当前位置:文档之家› 实验六 多级放大器的频率补偿和反馈

实验六 多级放大器的频率补偿和反馈

实验六 多级放大器的频率补偿和反馈
实验六 多级放大器的频率补偿和反馈

实验六多级放大器的频率补偿和反馈

实验目的:

1.掌握多级放大器的设计,通过仿真了解集成运算放大器内部核心电路结构。

2.掌握多级放大器基本电参数的定义,掌握基本的仿真方法。

3.熟悉多级放大器的频率补偿基本方法。

4.掌握反馈对放大器的影响。

实验内容

1.多级放大器的基本结构及直流工作点设计。

基本的多级放大器如图.

V(1) V(2) V(3)

14.42956V 14.42958V 8.38849V

②若输出级PNP管只用差分对管U3的一只管子,则放大器的输出直流电压为多少?

V(1) V(2) V(3)

14.41222V 14.42958V 7.0707V

可见采用单管后,输出直流电压V(3)减小;而采用两只管子能提高直流工作点,并使工作点更稳定。

2.多级放大器的基本电参数仿真。

实验任务:

①差模增益及放大器带宽

将输入信号V2和V3的直流电压设置为2V ,AC 输入幅度设为0.5V ,相差180,采用AC 分析得到电路的低频差模增益A vd1,并提交输出电压V (3)的幅频特性和相频特性的仿真结果。在幅频特性中标出上限频率,相频特性中标出0dB 的相位。

Avd1=))4()5((2)

3(V V V -=93.3897dB=46718.08

可知f H =1.3574kHz ,φ(0dB)=?09.159

②共模增益

将输入信号V2和V3的直流电压设为2V ,AC 输入幅度设为0.5V ,相位相同。AC 分析得到低频共模增益A vc ,结合①中得仿真结果得到电路的共模抑制比K CMR ,并提交幅频特性仿真图。

仿真得,A vc =-6.61dB=0.4671

K CMR =Avc Avd 2

/=100017.3

③差模输入阻抗

V2、V3设为2V ,AC 输入幅度0.5V ,相差180,AC 分析,用表达式R id =)

3()

6(I(V 2)5)(V V I V 得到R id 。提交R id 随频率变化曲线图。标出100Hz 的阻抗值。

Rid=94.5860dB=53.62k Ω

④输出阻抗

如下图V2、V3直流电压设为2V ,AC 幅度为0,V4的AC 幅度设为1,AC 分析。得到输出阻抗R o 随频率变化曲线,并标出100Hz 处的阻抗值。

)

1(I V 9

Ro C

100Hz 处Ro=32.68k Ω。

思考:若放大器输出电压信号激励后级放大器,根据仿真得到的结果,后级放大器R 。至少为多少才可忽略负载影响?若后级放大器输入阻抗较低,采取什么措施可以提高放大器的驱动能力?

若后级放大器输入阻抗较低,可以在前级放大器的输出端并联电阻以减小其输出阻抗。

3.多级放大器的频率补偿

实验任务:

简单电容补偿

按图1所示电路,将输入信号V2和V3的直流电压设为2V,AC输入幅度设为0.5V,找出电路主极点位置,采用简单电容补偿方法进行频率补偿,仿真得到最少补偿电容值,使得单位增益处相位不低于0

-,提交补偿后V(3)的幅频特性相频特性曲线,标出f H和

135

增益为0dB时的相位。

产生第一个极点角频率的节点一般是电路中阻抗最高的节点,本图中为输出端。因此补偿电容接在输出电压与地之间。

单位增益即增益=1=0dB。

仿真得,最小Cφ为3.5μF。输出电压幅频相频特性如下。

上限频率为1.9297Hz 。 0dB 相位为 133.529-。

简单密勒补偿

按图3设计电路,得到最小补偿电容值,使得V (3)在单位增益处相位不低于0

135-,

提交补偿后V (3)的幅频特性相频特性曲线,标出f H 和增益为0dB 时的相位。若要求输出电压为V (9),补偿后相位要求相同,AC 仿真得到所需要的最小补偿电容。

●输出电压为V(3)的幅频特性相频特性曲线:

上限频率为223.3064Hz 。 0dB 相位为?134.328-。

得到的C1=115pF 。

●输出电压为V(9)的幅频特性相频特性曲线:

可知上限频率为138.9495Hz 。 0dB 相位为?134.6076-。 得到的C1=202pF 。

4.反馈放大器实验任务:

将输入信号V2直流工作电压设为0V,AC输入幅度设为1V,AC仿真,得到V(3)的幅频特性曲线和相频特性曲线,并在图上f H。

可知f H=2.1499MHz。

按图2中的分析方法,得到输出阻抗随频率变化曲线,标注100Hz处的值,与未世家负反馈的输出阻抗对照,解释变化。

V2的AC 幅度设为0,V4的AC 幅度设为1.仿真得到输出电阻随频率变化曲线。 其中)

2()

5(V Ro C I =

100Hz 时,Rof=12.143=4.05Ω。

对比与没加补偿的电路(去掉R3):

可见100Hz 时Ro=47.607=240.0Ω。

加了电压负反馈的电路与没有加的电路对比,输出阻抗大大减小。 本图为电压负反馈,kA

1R R of +=

,因此反馈越深,输出阻抗越小。

R2=10Ω,R3=100Ω,R4=0.1Ω,重复;同时按图4中V2设置条件瞬态仿真,得到

V(3)的波形,观察波形是否失真,并解释。

可见V(3)的幅频相频特性曲线和R2、R3、R4修改前是一样的。这是因为它们的比例都相同,分压也相同。

V(3)瞬时波形:

显然有失真。这可能是因为R2、R3减小,导致差分对管基极电流过大,使三极管击穿,出现了截止失真。

思考:若图4反馈放大器电路改为单个15V电源供电,存在什么问题?如何修改?

存在的问题:

基极和发射级之间电压不够导致U2无法工作在放大区。

解决方法:

在R2与地间串联大电阻R5,增大R2+R5的分压,进而增大基极电压,增大VBE。

此外,这样还会使更多额外功率耗费在R5上。因此采用正负电源是更好的方法。

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,

供参考,感谢您的配合和支持)

多级负反馈放大器实验报告

2.5 多级负反馈放大器的研究 一. 实验目的 (1)掌握用仿软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 2)比较电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 3)观察负反馈对非线性失真的改善。 二.实验原理 1.实验基本原理及电路 (1)基本概念。在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输出回路,用来影响其输出量(放大电路的输入电压或输入电流)的措施成为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 交流负反馈有四种组态:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;以电流形式相叠加,称为并联反馈。 在分析反馈放大电路市,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路:“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,

负反馈放大电路实验报告记录

负反馈放大电路实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验二由分立元件构成的负反馈放大电路 一、实验目的 1.了解N沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA;结型场效应管的管压降U GDQ < - 4V,晶体管的管压降U CEQ = 2~3V; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值≥ 120; 3)闭环电压放大倍数为10 s o sf - ≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R f为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C1~C3容量为10μF,C e容量为47μF。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f,见图2,理由详见“五附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k?

运算放大器_参数详解

运算放大器参数详解 技术2010-12-19 22:05:36 阅读80 评论0 字号:大中小订阅 运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。现今运放的种类繁多,广泛应用于几乎所有的行业当中。 历史 直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。 第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。 原理 运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:

理解运放的频率补偿和单位增益稳定

运放的电压追随电路,如图1所示,利用虚短、虚断,一眼看上去简单 明了,没有什么太多内容需要注意,那你可能就大错特错了。理解好运放的 电压追随电路,对于理解运放同相、反相、差分、以及各种各样的运放的电路,都有很大的帮助。 图1 运放电压追随电路 电压追随电路分析 如果我们连接运放的输出到它的反相输入端,然后在同相输入端施加一 个电压信号,我们会发现运放的输出电压会很好的追随着输入电压。 假设初始状态运放的输入、输出电压都为0V,然后当Vin从0V开始增 加的时候,Vout也会增加,而且是往正电压的方向增加。这是因为假设Vin 突然增大,Vout还没有响应依然是0V的时候,Ve=Vin-Vout是大于0的, 所以乘上运放的开环增益,Vout=Ve*A,使得运放的输出Vout开始往正电压 的方向增加。 当随着Vout增加的时候,输出电压被反馈回到反相输入端,然后会减 小运放两个输入端之间的压差,也就是Ve会减小,在同样的开环增益的情 况下,Vout自然会降低。最终的结果就是,无论输入是多大的输入电压(当 然是在运放的输入电压范围内),运放始终会输出一个十分接近Vin的电压,但是这个输出电压Vout是刚好低于Vin的,以保证的运放两个输入端之间 有足够的电压差Ve,来维持运放的输出,也就是Vout=Ve*A。 运放电路中的负反馈 这个电路很快就会达到一个稳定状态,输出电压的幅值会很准确的维持 运放两个输入端之间的压差,这个压差Ve反过来会产生准确的运放输出电 压的幅值。将运放的输出与运放的反相输入端连接起来,这样的方式被称为 负反馈,这是使系统达到自稳定的关键。这不仅仅适用于运放,同样适用于 任何常见的动态系统。这种稳定使得运放具备工作在线性模式的能力,而不 是仅仅处于饱和的状态,全“开”或者全“关”,就像它被用于没有任何负 反馈的比较器一样。 由于运放的增益很高,在运放反相输入端维持的电压几乎与Vin相等。 举例来说,一个运放的开环增益为200 000。如果Vin等于6V,这时输出电 压会是5.999 970 000 149 999V。这在运放的输入端产生了足够的电压差 Ve=6V-5.999 970 000 149 999V=29.999 85uV,这个电压会被放大然后在 输出端产生幅值为5.999 970 000 149 999V的电压,从而这个系统会稳定 在这里。正如你所见,29.999 85uV是一个很小的电压,因此对于实际计算 来说,我们可以认为由负反馈维持的运放两个输入端之间的压差Ve=0V,整 个过程如图2所示。这也就是我们熟悉的“虚短”,而由于运放的两个输入

