高中数学必修三教案古典概型
- 格式:doc
- 大小:36.00 KB
- 文档页数:3
《古典概型》教学设计(教案)与教学设计说明一.教材分析(一)教材的地位和作用本节课是高中数学必修3第三章概率的第二节古典概型的第一课时,是在学生学习了随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,他的引入避免了大量的重复试验,而且得到的是概率的准确值,学习它有利于理解概率的概念,有利于解释生活中的一些问题。
同时古典概型也是后面学习几何概型、条件概率的基础,因此在教材中有着承上启下的作用,在概率论中占有重要的地位。
(二)教学目标根据新课改理念,以教材为背景,设计本节课的教学目标如下:1、知识与技能目标:(1)理解并掌握古典概型的概念及其概率计算公式;(2)会用列举法计算一些随机事件所含的基本事件的个数。
2、过程与方法目标:通过两个课前模拟实验让学生理解古典概型的特征;通过观察类比各个试验结果让学生归纳总结出古典概型概率计算公式,体现了化归的重要思想;使学生掌握用列举法,及用数形结合思想和分类讨论的思想解决概率计算问题。
3、情感态度与价值观目标:通过古典概型这一数学模型的学习,使学生对现实生活中的一些数学问题进行思考和判断,发展学生数学应用意识,提高学习兴趣,在不同的探究活动中形成锲而不舍的探究精神。
3.教学重点,难点教学重点:古典概型的概念及其概率计算公式的应用;教学难点:古典概型的概念及基本事件个数的判断.二.学情分析高一学生已经具备了一定的归纳、猜想能力,但在数学的应用意识和能力方面尚需进一步培养.通过前面的学习,学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式,这三者形成了学生思维的“最近发展区”.多数学生对数学学习有一定的兴趣,因此能够积极主动参与自主学习,合作探究,讨论交流,但由于学生各方面能力发展不够均衡,仍有小部分学生这方面能力需要加强.三.教法学法分析结合新课改教学理念,为了更有效的实现教学目标,教学中我采用模拟实验、制作科学小视频、自主学习、合作探究、讨论交流,分组展示、质疑的教法和学法,尽可能的增加学生的课堂参与程度,真正做到学生是课堂的主人,教师是课堂的组织者、设计者、引导者。
人教版高中必修3(B版)3.2.1古典概型教学设计一、教学目标1.了解概率基本概念和古典概型;2.掌握古典概型求解计算方法;3.能够运用古典概型求解实际问题。
二、教学重难点1.古典概型的概念和计算方法;2.古典概型在实际问题中的应用。
三、教学内容和教学步骤1. 古典概型(1)基本概念•概率的基本概念:假设在一定的条件下,某事件发生的可能性大小。
概率的大小介于0和1之间。
•古典概率:又叫正向概率,是指在理论条件已经确定的前提下,事件发生的可能性。
•古典概型:又叫等可能概型,是指每次试验中,所有基本事件发生的可能性相等。
(2)求解方法•古典概型求解方法:–等可能性原理;–分类统计法。
(3)应用•古典概型的应用场景:–筛子、扑克牌等游戏类问题;–球、盒、袋等装有物品的容器类问题;–排队问题等。
2. 教学步骤(1)引入知识通过教师提问,了解学生对概率的基本概念的掌握程度。
(2)讲解知识点讲解古典概型的基本概念、计算方法、以及应用场景。
(3)练习提供古典概型的练习题,让学生通过练习深入理解和掌握古典概型的概念和计算方法。
(4)拓展针对学生关注点和问题,提供拓展阅读材料,让学生更深入地了解古典概型的应用场景。
四、教学评价通过课堂小测验、作业、期中/期末考试等方式进行教学评价,以检验学生对古典概型的理解和掌握程度。
同时通过教师和学生的反馈,对教学进行评价和反思。
五、教学资源•人教版高中数学(B)教材;•练习题、复习资料;•古典概型案例分析;•录屏视频及参考资料。
第一课时 3.2 古典概型教学要求:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.教学重点:理解基本事件的概念、理解古典概型及其概率计算公式.教学难点:古典概型是等可能事件概率.教学过程:一、复习准备:1. 回忆基本概念:必然事件,不可能事件,随机事件(事件).(1)必然事件:必然事件是每次试验都一定出现的事件.不可能事件:任何一次试验都不可能出现的事件称为不可能事件.(2)随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.二、讲授新课:1.教学:基本事件(要正确区分事件和基本事件)定义:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件.基本事件的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,将所有的结果都列出来.2. 教学:古典概型的定义古典概型有两个特征:(1)试验中所有可能出现的基本事件只有有限个;(2)各基本事件的出现是等可能的,即它们发生的概率相同.我们称具有这两个特征的概率称为古典概率模型(classical models of probability)简称古典概型注意:在"等可能性"概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.例2:掷两枚均匀硬币,求出现两个正面的概率.取样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.这里四个基本事件是等可能发生的,故属古典概型.n=4, m=1, P=1/ 4对于古典概型,任何事件的概率为:AP(A)=包含的基本事件的个数基本事件的总数P120例2:(关键:这个问题什么情况下可以看成古典概型的)P120例3:(要引导学生验证是否满足古典概型的两个条件)3. 小结:古典概型的两个特点:有限性和等可能性三、巩固练习:1. 练习:在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(1)两件都是次品的概率;(2)2件中恰好有一件是合格品的概率;(3)至多有一件是合格品的概率(分析:这里出现的结果是等可能性的,因此可以用古典概型.)2.连续向上抛掷两次硬币,求至少出现一次正面的概率.(分析:这一个不是等可能的.)3.一次投掷两颗骰子,求出现的点数之和为奇数的概率.4 作业:①教材P127第2题,②教材P128.第4题第二课时 3.2.2 (整数值)随机数(randon numbers)的产生教学要求:让学生学会用计算机产生随机数.教学重点:初步体会古典概型的意义.教学难点:设计和运用模拟方法近似计算概率.教学过程:一、复习准备:回忆古典概型的两个特征:有限性和等可能性.二、讲授新课:1. 教学:例题P122例4:假设储蓄卡的密码由4位数组成,每个数字可以是0,1,2,……,9十个数字中的任意一个,假设一个人完全忘记了自己的密码,问他到自动取款机上试一次密码就能取到钱的概率是多少?P122例5:某种饮料每箱装配听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的几率有多大?2. 教学:随机数的产生(教师带着学生用计算器操作)①如何用计算器产生随机数:随机函数:REND(a,b)产生从整数a到整数b的取整数值的随机数.②如何用计算机产生随机数:在Excel 执行RANDBETWEEN函数或者查看P95的随机数表. P126例6,天气预报说,在今后的三天中,每一天下雨的概率均为040。
