当前位置:文档之家› 清华大学最优化 第六周作业答案

清华大学最优化 第六周作业答案

清华大学最优化 第六周作业答案
清华大学最优化 第六周作业答案

第六周作业(1)

1. 用对偶单纯形法解下列问题:

12123123123max ..1(3)21,,0x x s t x x x x x x x x x +????=???++≥??≥?

答案:无界

12345123456812345834578min 4352..22331(4)322423320,1,,8j x x x x x s t x x x x x x x x x x x x x x x x x x x j ?++++??+?+?++=??+?+?+=???+?++=??≥=?

"

答案:min (0,0,0,0,3,0,1,10)6f =,

第六周作业(2)

1. 给定下列线性规划问题:

123

123123123min 2..26

44,,0x x x s t x x x x x x x x x ??+++≤+?≤≥

它的最优单纯形表如下表: 1

23453

1112011333121413

0333152606

0333

x x x x x x x ?????? (1) 若右端向量64b ??=????

改为2'4b ??

=????,原来的最优基是否还是最优基?利用原来的最优

表求新问题的最优表。 (2) 若目标函数中1x 的系数由12c =?改为1

c ′,那么1c ′在什么范围内时原来的最优解也是新问题的最优解?

答案:(1)min (2,0,0),4f =?

(2)1

1c ′≤? 2. 考虑下列线性规划问题:

123

123123123max 5513..320

1241090,,0

x x x s t x x x x x x x x x ?++?++≤++≤≥

先用单纯形方法求出上述问题的最优解,然后对原来问题分别进行下列改变,试用原来问题的最优表求新问题的最优解:

(1) 目标函数中3x 系数3c 由13改变为8;

(2) 1b 由20改变为30;

(3) 2b 由90改变为70;

(4) A 的列由112???????改变为05??????

; (5) 增加约束条件:12323550x x x ++≤。

答案:最优解为max (0,20,0),100f =

(1)最优解不变;

(2)max (0,0,9),117f =

(3)max (0,5,5),90f =

(4)最优解不变

(5)max 2550,

,,9522f ??=????

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

运筹学与最优化方法习题集

一.单纯性法 1.用单纯形法求解下列线性规划问题(共 15 分) 12 2121212max 2515 6224..5 ,0 z x x x x x s t x x x x =+≤??+≤??+≤??≥? 2.用单纯形法求解下列线性规划问题(共 15 分) 12 121212max 2322 ..2210 ,0 z x x x x s t x x x x =+-≥-??+≤??≥? 3.用单纯形法求解下列线性规划问题(共 15 分) 1234 123412341234max 24564282 ..2341 ,,,z x x x x x x x x s t x x x x x x x x =-+-+-+≤? ?-+++≤??≥ ? 4.用单纯形法求解下列线性规划问题(共 15 分) 123 123123123123max 2360 210..20 ,,0 z x x x x x x x x x s t x x x x x x =-+++≤??-+≤??+-≤??≥? 5.用单纯形法求解下列线性规划问题(共 15 分) 123 12312123max 224 ..26,,0 z x x x x x x s t x x x x x =-++++≤??+≤??≥? 6.用单纯形法求解下列线性规划问题(共 15 分)

12 121212 max 105349..528 ,0z x x x x s t x x x x =++≤??+≤??≥? 7.用单纯形法求解下列线性规划问题(共 16 分) 12 121212max 254 212..3218 ,0 z x x x x s t x x x x =+≤??≤??+≤??≥?