负反馈电路实验报告

负反馈放大器 一.实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项指标的影响。 二.实验原理 负反馈在电子电路中的作用:改善放大器的动态指标,如稳定放大倍数,改变输入输出电阻,减小非线性失真和展宽通频带,但同时也会使放大器的放大倍数降低。 负反馈的几种状态:电压串联,电压并联,电流串联,电流并联。 本实验以电压串联为例,分析负反馈对放大器指标的影响。 1.下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压Uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压Uf。主要性能指标如下: (1)闭环电压放大倍数Ar=Av/1+AvFv ,Av为开环放大倍数。

图1为带有电压串联负反馈的两极阻容耦合放大器 (2)反馈系数Fv=RF1/Rf+RF1 (3)输入电阻R1f=(1+AvFv)Rf Rf 为基本放大器的输入电阻 (4)输出电阻Rof=Ro/(1+AvoFv) Ro 为基本放大器的输出电阻Avo为基本放大器Rl=∞时的电压放大倍数。2.本实验还需测量放大器的动态参数,即去掉图1的反馈作用,得到基本放大器电路如下图2 图2基本放大器 三.实验设备与器件 模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。 四.实验内容 1.静态工作点的测量 条件:Ucc=12V,Ui=0V用直流电压表测第一级,第二级的静态工作点。

Us(V) UE(V) Uc(V) Ic(mA) 第一 级 2.81 2.14 7.33 2.00 第二 级 2.72 2.05 7.35 2.00 表3—1 2.测量基本放大器的各项性能指标 实验将图2改接,即把Rf断开后风别并在RF1和RL 上。 测量中频电压放大倍数Av,输入输出电阻Ri和Ro。(1)条件;f=1KH,Us=5mV的正弦信号,用示波器监视输出波形,在输出波形不失真的情况下用交流毫伏表测量Us,Ui,UL计入3—2表 基本放大器Us(mV) Ui(m V) UL(V ) Uo(V) Av Rf(K Ω) Ro(K Ω) 5.0 0.5 0.25 0.48 500 1.11 2.208 负反馈放大器Us(mV) Ui(m V) UL(V ) Uo(V) Avf Rif(K Ω) Rof(K Ω) 5.0 2.3 0.14 0.20 87 8.52 1.028 表3—2 (2)保持Us不变,,断开负载电阻RL,测量空载时的输出电压Uo计入3—2表

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

5.6集成运放的频率响应

5.6 集成运放的频率响应和频率补偿频率响应频率补偿

一、集成运放的频率响应 很大 或gs C C ''π低频特性很好 内部必须接补偿电容上限频率很低 -20dB/十倍频 -40dB/十倍频-900-1800-2700 f /H Z O f φ -1350-450-2250dB A od /lg 20 100 101 103 102 f 0 f c 104 -60dB/十倍频

时 c f f 0f = f 0 时极间电容引起的附加相移为±1800 -900-1800-2700 f /H Z O f φ -1350-450-2250dB A od /lg 20 100 101 103 102 f 0 f c 104 f c :单位增益带宽此时差模增益下降为0dB 电路将产生自激振荡