高中高三数学古典概型教案教学目标:
1. 理解古典概型的基本概念和应用。
2. 解决实际问题中的概率计算。
3. 提高学生的数学思维和应用能力。
教学重点:
1. 古典概型的定义和特点。
2. 古典概型在实际问题中的应用。
3. 概率计算和概率分布。
教学难点:
1. 复杂问题的古典概型解题方法。
2. 概率计算过程中的逻辑性。
教学准备:
1. 教师准备课件和教学素材。
2. 学生准备相关教材和笔记。
教学过程:
一、导入(5分钟)
教师简要介绍古典概型的概念和应用,并提出学习目标。
二、知识讲解(20分钟)
1. 古典概型的定义和特点。
2. 古典概型的应用举例。
3. 概率计算公式和概率分布。
三、示范演练(15分钟)
教师通过几个案例演示古典概型的解题方法和计算过程。
四、分组讨论(15分钟)
学生分组讨论并解决几个古典概型的实际问题。
五、小结(5分钟)
教师复习本节课的重点内容,并总结学习收获。
六、作业布置(5分钟)
布置相关练习和作业,巩固学生对古典概型的理解和运用能力。
教学反思:
本节课通过理论讲解、示范演练和实际问题解决的方式,帮助学生深入理解古典概型的概念和应用,提高了他们的数学思维和实际问题解决能力。
在教学中要注重培养学生的逻辑推理能力和分析问题的能力,引导他们灵活运用数学知识解决实际问题。
高中数学古典概型教案大全在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。
古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
接下来是小编为大家整理的高中数学古典概型教案大全,希望大家喜欢!高中数学古典概型教案大全一古典概型一、目标引领1.理解随机事件和古典概率的概念?.2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.重点及难点重点是求随机事件的概率,难点是如何判断一个随机事件是否是古典概型,搞清随机事件所包含的基本事件的个数及其总数.二、自学探究在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验,试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成30次(最好是整十数),最后由课代表汇总.试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成30次,最后由课代表汇总.三、合作交流在我们所做的每个实验中,有几个结果,每个结果出现的概率是多少?学生回答:在试验一中结果只有两个,即“正面朝上”和“反面朝上”,并且他们都是相互独立的,由于硬币质地是均匀的,因此出现两种结果的可能性相等,即它们的概率都是 .在试验二中结果有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是相互独立的,由于骰子质地是均匀的,因此出现六种结果可能性相等,即它们的概率都是 .引入新的概念:基本事件:我们把试验可能出现的结果叫做基本事件.古典概率:把具有以下两个特点的概率模型叫做古典概率.(1)一次试验所有的基本事件只有有限个.例如试验一中只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.试验二中结果有六个,即有六个基本事件.(2)每个基本事件出现的可能性相等.试验一和试验二其基本事件出现的可能性均相同.随机现象:对于在一定条件下可能出现也可能不能出现,且有统计规律性的现象叫做随机现象.试验一抛掷硬币的游戏中,可能出现“正面朝上”也可能出现“反面朝上”,这就是随机现象.随机事件:在概率论中,掷骰子、转硬币……都叫做试验,试验的结果叫做随机事件.例如掷骰子的结果中“是偶数”、“是奇数”、“大于2”等等都是随机事件.随机事件“是偶数”就是由基本事件“2点”、“4点”、“6点”构成.随机事件一般用大写英文字母A、B等来表示.必然事件:试验后必定出现的事件叫做必然事件,记作 .例如掷骰子的结果中“都是整数”、“都大于0”等都是必然事件.不可能事件:实验中不可能出现的事件叫做不可能事件,基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.四、精讲点拨例1:从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?解:有ab,ac,ad,bc,bd,cd.例2:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概率吗?为什么?答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概率的第一个条件.高中数学古典概型教案大全二课题古典概型课型高一新授课教学目标理解古典概型及其概率计算公式,并能计算有关随机事件的概率教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。
古典概型的教案【篇一:古典概型教学设计】一、教学背景分析(一)本课时教学内容的功能和地位本节课内容是普通高中课程标准实验教科书人教a版必修3第三章概率第2节古典概型的第一课时,主要内容是古典概型的定义及其概率计算公式。
从教材知识编排角度看,学生已经学习完随机事件的概念,概率的定义,会利用随机事件的频率估计概率,学习了古典概型之后,学生还要学习几何概型,古典概型的知识在课本当中起到承前启后的作用。
古典概型是一种特殊的概率模型。
由于它在概率论发展初期曾是主要的研究对象,许多概率的最初结果也是由它得到的,因此,古典概型在概率论中占有重要地位,是学习概率必不可少的。
学习古典概型,有利于理解概率的概念,有利于计算事件的概率;为后续进一步学习几何概型,随机变量的分布等知识打下基础;它使学生进一步体会随机思想和研究概率的方法,能够解决生活中的实际问题,培养学生应用数学的意识。
(二)学生情况分析(所授对象接受知识情况和对本教学内容已知的可能情况)1、学生的认知基础:学生在初中已经对随机事件有了初步了解,并会用列表法和树状图求等可能事件的概率。
在前面的随机事件的概率一节中,已经掌握了用频率估计概率的方法,即概率的统计定义。
了解了事件的关系与运算,尤其是互斥事件的概念,以及概率的性质和概率的加法公式。