清华大学运筹学考试

一、不定向选择 1、若线性规划问题有可行解则: A其可行域可能无界 B其可行域为凸集 C至少有一个可行解为基本可行解 D可行域边界上点都为基本可行解 E一定存在某一可行解使目标函数达最优值 F任一可行解均能表示为所有可行域顶点线性组合表示 G某一可行解为最优解必要条件为它是一个基本解。 2、线性规划问题和其对偶问题关系: A对偶问题的对偶问题为原问题 B若原问题无解,其对偶问题有无界解 C若原问题无界解,其对偶问题无解或者无界解 D即使原问题有最优解,其对偶问题也未必有最优解 E原问题目标函数达到最大时,其对偶问题取最小值 F只有原问题达最优解时,其对偶问题才有可行解 G若原问题有无穷多最优解,其对偶问题有无界解。 二、已知线性规划问题,如下: max z=x1+x2-x3 -x1+2x2+x3<=2 st. -2x1+x2-x3<=3 x1,x2,x3>=0 据对偶理论分析此问题有解的情况(最优,无界或无解)三、已知线性规划问题 max z=x1+4x2+x3+2x4 x1+2x2 +x4<=8 x2 +2x4<=6 st. x2+x3+x4<=9 x1+x2+x3 <=6 x1,x2,x3,x4>=0 最优解为(0,2,4,2)据对偶理论找出其对偶问题最优解四、单纯形法解下列线性规划问题 max z=3x1+2x2

x1+2x2<=6 st. 2x1+x2<=8 -x1+x2<=1 x2<=2 x1,x2>=0 1)第一、二、四约束的影子价格为多少? 2)变量x1价值系数增加2,最优解是否变化? 五、运输问题单价表如下,确定总运费最小的调运方案 B1 B2 B3 B4 产量 A1 3 10 3 11 14 A2 2 8 1 9 8 A3 10 6 7 4 18 销量10 12 6 12 40 六、设备更新题:某设备收益r(万元),维修保养费w(万元) 更新费g(万元)与役龄t(年)关系如下: r(t)=10-1/2 t w(t)=1+5/4 t g(t)=1/2+4/5 t 考虑资金占用利率I ,试建立10年更新计划动态规划模型

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

运筹学课程设计-个人学习时间优化分配

个人学习时间优化分配 设计总说明(摘要) 合理的安排时间方案,采取最优化的时间组合,有利于我们充分发挥各个时间阶段的学习效益。同时可以使我们的学习符合日常行为及自身特点,不仅使时间得到有效安排,也使得我们的身心得到和谐。此次,研究分配一天中四个阶段四门课程的学习时间,就是根据学生的身心特点,和各阶段对各课程学习的收获程度,采取获得程度量化的方法,设计出一个最优的时间组合方案,从而获得最大的收获效益。即获得学习的最大价值。 在这个过程中要将运筹学的各种理论知识与具体实际情况相结合。首先是确 定所要研究的问题,考虑所需要的各种数据,根据实际需求确定所需要的数据和模拟量化的数据。将数据整理形成分析和解决问题的具体模型。其次对已得模型利用计算机进行求解,得出方程的最优解。最后结合所研究问题的实际背景,对模型的解进行评价、分析以及调整,并对解的实施与控制提出合理化的建议。 关键词:时间优化,线性规化,最优解,获得效益最大 目录 1.绪论 1.1研究的背景 (3) 1.2研究的主要内容与目的 (3) 1.3研究的意义 (3) 1.4研究的主要方法与思路 (3) 2.理论方法的选择 2.1所研究的问题的特点 (4) 2.2拟采用的运筹学理论方法的特点 (4) 2.3理论方法的适用性及有效性论证 (5) 3.模型的建立 3.1 基础数据的确定 (5) 3.2变量的设定 (6) 3.3目标函数的建立 (6) 3.4限制条件的确定 (6) 3.5模型的建立 (7) 4.模型的求解及解的分析 4.1模型的求解 (7) 4.2解的分析与评价 (9) 5.结论与建议 5.1研究结论 (11)

