高三等差数列复习专题百度文库

  • 格式:doc
  • 大小:1.70 MB
  • 文档页数:17

下载文档原格式

  / 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12

B .20

C .40

D .100

2.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1

B .2

C .3

D .4

3.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200

B .100

C .90

D .80

4.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72

B .90

C .36

D .45

5.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -

B .

3

22

n - C .

3122

n - D .

31

22

n + 6.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且

713n n S n T n -=,则5

5

a b =( ) A .

34

15

B .

2310

C .

317

D .

62

27

7.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24

B .36

C .48

D .64

8.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121

B .161

C .141

D .151

9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

10.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237

n n S n T n =+,则6

3a b 的值为

( ) A .

5

11

B .38

C .1

D .2

11.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=

B .560a a +=

C .670a a +=

D .890a a +=

12.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物

不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103

B .107

C .109

D .105

13.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21

B .15

C .10

D .6

14.已知数列{}n a 满足25111,,25

a a a ==且

*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19

B .20

C .21

D .22

15.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25 B .11 C .10 D .9 16.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )

A .24

B .23

C .17

D .16

17.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若

p m n q <<<且()

*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )

A .22p p S p a =⋅

B .p q m n a a a a >

C .1111

p q m n a a a a +<+ D .1111p q m n

S S S S +>+ 18.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51

B .57

C .54

D .72

19.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60

B .120

C .160

D .240

20.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸

D .二丈二尺五寸

二、多选题

21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}

F n ,则(){}

F n 的通项公式为( )

相关主题