这些知识上的储备为本节课的基本事件的概念理解和古典概型的概率公式的推导打下了基础。
学生在前面的学习中熟悉了大量生活中的随机事件的实例,对于掷硬币,掷骰子这类简单的随机事件的概率可以求得。
2、学生的认知困难:我调查了初中的数学老师,和高一的学生对这部分知识的理解,发现学生初中学习了等可能事件的概率,对简单的等可能事件可计算其概率,但没有模型化,所以造成学生只知其然,不知其所以然。
根据以往的教学经验,如果不对概念进行深入的理解,学生学完古典概型之后,还停留在原有的认知水平上,那么,由于概念的模糊,会导致其对复杂问题的计算错误。
人教版高中必修3古典概型教学设计《人教版高中必修3古典概型教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标:1、知识与技能目标⑴理解等可能事件的概念及概率计算公式;⑵能够准确计算等可能事件的概率。
2、过程与方法根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
教学重点等可能事件的概念及等可能事件概率公式的简单应用。
教学难点判断一个试验是否为等可能事件。
教学方法探究式和启发式教学方法。
教具:多媒体课件和自制教具。
教学过程一、温故知新,提出问题上节课我们学习了随机事件及其概率,现在请大家思考下面两个问题:1、什么是随机事件?2、什么是随机事件A的概率?强调:对于概率的定义,我们可以从以下三方面来理解:1、概率从数量上反映了一个事件发生的可能性的大小,它可以做为我们决策的理论依据。
问大家两个问题:①福利彩券一等奖的资金是多少?②中一等奖的概率是多少?有没有人算过?(因此,买彩券只能做为我们生活中的一种娱乐,而不可以做为主题投资)2、概率与频率的区别:一定条件下,事件的概率是一个确定的值,而频率则是随机变化的,在概率附近摆动。
3、概率的定义,实际上也是求一个事件概率的基本方法:即进行大量重复试验,用事件发生的频率近似做为事件的概率。
我们知道“大量重复试验”在实践中操作起来是很困难的。
有人要问了:是不是随机事件的概率只有通过大量重复试验才能求得?有没有一些或一类随机事件,不进行大量重复试验也能求出其概率呢?这也是今天我们要研究的问题。
课题§3.2.1古典概型项目内容理论依据或意图教材地位及作用本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下学习的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,有利于增强学生学习数学的兴趣。
教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。
教学难点如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。
教材分析教学目标1.知识与技能(1)理解基本事件概念;(2)理解古典概型概念,掌握古典概型概率计算公式;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2.过程与方法根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,小组合作探究,观察类比分析各个试验,归纳总结出古典概型的概率计算公式,体现了从特殊到一般,化归的等重要数学思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界。
适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。
古典概型教案古典概型教案4篇古典概型教案1一,教材的地位和作用本节课是中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,文科生不学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
二,教学目标1、知识目标(1)理解古典概型及其概率计算公式,(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2、能力目标根据本节课的内容和学生的实际水平,通过抽牌游戏让学生理解古典概型的`定义,引领学生探究古典概型的概率计算公式,归纳出求基本事件数的方法-列举法。
3 、情感目标树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界, 使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
三,教学的重点和难点重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
难点:如何判断一个试验的概率模型是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四,教具计算机多媒体,黑板,粉笔,教棒五,教学方法探究式与讲授式相结合六,教学过程前面我们学习了随机事件及其概率,今天我们将学习古典概型,古典概型是最简单,而且最早被人们所认识的一种概率模型,大约在1812年著名数学家拉普拉斯就已经注意并研究了古典概型概率的计算。
下面先看一个抽牌游戏。
抽牌游戏:有红桃1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红桃的概率有多大?古典概型教案2一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P(A)=(3)掌握列举法、列表法、树状图方法解题2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.教学设想:1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3 (10)师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;(2)古典概型的概率计算公式:P(A)=议一议】下列试验是古典概型的是?①.在适宜条件下,种下一粒种子,观察它是否发芽.②.某人射击5次,分别命中8环,8环,5环,10环,0环.③.从甲地到乙地共n条路线,选中最短路线的概率.④.将一粒豆子随机撒在一张桌子的桌面上,观察豆子落下的位置.古典概型的判断1).审题,确定试验的'基本事件.(2).确认基本事件是否有限个且等可能什么是基本事件在一个试验可能发生的所有结果中,那些不能再分的最简单的随机事件称为基本事件。
⾼中数学必修三:3.1《古典概型》教学设计【教学设计、中学数学】《古典概型》教学设计《古典概型》教学设计⼀、教材分析:本节课是北师⼤版⾼中数学必修3第三章概率的第⼆节第⼀课时,它处在学⽣学习随机事件概率之后,学习模拟⽅法——概率的应⽤之前。