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

运筹学与最优化方法线性规划案例分析报告

案例:连续投资的优化问题 一、题目: 某企业在今后五年内考虑对下列项目投资,已知:,从第一年到第四年每年年初需要投资,并于次年末收回本利115%。项目A,但规定最大投资额不超B,第三年年初需要投资,到第五年末能收回本利125%项目40万元。过,但规定最大投资额不超,第二年年初需要投资,到第五年末能收回本利140%项目C 30万元。过6%。项目D,五年内每年年初可购买公债,于当年末归还,并加利息问它应如何确定给这些项目的每年投100万元,该企业5年内可用于投资的资金总额为资使得到第五年末获得的投资本利总额为最大? 二、建立上述问题的数学模型的投资额,它们都是待定的年初给项目A,B,C,D, X (i=1.2.3.4.5)为第i设X,X , X iDiB1AiC每年年初均可投资,年末收回本利,固每年的投资额应该等于手中拥未知量。由于项目D 有的资金额。建立该问题的线性规划模型如下: +1.06X+1.40X+1.25XMax Z=1.15X5D 2C4A3B X+X=1000000 (1) 1D1A X+X+X=1.06X (2) 1D2C2A2D X+X+X=1.15X+1.06X (3) 3A 3B 3D 1A 2D s.t. X+X=1.15X+1.06X(4) 3D 4A 4D 2A X=1.15X+1.06X (5)5D 3A4D X<=400000 (6) 3B X<=300000 (7) 2C X , X , X, X>=0 i=1,2,3,4,5 iD1AiCiB 经过整理后如下: Max Z=1.15X+1.40X+1.25X+1.06X5D 2C4A3B X+X=1000000 1D1A-1.06X+ X+X+X =0 2D2A2C1D-1.15X-1.06X+ X+X+X=0 3D3A1A3B2D s.t. -1.15X-1.06X +X+X=0 4D3D4A2A-1.15X-1.06X+ X=0 5D4D3A X<=400000 3B X<=300000 2C i=1,2,3,4,5 , X , X, X>=0 X iDiBiC1A 求解过程以及相应的结果三、Excel中进行布局并输入相应的公式)在Excel1 (

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

大学物理活页作业答案

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2 t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 32 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+= ωt h s

北航最优化方法大作业参考

1流量工程问题 1.1问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1, 其余元素为0。再令b m =(b m1 ,…,b mN )T,f m =(f m1 ,…,f mE )T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5 (5) 1×13 )T, 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x 12,x 13 ,…,x 75 ) 1×13 )。 图 1 网络拓扑和流量需求

1.27节点算例求解 1.2.1\ T) 1.2.2算例1(b1=[4;-4;0;0;0;0;0] 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.3算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 \ X2>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.4算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T

大学物理_作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x 2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 5 3 += t r (SI 单位)

求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)=m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 1、在图示系统中,滑轮可视为半径为R 、质量为m 0 的匀质圆盘。设绳与滑轮之间无滑动,水平面光滑,并且m 1=50kg ,m 2=200kg ,m 0=15kg ,R=0.10m ,求物体的加速度及绳中的张力。 解 将体系隔离为1m ,0m , 2m 三个部分,对1 m 和2m 分别列牛顿方程,有 a m T g m 222=- a m T 1 1= 因滑轮与绳子间无滑动,则有运动学条件 R a β= 联立求解由以上四式,可得 由此得物体的加速度和绳中的张力为 m 2 T 1

清华大学最优化 10.12及第五周作业(1)

10月12日作业: ,,2 3345 2..23max )5(3213213213213 21≥=++-≥++≤-+-+-x x x x x x x x x x x x t s x x x 答案:max (0,2,0), 4f = ,,8 321 32..23min )7(321213213 21≥≥+=+-+-x x x x x x x x t s x x x 答案:min 8110,,9,33 f ? ?= ??? 第五周作业(1) 1. 给定原问题 ,,2 321 ..34min 3213213213 21≥≥-+≥+-++x x x x x x x x x t s x x x 已知对偶问题的最优解??? ??=37,35),(21w w ,利用对偶性质求原问题的最优解。 答案:41,,033?? ??? 2. 给定线性规划问题: 0 ,,1 26..215min 3213211 3213 1≥≥++≥+-+x x x x x x b x x x t s x x 其中1b 是某一个正数,已知这个问题的一个最优解为?? ? ??=41,0,21 ),,(321x x x 。

