故障;原因;试验措施0.引言随着我国社会经济的不断发展,高压电缆在电网建设中得到了广泛的应用,但是电缆故障的事故的发生也十分频繁。
然而高压电缆线路故障点的排查没有架空线路那么容易,其故障的处理相对复杂、繁琐,因此对电缆故障进行预防是我们工作的重点所在。
1.高压电缆故障的原因分析常见的电缆故障主要有3类:1.1外部因素因为外部因素所造成的,比如外界火源所导致的电缆火灾事故、外力破坏、内部过电压或者雷电过电压等;第二类:是由于电缆其本身的质量问题所导致的,由于近几年来原材料的价格增长得很快,一些电缆的制造商在实际进行生产的过程中按照国家生产电缆标准的下限(有的甚至低于下限)进行生产,如果在生产的过程中,在工艺上稍不留意,电缆故障就很容易发生,并且这类事故是难以进行界定的;第三类:是由于在进行电缆施工的过程当中,由于相关管理制度的不完善,队工艺的把关要求相对不严格,所以给生产运行带来了很大的隐患,这种情况所导致的电缆故障在电缆事故中所占的比例是很大的。
第一类故障发生的客观因素很多,在现实中相对来说进行预防是比较困难的;而后两类的故障则需要相关的工程技术人员在实际工程的实施过程中要主动去进行控制,处理得当,可以在很大程度上减少这两类故障的发生。
1.2铜价高企因为铜价高企,电缆制造商为了追求更加高额的利润,从而降低电缆中铜的含量,甚至有的制造生产商明目张胆地电缆的铜截径进行减少,而这些问题在进行后续的交流耐压试验中也不能够进行反应。
而对于电力企业来说,如果在进行施工之前电缆得不到把关,一旦不合格的电缆投入到电网中使用,这样会留下很大的安全隐患,一旦事故发生其造成的危害是十分大的。
对此,电力企业的物资管理部门要对电缆的质量进行严格的把关,坚持做好抽检、监造、送验等工作,对进入电网的电缆产品质量的合格进行保证。
电力电缆的故障分析及检测方法电力电缆是输送电能的重要设备,但在运行中难免会出现故障。
电力电缆的故障一般分为三类:绝缘故障、电缆接头故障和电缆外包层故障。
处理故障需要实施合适的检测方法,据此本文将就电力电缆故障的检测方法进行探讨。
一、绝缘故障检测方法1、绝缘电阻测试法绝缘电阻测试法是比较常用的一种绝缘故障检测法。
它主要是利用高压直流放电器将试验电缆的一端接地,另一端接通500V或1000V直流电压(也可以根据实际情况对电压进行调整),并记录电流与电压。
如果读书在在50MΩ以上,说明绝缘没有问题。
此法的优点是简单易行,缺点在于只能检测到大面积的绝缘故障,不能检测到局部绝缘故障。
2、局部放电检测法局部放电检测法是一种常用的局部绝缘故障检测方法。
它的原理是利用放电电流产生信号,通过放大和滤波等处理得到故障信号,然后再通过分析断层发生的时间、位置、大小等综合条件来定位故障。
局部放电检测法主要适用于高压交流电缆及其附件的检测,检测结果更为可靠,但仪器昂贵,操作比较麻烦。
二、电缆接头故障检测方法电缆接头故障比较常见,如果及时发现故障,不仅可以延长电缆的使用寿命,而且可以提高电缆系统的可靠性。
电缆接头故障的检测方法包括如下:1、分接箱可视检查法通过检查分接箱外观,连接方式、接线端子、连接盘上的引线及连接板上的引线等情况来判断电缆接头的质量。
2、分接箱绝缘电阻测试法通过对接头进行高压试验,测量其绝缘阻值,从而判断接头质量。
3、分接箱局部放电检测法通过检测接头所产生的局部放电信号,来定位接头故障位置。
三、电缆外包层故障检测方法电缆外包层故障往往不易发现,如果长期不修复,很容易引起电缆系统故障。
这类故障的检测方法有以下几种:1、有线检测法通过检测电极间导通状态的变化来定位电缆外包层故障点的位置。
该方法精度高,定位准确,但是在大功率电缆上的实用性不足。