古典概型作为⼀种特殊的数学模型,它是概率问题中⼀种最基本的概率模型,在概率论中有相当重要的地位。
学好本节古典概型能帮助学⽣更加深刻的理解概率的概念,可以为其它概率学习奠定基础。
⼆、教学⽬标:1.知识与技能理解古典概型及其概率计算公式。
能⽤古典概型概率计算公式解决相关简单问题。
会⽤列举法、做树状图等⽅法计算⼀些较复杂的古典概型的概率。
2.过程与⽅法结合学⽣⽣活经验,通过两个实验的观察让学⽣理解古典概型的特征:试验结果的有限性和每⼀个试验结果出现的等可能性。
观察类⽐骰⼦试验,归纳总结出古典概型的概率计算公式,体现了归纳的重要思想,掌握列举法,学会运⽤数形结合分类讨论的思想解决概率的计算问题。
3.情感态度价值观概率教学的⽬的是让学⽣了解随机现象与概率的意义,加强与⽣活实际联系,以科学的态度评价⾝边的⼀些随机现象,并能将所学知识应⽤于⽣产⽣活及社会实践中。
在形成实事求是的科学世界观的基础上建⽴⾼尚的⼈⽣观,摒弃投机⼼理,远离赌博等不健康活动。
三、重点难点:1.重点是理解古典概型的概念及利⽤古典概型概率计算公式求解随机事件的概率。
2.由于学⽣还没有学习排列组合,难点是如何判断⼀个试验是否是古典概型,及列举较复杂古典概型问题中基本事件。
四、教学过程1.辨析必然事件、不可能事件、随机事件等概念 2.随机事件的频率和概率的区别与联系3.⾃学课本130——131页内容,明确古典概型的特征4.举出⽣活中古典概型的例⼦(不少于两个)5.⽤古典概型的特征说明⾃⼰在上⼀题举例中的概率特征是否符1.⼩组合作学习132页例12.说出题中所述随机事件的概率特征题中⽤列表得出试验的所有可能结果,说说列表的原理。
课题:古典概型教材:新课标人教版《数学》必修3一. 教学目标1.知识与技能(1)通过试验结果的分析理解基本事件的概念及特点。
(2)理解古典概型及其概率计算公式。
(3)学会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2.过程与方法(1)探究分析试验结果,掌握基本事件的两个特点。
(2)通过试验对比让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性。
(3)观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想。
(4)掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观(1) 适当地增加学生合作学习交流的机会,培养学生感受与他人合作精神。
(2) 经历公式的推导过程,体验由特殊到一般的数学思想方法,在探究活动中形成锲而不舍的钻研精神和科学态度。
(3)用现实意义的实例,培养学生以科学的观点评价身边的一些随机现象的能力,激发其学习兴趣,培养勇于探索、善于发现的创新精神。
二. 教学重点、难点1.教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。
2.教学难点如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
三. 教学方法和手段1.教学方法:引导发现和归纳概括相结合根据本节课的特点,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2.教学手段:多媒体辅助教学高一数学“古典概型”教案说明古典概型是高中数学人教A版必修3第三章概率第2节的内容。
古典概型是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种理想的数学模型,也是一种最基本的概率模型。
它的引入避免了大量的重复试验,而且得到的是概率准确值,同时它也是后面学习其它概率的基础,起到承前启后的作用。
数学必修3 第三章古典概型教学方法:在教学中以问题为核心,采取引导发现法,通过“提出问题--思考问题--解决问题”的教学过程,借助实物试验、多媒体课件引导学生进行试验探究、观察类比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
学生学法:学生通过“试验观察--思考探究--归纳总结”的自主学习解惑过程,体验了从特殊到一般的数学思维过程,体会学以致用和数学的严谨之美,增强学习的兴趣和信心.。
一、提出问题、情景引入二、类比归纳、引出概念三、归纳总结、探究公式四、例题分析、加深理解五、练习反馈、强化目标六、总结概括、提炼精华课前模拟实验:教学活动:老师布置学生分组实验,并提出3个问题;学生实验并回答问题,科代表统计,汇总结果,和问题答案。
1、课前布置任务:以数学小组(6人一组)为单位,完成下面两个模拟试验①掷一枚质地均匀的硬币的试验(至少投掷20次)②掷一枚质地均匀的骰子的试验(至少投掷60次)2、回答下列问题:①这两个试验出现的结果分别有几个?②结果之间都有什么特点?出现的频率是多少?估算出现的概率是多少?③用模拟试验的方法来求某一随机事件的概率的利与弊设计意图:1、通过掷硬币与掷骰子两个接近于生活的试验的设计,激发学生的学习兴趣;2、引导学生试验探究和观察类比,找出共性,总结归纳出基本事件的特点,为引出古典概型的定义做铺垫;3、鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力教学活动:老师根据实验结果提出2个问题,学生讨论回答问题;师生共同归纳基本时事件的概念;再通过两个练习加深对概念的理解。
问题:1、掷硬币实验结果”正面“、”反面“会同时出现吗?2、掷骰子试验结果”1点“、”2点“、……”6点“会同时出现吗?3、掷骰子试验中,随机试验“出现奇数点”包含哪些结果?设计意图:1、通过对试验结果分析提问,引导学生自己总结概括基本事件的特点;2、通过练习进一步加深对基本事件这一概念的理解;例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?教学活动:由学生写出答案,再小组讨论得出正确答案,最后师生总结方法和注意事项设计意图:1、通过举例,进一步加深对基本事件的理解,为学习古典概型的定义做铺垫。
3.2 古典概型一、教学目标1.核心素养通过学习古典概型,初步形成基本的数学抽象和数学建模力.2.学习目标(1)理解基本事件的特征.(2)会用古典概型公式解决实际实际问题.(2)掌握利用计算器(计算机)产生均匀随机数的方法.3.学习重点理解古典概型的特点,会用古典概型解决随机事件出现的概率如何计算问题.4.学习难点基本事件的等可能性.二、教学设计(一)课前设计1.预习任务任务1阅读P125-P127,思考:基本事件有什么特点?古典概型有什么特点?如何应用?任务2阅读P130,思考:随机数是如何产生?如何利用计算机(器)进行随机摸拟。