(1) 写出对偶问题。 (2) 求对偶问题的最优解。 答案:(2)119,44?? ??? 3. 考虑线性规划问题 min ..0 cx s t Ax b x =≥ 其中A 是m 阶对称矩阵,T c b =。证明若(0)x 是上述问题的可行解,则它也是最优解。 证明:对偶问题为 max ..wb s t wA c ≤ 因为A 是对称矩阵,且T c b =,所以()(0)(0)T w x =是对偶问题的可行解, 由于 (0)(0)cx w b =,所以,(0)x 是原问题的最优解。

北航数值分析报告大作业第八题

北京航空航天大学 数值分析大作业八 学院名称自动化 专业方向控制工程 学号 学生姓名许阳 教师孙玉泉 日期2014 年11月26 日

一.题目 关于x , y , t , u , v , w 的方程组(A.3) ???? ?? ?=-+++=-+++=-+++=-+++79 .0sin 5.074.3cos 5.007.1cos sin 5.067.2cos 5.0y w v u t x w v u t y w v u t x w v u t (A.3) 以及关于z , t , u 的二维数表(见表A-1)确定了一个二元函数z =f (x , y )。 表A-1 二维数表 t z u 0 0.4 0.8 1.2 1.6 2 0 -0.5 -0.34 0.14 0.94 2.06 3.5 0.2 -0.42 -0.5 -0.26 0.3 1.18 2.38 0.4 -0.18 -0.5 -0.5 -0.18 0.46 1.42 0.6 0.22 -0.34 -0.58 -0.5 -0.1 0.62 0.8 0.78 -0.02 -0.5 -0.66 -0.5 -0.02 1.0 1.5 0.46 -0.26 -0.66 -0.74 -0.5 1. 试用数值方法求出f (x , y ) 在区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的近似表达式 ∑∑===k i k j s r rs y x c y x p 00 ),( 要求p (x , y )以最小的k 值达到以下的精度 ∑∑==-≤-=10020 7210)],(),([i j i i i i y x p y x f σ 其中j y i x i i 05.05.0,08.0+==。 2. 计算),(),,(* ***j i j i y x p y x f (i =1,2,…,8 ; j =1,2,…,5) 的值,以观察p (x , y ) 逼 近f (x , y )的效果,其中j y i x j i 2.05.0,1.0**+==。

运筹学最优化方法复习

第1章 最优化问题的基本概念 §1.1最优化的概念 最优化就是依据最优化原理和方法,在满足相关要求的前提下,以尽可能高的效率求得工程问题最优解决方案的过程。 §1.2最优化问题的数学模型 1.最优化问题的一般形式 ??? ????===≤q v x x x h p u x x x g t s x x x f x x x f i n d n v n u n n ,,2,10),,,(,,2,10),,,(..),,,(m i n ,,,21212121 2.最优化问题的向量表达式 ??? ? ???=≤0)(0)(..)(m i n X H X G t s X f X f i n d 式中:T n x x x X ],,,[21 = T p X g X g X g X G )](,),(),([)(21 = T p X h X h X h X H )](,),(),([)(21 = 3.优化模型的三要素 设计变量、约束条件、目标函数称为优化设计的三要素! 设计空间:由设计变量所确定的空间。设计空间中的每一个点都代表一个设计方案。 §1.3优化问题的分类 按照优化模型中三要素的不同表现形式,优化问题有多种分类方法: 1按照模型中是否存在约束条件,分为约束优化和无约束优化问题 2按照目标函数和约束条件的性质分为线性优化和非线性优化问题 3按照目标函数个数分为单目标优化和多目标优化问题 4按照设计变量的性质不同分为连续变量优化和离散变量优化问题 第2章 最优化问题的数学基础 §2.1 n 元函数的可微性与梯度