2、雷电冲击测试法利用冲击波法产生的电磁场,通过定位电缆故障处反射回来的信号来寻找故障点。
高压电力电缆故障原因和试验方法
发表时间:2018-08-07T09:55:25.240Z 来源:《电力设备》2018年第7期作者:姚林志[导读] 摘要:高压电力电缆具有维护工作量小、稳定性高等特点,但是在电力电缆长时间的运行过程中,受到外力因素的影响以及检修工作中存在的不规范操作,会造成电缆设备故障。
(国网北京市电力公司检修分公司北京市 100071)摘要:高压电力电缆具有维护工作量小、稳定性高等特点,但是在电力电缆长时间的运行过程中,受到外力因素的影响以及检修工作中存在的不规范操作,会造成电缆设备故障。
在对故障进行诊断处理时,需要检修人员快速、准确地找到故障位置并对故障的性质进行判断,以便高压电力电缆能迅速恢复正常运行。
本文从分析高压电力电缆的故障原因和故障类型入手,阐述故障的诊断处理方法和防范措
施。
关键词:高压电力电缆;故障原因;试验方法引言
在城市中心地带、居民密集区、工厂厂区内部等地方,考虑到安全、美观和利于厂房布局等因素,高压电力电缆线路在电力系统中的应用比例越来越高,其具有占地面积小、送电可靠性高、维护工作量少等优点。
但是,在长时间的运行过程中,高压电力电缆受到多种因素的影响,容易出现各种各样的故障。
正确分析高压电力电缆的故障原因,快速找出故障点,确定故障位置,尽量缩短停电时间,对于企业正常生产和人们正常生活尤为重要。
1 高压电力电缆故障概述
高压电力电缆投入运行后将受到电、机械、化学等因素的作用而发生老化现象,影响其运行寿命。
为了保证电缆的长期稳定运行,不仅要求电缆本身具有优良的绝缘性能,而且还要充分认识和掌握电缆运行的热性能及电缆的正确敷设方式方法。
2 高压电揽故障原因分析 2.1 外力破坏
通常电力电缆铺设于城市道路之中,经常受到绿化、房地产、自来水、通信、煤气和市政等施工影响,导致电力电缆易被破坏,这种外力破坏造成的电缆故障占55%,主要包括以下几种:
①大多数的电缆短路和破坏是由于一些未经审查的机械开挖造成的;
②如果电缆安装不够牢靠,在外力作用下容易出现绝缘故障;
③对于直埋电缆而言,很可能由于车辆碾压、地面下沉等原因而出现变形。
总结外力破坏造成的电缆故障原因为:第一,工程管理部门缺乏责任感,监管不力;第二,市政工程的相关施工人员为了赶工期,违规机械开挖;第三,由于边设计边施工造成的施工信息不能及时共享。
综上所述,电力电缆的保护套会在外力作用下发生破损,导致水分侵入到电缆之中,造成电缆运行故障。
2.2 电缆安装及施工质量影响
根据相关的统计显示,约12%的10kV以上电缆事故与施工、安装质量有关。
不规范的电缆敷设会造成了电缆运行寿命的缩短。
有以下几种情况:电缆的接头设置不当,比如,在很近的距离设置两个以上的接头就属于违规设置;导体的连接管接触不良,由于两段电缆之间的连接没有进行很好的处理,存在一些尖角和毛刺等;中间接头没有良好的密封:如果没有将中间的接头进行有效的密封,会导致水分等入侵,产生水树,使得绝缘劣化;环境湿度大:电缆的安装环境如果湿度较大,容易造成局部受潮,使得绝缘性能下降;电缆的保护外壳破损:在施工过程中的不合理操作,使得电缆的外套破损,使得绝缘内部进水发生事故。
2.3 超负荷运行
随着用电量的增加,电缆可能处于大负荷运行状态,在高温环境下运行会使电缆产生大量热,严重影响电缆寿命,进而加速电缆老化,绝缘性下降,增大击穿事故发生概率。
如果运行环境恶劣,有腐蚀气体、高温热源等,会进一步降低电缆保护层的寿命,使得隐患发生的概率增加。