2.预习自测1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有()A.1个B.2个C.3个D.4个解:C2.下列不是古典概型的是()A.从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小B.同时掷两颗骰子,点数和为7的概率C.近三天中有一天降雨的概率D.10个人站成一排,其中甲、乙相邻的概率解:C3.甲、乙、丙三名同学站成一排,甲站在中间的概率是()A.16 B.12 C.13 D.23解:C(二)课堂设计1.知识回顾(1)频率的求法.(2)事件的关系与运算.(3)概率的几个基本性质.2.问题探究问题探究一基本事件有什么特点?(★▲)●活动一创设实验,学会表述基本事件抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?抛掷两枚可能的结果:(正,正),(正,反),(反,正),(反,反);抛掷三枚可能的结果:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).●活动二反思实例,理解基本事件的特点思考一:基本事件之间有何关系?基本事件的并事件又是什么?基本事件的总数有什么特点?两个基本事件的交事件为不可能事件,并事件为必然事件,基本事件的个数为有限个.思考二:为何上述实验中,为何要求所抛掷的两枚硬币是均匀的呢?为了使得基本有事件出现的可能性是等可能性的.如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型.也即是说,一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为n1●活动三: 创设反例,深化古典概型的理解思考:下列说法正确吗?为什么?(1)从所有整数中任取一个数的试验中“抽取一个整数”是古典概型吗?(2)在射击练习中,“射击一次命中的环数”是古典概型吗?为什么?(1)不是,因为有无数个基本事件.(2)不是,因为命中的环数的可能性不相等. 由上述例子,不难看出古典概型特点:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等;问题探究二在抛掷一次硬币试验中,如何求正面朝上及反面朝上的概率?出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”).由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1,因此P(“正面朝上”)=P(“反面朝上”)=1 2.一般地,对于任何事件A,P(A)=A包含的基本事件的个数基本事件的总数.例1单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,则他答对的概率是多少?【知识点:古典概率的求法】详解:由于考生随机地选择一个答案,所以他选择A,B,C,D哪一个选项都有可能,因此基本事件总数为4,设答对为随机事件A,由于正确答案是唯一的,所以事件A只包含一个基本事件,所以P(A)=1 4.点拨:一次选择中,A,B,C,D四个选项,每个选项被选到的都是等可能的.例2三个人玩传球游戏,每个人都等可能地传给另两人(不自传),若从A发球算起,经4次传球又回到A手中的概率是多少?【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】详解:记三人为A、B、C,则4次传球的所有可能可用树状图方式列出:如下图.每一个分支为一种传球方案,则基本事件的总数为16个,而又回到A手中的事件个数为6个,根据古典概型概率公式得P=616=38.点拨:事件个数没有很明显的规律,而且涉及的基本事件又不是太多时,我们可借助树状图法直观地将其表示出来,有利于条理地思考和表达.例3.设M={1,2,3,4,5,6,7,8,9,10},任取x,y∈M,x≠y.求x+y是3的倍数的概率.【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】详解:利用平面直角坐标系列举,如图所示.由此可知,基本事件总数n=1+2+3+4+5+6+7+8+9=45.而x+y是3的倍数的情况有m=1+2+4+4+3+1=15(种).故所求事件的概率mn=13.点拨:基本事件是古典概型的难点,常借助于树形图,有序数对(组)等来表述基本事例4.做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第2颗骰子出现的点数.写出:(1)试验的基本事件;(2)事件“出现点数之和大于8”;(3)事件“出现点数相等”;(4)事件“出现点数之和等于7”.【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】详解:(1)这个试验的基本事件共有36个,如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).(2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)“出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)“出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).点拨:此题的难点依然是如何合理的去表述基本事件,使其基本事件不重不漏. 问题探究三如何用随机模拟的方法?●活动一梳理自学任务,展示随机数形成过程思考1:对于某个指定范围内的整数,每次从中有放回随机取出的一个数都称为随机数. 那么你有什么办法产生1~20之间的随机数.抽签法思考2:随机数表中的数是0~9之间的随机数,你有什么办法得到随机数表?我们可以利用计算器产生随机数,其操作方法见教材P130及计算器使用说明书.我们也可以利用计算机产生随机数,用Excel演示:(1)选定Al格,键人“=RANDBETWEEN(0,9)”,按Enter键,则在此格中的数是随机产生数;(2)选定Al格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A1至A100的数均为随机产生的0~9之间的数,这样我们就很快就得到了100个0~9之间的随机数,相当于做了100次随机试验.对于古典概型,我们可以将随机试验中所有基本事件进行编号,利用计算器或计算机产生随机数,从而获得试验结果.这种用计算器或计算机模拟试验的方法,称为随机模拟方法或蒙特卡罗方法(Monte Carlo).你认为这种方法的最大优点是什么?不需要对试验进行具体操作,可以广泛应用到各个领域.●活动二应用于实际,突出随机数随机数模拟方法的优点.天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟方法估计这三天中恰有两天下雨的概率约是多少?要点分析:(1)今后三天的天气状况是随机的,共有四种可能结果,每个结果的出现不是等可能的.