二、集成运放的频率补偿 频率补偿: 采用一定的手段改变集成运放的频率响应破坏可能产生自激振荡的条件 使电路稳定工作 dB A f f od 0lg 200<= 时,即使0 180 ->=?时,附加相位移或当c f f

-900-1800 00 f O f φ dB A od /lg 20 f 0 f c m G m ?0 lg 20f f od m A G == c f f m =-=? ?0 180为幅值裕度 m G 为相位裕度 m ?0 45 10≥-≤m m dB G ?,一般要求

1. 滞后补偿 滞后补偿:加入补偿电路后, 使运放的幅频特性在大于0dB的频率范围内 只存在一个拐点, 相当于一个RC回路的频率响应 ≥450的要求, 达到φ m 保证电路的稳定性 优点:简单易行 缺点:使频带变窄

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

负反馈放大器

电工电子实验报告 学生姓名: 学生学号: 系别班级: 报告性质: 课程名称:电工电子实验实验项目:负反馈放大器实验地点: 实验日期: 成绩评定: 教师签名:

实验四 负反馈放大器 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验原理 负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。因此,几乎所有的实用放大器都带有负反馈。 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。 1、图4-1为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极上,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 主要性能指标如下 1) 闭环电压放大倍数 V V V Vf F A 1A A += 其中 A V =U O /U i — 基本放大器(无反馈)的电压放大倍数,即开环电压放大 倍数。

图4-1 带有电压串联负反馈的两级阻容耦合放大器 2) 反馈系数 F1 f F1 V R R R F += 3) 输入电阻 R if =(1+A V F V )R i R i — 基本放大器的输入电阻 4) 输出电阻 V VO O Of F A 1R R += R O — 基本放大器的输出电阻 A VO — 基本放大器R L =∞时的电压放大倍数 1) 在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令u O =0,此时 R f 相当于并联在R F1上。 2) 在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T 1 管的射极)开路,此时(R f +R F1)相当于并接在输出端。可近似认为R f 并接在输出端.

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路 实验名称:负反馈放大电路设计 学院:信息工程学院 专业:信息工程班级: 组号:指导教师:田明 报告人:学号: 实验地点 N102 实验时间: 实验报告提交时间: 教务处制

一.实验名称: 负反馈放大电路设计 二.实验目的: 加深对负反馈放大电路原理的理解. 学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法. 三.实验仪器: 双踪示波器一台/组 信号发生器一台/组 直流稳压电源一台/组 万用表一台/组 四.实验容: 设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下: 闭环电压放大倍:30---120 输入信号频率围:1KHZ-------10KHZ. 电压输出幅度≥1.5V 输出电阻≤3KΩ 五.实验步骤: 1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集 成运算负反馈放大电路.

为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。本设计可以采用共发射极-共基极-共集电极放大电路。对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。本设计采用电压并联负反馈形式。 2.设计电路,画出电路图. 下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。 整体原理图如下: 从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

放大器极零点与频率响应

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

常见运算放大电路

运算放大器分类总结

一、通用型运算放大器通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。下面就实验室里也常用的LM358来做一下介绍: LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。: 外观管脚图 它的特点如下: ·内部频率补偿 ·直流电压增益高(约100dB) ·单位增益频带宽(约1MHz) ·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V) ·低功耗电流,适合于电池供电 ·低输入偏流 ·低输入失调电压和失调电流 ·共模输入电压范围宽,包括接地 ·差模输入电压范围宽,等于电源电压范围 ·输出电压摆幅大(0 至Vcc-1.5V)

大信号频率响应大信号电压开环增益 电压跟随器对小信号脉冲的响应 电压跟随器对小信号脉冲的响应 常用电路: (1)、正向放大器 根据虚短路,虚开路,易知:

(2)、高阻抗差分放大器 电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C,因此得到结果: 0 (21)(1) eCeea b (3)、迟滞比较器 将输入电平与参考电平作比较,根据虚短路,虚开路有: 将输入电平与参考电平作比较,根据虚短路,虚开路有: 二、高精度运算放大器 所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。 高精度运算放大器的运用范畴很广,在产业领域中可用于量测仪器、控