3 高压电力电缆试验方法 3.1 绝缘电阻测试
电缆的绝缘电阻测试可以对其受潮、老化情况进行有效判断,从而正确地掌握电缆的绝缘性能。
通过耐压试验比较耐压前后的电阻变化可以对电缆内部缺陷进行检查。
对于10kV及以上电缆,在测量时必须要使用2500V兆欧表来进行,电缆运行后要进行充分放电,将所有的对外联接线全部拆除,并使用干燥清洁的布将电缆头擦拭干净,接着将铅皮和非测试相的电缆芯一起接地,然后逐相进行测量。
由于电缆的电容非常大,使用兆欧表进行测量操作时一定要匀速摇动。
测量完成后,要先把火线断开在停止摇动,防止电容电流对兆欧表进行反充电而导致摇表被击穿;每次测量完成后需要对电缆进行充分放电,而且操作过程中工作人员要必须使用绝缘工具,避免残余电荷电击事件的发生。
另外,为了提高测量的准确性可以通过在电缆芯端添加屏蔽层来实现。
如果电缆经过长时间的大电流充电,通常开始时的兆欧表读数不大,此时应该继续摇动兆欧表,数值将逐渐增大直至稳定不变。
3.2 直流耐压试验与泄漏电流试验
直流耐压试验和泄漏电流试验同时进行,试验方法相似,但两者的测量重点不同,前者是测量耐受强度,一般会采用较大的试验电压;而测量泄漏电流是为了检测绝缘状况,不需较高的电压。
直流耐压试验可以检查电缆的耐压强度,是运行部门和施工单位常用的试验方法之一。
直流耐压试验电压高、设备容量小,直流电场分布比较均匀,如果电缆存在缺陷,那么电压和缺陷部分是一种串联在一些完好的部分上,从而使缺陷更加容易被发现。
通常通过直流耐压实验可以发现电缆中的一些气泡、机械损伤等局部缺陷。
测量电缆的泄漏电流是为了观测不同电压等级下的电流的变化情况,以及得到电流与电压之间的关系。
电缆缺陷主要表现为泄漏电流在分阶段停留时几乎不随时间而下降,甚至增大;或者是在电压上升时,电流不成比例的急剧上升。
通常泄漏电流测量结果可以反映出电缆的老化和受潮情况。
3.3 高压电力电缆故障的防范措施
结合高压电力电缆故障原因分析,为了确保高压电力电缆的安全稳定运行,最大程度地降低故障几率,我们要积极采取防范措施,不断改善高压电力电缆的使用寿命和运行状态。
(1)要高度重视高压电力电缆故障问题,安排专门的维护人员加强对电力电缆日常运行的维护检修,对电缆的运行参数制定详细的档案,定期进行安全检查,加强高压电力电缆施工管理,对于电缆的故障频发地点,增加维护人员的日常巡检,严格落实责任制度。
(2)加强公司各个部门之间的沟通联系,积极通过协调会议,明确高压电力电缆的施工位置和注意事项,全面协调所有的施工部门,在施工过程中注意保护电力电缆设备。
制定完善的危险点控制和辨别方案,在一些危险位置安排专门的技术人们进行监护,定点、定时进行巡查。
(3)高压电力电缆施工单位要做好技术交底工作,每天施工之前都要明确作业内容和作业任务,加强电力电缆的安全管理,确保施工质量。
(4)在公司进行安全宣传,提高大家的安全意识,使大家明确知道破坏高压电力电缆的危害性。
结语:
新形势下,应根据高压电力电缆试验工作中所存在的问题认真分析和研究,进而找出解决问题的有效措施。
同时也要加强对高压电力电缆的管理质量,提高试验人员的专业素质,培养过硬的试验队伍。
加速试验设备的研制开发,加强试验技术研究,以准确无误地检测电力电缆存在的隐蔽故障,确保电缆的安全稳定运行。
参考文献:
[1]徐林涛,左述鹏.高压电力电缆的故障及诊断处理分析[J].科技创新与应用,2016,07:189.
[2]吴宜文.高压电力电缆故障的起因诊断和处理[J].自动化与仪器仪表,2012,03:173-175.
[3]刘欣.高压电力电缆故障原因分析和试验方法研究[J].低碳技术,2016(8):42-43.。