(2)用数字1,2,3,4表示下雨,数字5,6,7,8,9,0表示不下雨,体现下雨的概率是40%.(3)用计算机产生三组随机数,代表三天的天气状况.(4)产生30组随机数,相当于做30次重复试验,以其中表示恰有两天下雨的随机数的频率作为这三天中恰有两天下雨的概率的近似值. Excel演示(5)据有关概率原理可知,这三天中恰有两天下雨的概率P=3×0.42×0.6=0.288.3.课堂总结【知识梳理】(1)知道基本事件的特点.(2)知道古典概率模型的特点(3)应用古典概型解决随机事件出现的概率如何计算问题【重难点突破】(1)从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I,基本事件的个数n就是集合I的元素个数,事件A是集合I的一个包含m个元素的子集.故P(A)=card Acard I=mn.(2)基本事件处理方法①列举法:适合于较简单的试验.②树状图法:适合于较为复杂的问题中的基本事件的探求.4.随堂检测1.下列是古典概型的是()A .任意抛掷两枚骰子,所得点数之和作为基本事件时B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C .从甲地到乙地共n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币至首次出现正面为止【知识点:古典概率的特点;数学思想:数学抽象】解:C2.用1,2,3组成无重复数字的三位数,这些数能被2整除的概率是( ) A.16 B.12 C.13 D.23【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】答案 C 用1,2,3组成的无重复数字的三位数共6个,分别为123,132,213,231,312,321,其中能被2整除的有132,312这2个数,故能被2整除的概率为13.3.从甲、乙、丙、丁四个人中选两名代表, 甲被选中的概率是( )A.16B.12C.13D.23【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解: C 基本事件有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲共六个,甲站在中间的事件包括乙甲丙、丙甲乙共2个,所以甲站在中间的概率:P =26=13.4.一袋中装有大小相同的八个球,编号分别为1,2,3,4,5,6,7,8,现从中有放回地每次取一个球,共取2次,记“取得两个球的编号和大于或等于14”为事件A ,则P(A)等于( )A.132B.164C.332D.364【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解:C 事件A 包括(6,8),(7,7),(7,8),(8,6),(8,7),(8,8)这6个基本事件,由于是有放回地取,基本事件总数为8×8=64(个),∴P(A)=664=332.5.有五根细木棒,长度分别为1,3,5,7,9 (cm),从中任取三根,能搭成三角形的概率是( )A.320B.25C.15D.310【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解:D 任取三根共有10种情况,构成三角形的只有3、5、7,5、7、9,3、7、9三种情况,故概率为310.(三)课后作业基础型 自主突破1.下列是古典概型的是( )A.任意抛掷两枚骰子,所得点数之和作为基本事件B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C.从甲地到乙地共n 条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止【知识点:古典概率的特点;数学思想:数学抽象】解:C A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的基本事件是无限的,故B 不是;C 项中满足古典概型的有限性和等可能性,故C 是;D 项中基本事件既不是有限个也不具有等可能性,故D 不是.2.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.14【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解:A 所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反),共有8个,仅有2次出现正面向上的有:(正,正,反),(正,反,正),(反,正,正),共3个.则所求概率为38.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12 B.13 C.14 D.16【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解:B基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2,所以所求概率P=26=13,故选B.4.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a 的概率是()A.45 B.35 C.25 D.15【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解:D设“所取的数中b>a”为事件A,如果把选出的数a,b写成数对(a,b)的形式,则基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15个,事件A包含的基本事件有(1,2),(1,3),(2,3),共3个,因此所求的概率P(A)=315=15.5.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是()A.45 B.35 C.25 D.15【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解: D 从五个数中任意取出两个不同的数,有10种,若取出的两数之和等于5,则有(1,4),(2,3),共有2种,所以取出的两数之和等于5的概率为210=15.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率为()A.45 B.35 C.25 D.15【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解: C 设袋中红球用a表示,2个白球分别用b1,b2表示,3个黑球分别用c1,c2,c3表示,则从袋中任取两球所含基本事件为(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共15个. 