负反馈放大器实验报告

负反馈放大器 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验仪器 直流电源、函数信号发生器、双踪示波器、频率计、交流毫伏表、直流电压表、晶体三极管、电阻器若干、电容器若干。 三、实验原理 负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如放大稳定倍数,改变输入、输出电阻,减小非线性失真和展宽通频等。因此,几乎所有的实用放大器都带有负反馈。 1.图为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 主要性能指标如下: 1、闭环电压增益 V V V VF F A 1A A += i O V V V A = ——基本放大器(无反馈)的电压增益,即开环电压增益。 1+AVFV ——反馈深度,它的大小决定了负反馈对放大电路性能改善的程度。 2、反馈系数 F1 f F1 V R R R F += 3、输入电阻 R if = (1+A V F V )R i R i ——基本放大器的输入电阻 4、输出电阻 V VO O Of F A 1R R += R o ——基本放大器的输出电阻 A vo ——基本放大器∞=L R 时的电压增益

带有电压串联负反馈的两级阻容耦合放大器 2、本实验还需要测量基本放大器的动态参数,怎样实现无反馈而得到基本放大器呢?不能简单地断开反馈支路,而是要去掉反馈作用,但又要反馈网络的影响(负载效应)考虑到基本放大器中去,为此: 1)在画基本放大器的输入回路时,因为是电压负反馈,所以可将反馈放大器的输出端交流短路,即令u o=,此时R f相当于并联在R F1上。 2)在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时(R f+R F1)相当于并接在输出端。可近似认为R f并接在输出端。 根据上述规律,就可得到所要求的如图所示的基本放大器。 等效基本放大器 3、输入输出电阻测量 为了测量放大器的输入电阻,电路在被测放大器的输入端与信号源之间串入

负反馈放大器实验报告

负反馈放大器 【实验目的】 1、 加深负反馈对放大器工作性能影响的认识。 2、 掌握负反馈放大器性能指标的测试方法。 【实验仪器】 双踪示波器、低频信号发生器、万用表、直流稳压电源 【实验原理】 1、 基本概念及分类 负反馈放大器就是采用了负反馈措施(即将输出信号的部分或全部通过反馈网络送回输入端,以消弱原输入信号)的放大器。负反馈放大器有电压串联、电压并联、电流串联和电流并联四种基本组态。如图1所示的方框图有: 图1负反馈放大器方框图 01f f x A A x AF = =+ 1B AF =+ B 称为反馈深度。当1D 时,1 f A F ≈ 2、 负反馈放大器对性能的影响 (1)放大倍数的稳定性提高

11f f A A A AF A ??= ? + (2)通频带扩展为原有的(1+AF )倍。 (3)减少非线性失真及抑制噪声。 (4)对输入、输出电阻的影响。 串联负反馈输入电阻增加,并联负反馈输入电阻减小;电压负反馈输出电阻减小,电流负反馈输出电阻减少,电流负反馈输出电阻增大。 【实验内容及步骤】 实验电路如图2所示: 图2负反馈放大器实验电路 1、 调整各级静态工作点 2、 测量负反馈对放大倍数稳定性的影响 (1) 测量基本放大器放大倍数的变化量。 (2) 测量负反馈放大器放大倍数的变化量。 (3) 计算相对变化量。 3、 观测负反馈放大器扩展通频带的作用。 4、 测量负反馈对输入电阻的影响。

【数据记录】 实验数据记录在表1中: 表格1 【数据分析与处理】 由记录的数据可以看出,有反馈时: 6.25%21.5 8 7A A ?== 无反馈时: 20304 6.58%A A ?== 可见增益稳定性提高了,但并不理想,考虑到实验条件,示波器显示不准,读数有误差应为主要原因。 【总结】 由这次试验可明显得到以下结论: 1、 引入负反馈会牺牲增益;