一、可微与梯度的定义 1.可微的定义 设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,且D X ∈0。若存在n 维向量L ,对于任意n 维向量P ,都有 0)()(lim 000=--+→P P L X f P X f T P 则称)(X f 在0X 处可微。 2.梯度 设有函数)(X F ,T n x x x X ],,,[21 =,在其定义域内连续可导。我们把)(X F 在定义域内某点X 处的所有一阶偏导数构成的列向量,定义为)(X F 在点X 处的梯度。记为: T n k x F x F x F X F ????????????=?,,,)(21 梯度有3个性质: ⑴函数在某点的梯度方向为函数过该点的等值线的法线方向; ⑵函数值沿梯度方向增加最快,沿负梯度方向下降最快; ⑶梯度描述的只是函数某点邻域内的局部信息。 §2.2极小点及其判别条件 一、相关概念 1.极小点与最优解 设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,若存在D X ∈*及实数 0>δ,使得)(),(**X X D X N X ≠?∈?δ都有)()(*X f X f ≤,则称*X 为)(X f 的局部极小点;若)()(*X f X f <,则称*X 为)(X f 的严格局部极小点。 若D X ∈?,都有)()(*X f X f ≤,则称*X 为)(X f 的全局极小点,若)()(*X f X f <,则称*X 为)(X f 的全局严格极小点。 对最优化问题??? ? ???=≤0)(0)(..)(min X H X G t s X f X find 而言 满足所有约束条件的向量T n x x x X ],,,[21 =称为上述最优化问题的一个可行解,全体可行解组成的集合称为可行解集。在可行解集中,满足: )(m i n )(*X f X f =的解称为优化问题的最优解。

大学物理9~13课后作业答案

第八章 8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强. 解: 如8-7图在圆上取 题8-7图 ,它在点产生场强大小为 方向沿半径向外 则 积分 ∴ ,方向沿轴正向. 8-8 均匀带电的细线弯成正方形,边长为,总电量为.(1)求这正方形轴线上离中心为处的场强;(2)证明:在处,它相当于点电荷产生的场强. 解: 如8-8图示,正方形一条边上电荷在点产生物强方向如图,大小为 ∵ ∴ R λO ?Rd dl =?λλd d d R l q ==O 20π4d d R R E ε? λ= ? ?ελ ?d sin π4sin d d 0R E E x ==??ελ ?πd cos π4)cos(d d 0R E E y -= -=R R E x 000π2d sin π4ελ??ελπ = =? d cos π400=-=???ελπR E y R E E x 0π2ελ = =x l q r E l r >>q E 4q P P E ? d ()4π4cos cos d 22 021l r E P + -= εθθλ22cos 22 1l r l + = θ12cos cos θθ-=24π4d 22 220l r l l r E P + += ελ

在垂直于平面上的分量 ∴ 题8-8图 由于对称性,点场强沿方向,大小为 ∵ ∴ 方向沿 8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×C ·m -3求距球心5cm , 8cm ,12cm 各点的场强. 解: 高斯定理 , 当时,, 时, ∴ , 方向沿半径向外. cm 时, ∴ 沿半径向外. 8-11 半径为 和(>)的两无限长同轴圆柱面,单位长度上分别带有电量和-,试求:(1)<;(2) <<;(3) >处各点的场强. 解: 高斯定理 P E ? d βcos d d P E E =⊥42 4π4d 2 2 22 22 l r r l r l r l E + + += ⊥ελP OP 2)4(π44d 422 22 0l r l r lr E E P + += ?=⊥ελl q 4= λ2)4(π42 2220l r l r qr E P ++= ε510-02π4ε∑=q r E 5=r cm 0=∑q 0=E ?8=r cm ∑q 3π 4p =3 (r )3内r -()202 3π43π4r r r E ερ内 -=41048.3?≈1C N -?12=r 3π 4∑=ρq -3(外r )内3r () 420331010.4π43π4?≈-=r r r E ερ内 外1C N -?1R 2R 2R 1R λλr 1R 1R r 2R r 2R 0d ε∑?= ?q S E s ??0 d ε ∑ ? = ? q S E s ? ?

相关主题
文本预览
相关文档 最新文档