两球颜色为一白一黑的基本事件有:(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共6个.∴其概率为615=25.能力型师生共研7.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.318B.418C.518D.618【知识点:古典概率的求法,垂直的条件;数学思想:应用意识能力】解:C正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件,两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于518.8.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.其中“摸出2个黑球”的基本事件有()A.3个B.4个 C .5个 D.6个【知识点:基本事件的特点】解:A由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型. 将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},其中“摸出2个黑球”的基本事件有3个.9.从1,2,3,…,30这30个数中任意选一个数,则事件“是偶数或能被5整除的数”的概率是()A.710 B.35 C.45 D.110【知识点:古典概率的求法;数学思想:分类讨论的思想,应用意识能力】解:B10.从4名同学中选出3人参加物理竞赛,其中甲被选中的概率为()A.14 B.12 C.34D.以上都不对【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解:C4名同学选3名的事件数等价于4名同学淘汰1名的事件数,即4种情况,甲被选中的情况共3种,∴P =34.探究型 多维突破11.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )A .P 10=110P 1B .P 10=19P 1C .P 10=0D .P 10=P 1【知识点:古典概率的求法;数学思想:应用意识能力】解:D 摸球与抽签是一样的,虽然摸球的顺序有先后,但只需不让后人知道先抽的人抽出的结果,那么各个抽签者中签的概率是相等的,并不因抽签的顺序不同而影响到其公平性.所以P 10=P 1.12.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A 、B 、C ,田忌的三匹马分别为a 、b 、c ;三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛优、劣程度可以用以下不等式表示:A>a>B>b>C>c.(1)正常情况下,求田忌获胜的概率;(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A ,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.【知识点:古典概率的求法;数学思想:分类讨论的思想,应用意识能力】解:比赛配对的基本事件共有6个,它们是:(Aa ,Bb ,Cc),(Aa ,Bc ,Cb),(Ab ,Ba ,Cc),(Ab ,Bc ,Ca),(Ac ,Ba ,Cb),(Ac ,Bb ,Ca).(1)经分析:仅有配对为(Ac ,Ba ,Cb)时,田忌获胜,且获胜的概率为16.(2)田忌的策略是首场安排劣马c 出赛,基本事件有2个:(Ac ,Ba ,Cb),(Ac ,Bb ,Ca),配对为(Ac ,Ba ,Cb)时,田忌获胜且获胜的概率为12.自助餐1.甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率是( ) A.13 B.14 C.12 D.无法确定【知识点:古典概率的求法;数学思想:应用意识能力】解:C 共有4个事件“甲、乙同住房间A ,甲、乙同住房间B ,甲住A 乙住B ,甲住B 乙住A ”,两人各住一个房间共有两种情况,所以甲、乙两人各住一间房的概率是12.2.袋中装白球和黑球各3个,从中任取2个,则至多有一个黑球的概率是( ) A.15 B.45 C.13 D.12【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解: B 把白球编号为1,3,5,黑球编号为2,4,6.从中任取2个,基本事件为12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15个.其中至多一个黑球的事件有12个.由古典概型公式得P =1215=45.3.掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118B.19C.16D.112【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】 解:B4.任取一个三位正整数N ,则对数log 2N 是一个正整数的概率是( )A.1225B.3899C.1300D.1450【知识点:古典概率的求法,对数运算;数学思想:应用意识能力】解: C 三位正整数有100~999,共900个,而满足log 2N 为正整数的N 有27,28,29,共3个,故所求事件的概率为3900=1300.5.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A.P 1=P 2<P 3B.P 1<P 2<P 3C.P 1<P 2=P 3D.P 3=P 2<P 1解:B 点数之和为12的事件为(6,6),P (12)=136,同理P (11)=118,P (10)=112.6.在三棱锥的六条棱柱中任意选择两条,则这两条棱是一对异面直线的概率为( )A.120B.115C.15D.16【知识点:古典概率的求法,异面直线;数学思想:数据处理能力,应用意识能力】解: C 在三棱锥的六条棱中任意选择两条,所有的选法共有15种,其中,所选两条棱是一对异面直线的选法有3种,即三棱锥的3对对棱,故所求事件的概率为315=15.7.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解: 15 用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc ,故所求的概率为315=15.8.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解: 14 用列举法知,可重复地选取两个数共有16种可能,其中一个数是另一个数的2倍的有1,2;2,1;2,4;4,2共4种,故所求的概率为416=14.9.