几种常用集成运算放大器的性能参数

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

运算放大器稳定性及频率补偿学习报告

信息科学与技术学院 模拟CMOS集成电路设计——稳定性与频率补偿学习报告 姓名: 学号: 二零一零年十二月

稳定性及频率补偿 2010-12-3 一、自激振荡产生原因及条件 1、自激振荡产生原因及条件 考虑图1所示的负反馈系统,其中β为反馈网络的反馈系数,并假定β是一个与频率无关的常数,即反馈网络由纯电阻构成,不产生额外的相移(0β?= );H (s )为开环增益,则()H s β为环路增益。所以,该系统输入输出之间的相移主要由基本放大电路产生。 图1 基本负反馈系统 该系统的闭环传输函数(即系统增益)可写为: ()()1() Y H s s X H s β=+ 由上式可知,若系统增益分母1()H s j βω==-1,则系统增益趋近于∞,电路可以放大自身的噪声直到产生自激振荡,即:如果1()H j βω=-1,则该电路可以在频率1ω产生自激振荡现象。则自激振荡条件可表示为: 1|()|1H j βω= 1()180H j βω∠=- 注意到,在1ω时环绕这个环路的总相移是360 ,因为负反馈本身产生了180 的相移,这360 的相移对于振荡是必需的,因为反馈信号必须同相地加到原噪声信号上才能产生振荡。为使振荡幅值能增大,要求环路增益等于或者大于1。所以,负反馈系统在1ω产生自激振荡的条件为: (1)在该频率下,围绕环路的相移能大到使负反馈变为正反馈; (2)环路增益足以使信号建立。 2、重要工具波特图 判断系统是否稳定的重要工具是波特图。波特图根据零点和极点的大小表示一个复变函数的幅值和相位的渐进特性。波特图的画法: (1)幅频曲线中,每经过一个极点P ω(零点Z ω),曲线斜率以-20dB/dec(+20dB/ dec)变化; (2)相频曲线中,相位在0.1P ω(0.1Z ω)处开始变化,每经过一个极点P ω(零点Z ω),相位变化-45 (±45 ),相位在10P ω(10Z ω)处变化-90 (±90 ); (3)一般来讲,极点(零点)对相位的影响比对幅频的影响要大一些。

负反馈放大电路性能测试实验报告

电压串联负反馈放大电路 一、实验目的 1.加深理解负反馈对放大电路性能的影响 2.掌握放大电路开环与闭环特性的测试方法 二、预习要求 1.复习电压串联负反馈的有关章节,熟悉电压串联负反馈电路的工作原理以及对放大电路性能的影响。 2.估算图3.1所示电路在有反馈和无反馈时的电压放大倍数的大小。设==50,Rp=60K。 3.估算图3.1所示电路在有反馈和无反馈时的输入电阻和输出电阻。 4.自拟实验记录表格。 三、实验元、器件 模拟电子线路实验箱一台双踪示波器一台 万用表一台连线若干 其中,模拟电子线路实验箱用到信号发生器、直流稳压电源模块,元器件模组以及“电压串联负反馈放大电路”模板。 四、实验原理与参考电路 1.参考电路如图3-1所示。

负反馈有四种类型:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。本实验电路由两级共射放大电路引入电压串联负反馈,构成负反馈放大器。其中反馈电阻RF=10KΩ。 2.电压串联负反馈对放大器性能的影响 (1)引入负反馈降低了电压放大系数 式中,是反馈系数,,是放大器不引入级间反馈时的电压放大倍数(即,但要考虑反馈网络阻抗的影响),其值可由图3-2所示的交流等效电路求出。 设,则有

式中:第一级交流负载电阻 第二级交流负载电阻 从式中可知,引入负反馈后,电压放大倍数比没有负反馈时的电压放大倍数降低了()倍,并且愈大,放大倍数降低愈多。 (2)负反馈可提高放大倍数的稳定性

该式表明:引入负反馈后,放大器闭环放大倍数的相对变化量比开环放大倍数的相对变化量减少了(1 AF)倍,即闭环增益的稳定性提高了(1 AF)倍。 (3)负反馈可扩展放大器的通频带 引入负反馈后,放大器闭环时的上、下截止频率分别为: 可见,引入负反馈后,向高端扩展了倍,从而加宽了通频带。 (4)负反馈对输入阻抗、输出阻抗的影响 负反馈对输入阻抗、输出阻抗的影响比较复杂。不同的反馈形式,对阻抗的影响不一样。一般而言,串联负反馈可以增加输入阻抗,并联负反馈可以减小输入阻抗;电压负反馈将减小输出阻抗,电流负反馈可以增加输出阻抗。图3-1电路引入的是电压串联负反馈,对整个放大器电路而言,输入阻抗增加了,输出阻抗降低了。它们的增加和降低程度与反馈深度(1 AF)有关,在反馈环内满足 (5)负反馈能减小反馈环内的非线性失真 综上所述,在放大器引入电压串联负反馈后,不仅可以提高放大器放大倍数的稳定性,还可以扩展放大器的通频带,提高输入电阻和降低输出电阻,减小非线性失真。 五、实验内容 1.按图3.1组装电压串联负反馈电路,调整Q1,Q2静态工作点(方法同实验一)。输入端加,2mV的正弦电压,输出接示波器CH2,观察输出电压波形是否有自激振荡,若有自激,可在Q2的基极b2和集电极c2之间加消振电容,其容量约为200pF。确认输出电压无自激,不失真,关闭信号

相关主题
文本预览
相关文档 最新文档