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12,则n 的值为________.【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】 解:2 由题意可知:n 1+1+n=12,解得n =2.11.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解:(1)由题意得,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3, 1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为1 9.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为8 9.12.编号分别为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果;②求这2人得分之和大于50的概率.【知识点:古典概率的求法;数学思想:数据处理能力,应用意识能力】解:(1) 4,6,6.(2)①得分在区间[20,30)内的运动员编号为A3,A4,A5,A10,A11,A13,从中随机抽取2人,所有可能的抽取结果有:{A3,A4},{A3,A5},{A3,A10},{A3,A11},{A3,A13},{A4,A5},{A4,A10},{A4,A11},{A4,A13},{A5,A10},{A5,A11},{A5,A13},{A10,A11},{A10,A13},{A11,A13},共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有:{A4,A5},{A4,A10},{A4,A11},{A5,A10},{A10,A11},共5种.所以P(B)=515=13.五、数学视野蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法.这一方法源于美国在第一次世界大战研制原子弹的“曼哈顿计划”.该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城——摩纳哥的Monte Carlo——来命名这种方法,为它蒙上了一层神秘色彩.Monte Carlo方法的基本思想很早以前就被人们所发现和利用.早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”.19世纪人们用投针试验的方法来决定圆周率π.本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能.考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点落于“图形”内,则该“图形”的面积近似为M/N.可用民意测验来作一个不严格的比喻.民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者.其基本思想是一样的.科技计算中的问题比这要复杂得多.比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千.对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Course Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机).Monte Carlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数.以前那些本来是无法计算的问题现在也能够计算了.为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧.另一类形式与Monte Carlo方法相似,但理论基础不同的方法——“拟蒙特卡罗方法”(Quasi-Monte Carlo方法)——近年来也获得迅速发展.我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例.这种方法的基本思想是“用确定性的超均匀分布序列(数学上称为Low Discrepancy Sequences)代替Monte Carlo方法中的随机数序列.对某些问题该方法的实际速度一般可比Monte Carlo方法提出高数百倍,并可计算精确度.蒙特卡罗方法在金融工程学、宏观经济学、计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛.。
古典概型教案7篇古典概型教案篇1一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中全部可能涌现的基本领件只有有限个;2)每个基本领件涌现的可能性相等;(2)掌控古典概型的概率计算公式:p(a)=2、过程与方法:(1)通过对现实生活中详细的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培育规律推理技能;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感立场与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:重点是掌控古典概型的概念及利用古典概型求解随机事项的概率;难点是如何判断一个试验是否是古典概型,分清一个古典概型中某随机事项包含的基本领件的个数和试验中基本领件的总数。
三、教法与学法指导:依据本节课的特点,可以采纳问题探究式学案导学教学法,通过问题导入、问题探究、问题解决和问题评价等教学过程,与同学共同探讨、合作争论;应用所学数学知识解决现实问题。
四、教学过程:1、创设情境:(1)掷一枚质地匀称的硬币的试验;(2)掷一枚质地匀称的骰子的试验。
师生共同探讨:依据上述状况,你能发觉它们有什么共同特点?同学分组争论试验,每人写出试验结果。
依据结果探究这种试验所求概率的特点,尝试归纳古典概型的定义。
在试验(1)中结果只有2个,即正面朝上或反面朝上,它们都是随机事项。
在试验(2)中,全部可能的试验结果只有6个,即涌现1点2点3点4点5点和6点,它们也都是随机事项。
2、基本概念:(看书130页至132页)(1)基本领件、古典概率模型。
(2)古典概型的概率计算公式:p(a)= .3、例题分析:(呈现例题,深刻体会古典概型的两个特征依据每个例题的不同条件,让每个同学找出并回答每个试验中的基本领件数和基本领件总数,分析是否满意古典概型的特征,然后利用古典概型的`计算方法求得概率。
) 例1 从字母a,b,c,d中任意取出两个不同的试验中,有哪些基本领件?分析:为了得到基本领件,我们可以根据某种顺次,把全部可能的结果都列出来。