全自动生化分析仪算法
- 格式:docx
- 大小:21.62 KB
- 文档页数:4
生化仪器方案设计1. 引言生化仪器是一种广泛应用于医学、生物学、化学等领域的仪器设备,用于分析生物样品中的化学物质及其特性。
本文将探讨一个生化仪器方案设计,从需求分析、设备选型、系统设计等多个方面进行说明。
2. 需求分析在进行生化仪器方案设计之前,首先需要明确应用场景中的需求。
根据需求分析,本文将考虑以下几个关键点:•样品类型:生化分析的样品类型多种多样,包括血液、尿液、体液等。
因此,设计的生化仪器需要支持多种样品类型的处理和分析。
•分析内容:生化分析的内容涉及到多种化学物质,如蛋白质、酶、代谢物等。
因此,设计的生化仪器需要具备多种分析方法和技术,能够准确地测量样品中的化学物质浓度及其特性。
•快速性能:生化分析通常需要快速得到结果,特别是在临床应用中。
因此,设计的生化仪器需要具备高效的分析速度,能够在短时间内完成样品的处理和分析。
•精确度和准确性:生化分析的结果对于临床诊断和疾病监测具有重要意义,因此,设计的生化仪器需要具备高精确度和准确性,能够提供可靠的分析结果。
3. 设备选型根据需求分析,可以选择以下几类生化仪器作为设备选型。
3.1 全自动生化分析仪全自动生化分析仪是一种集样品处理和分析为一体的综合仪器。
它具备多个分析通道和预设的分析程序,能够同时处理多个样品,并自动完成样品的预处理、分析和结果输出。
全自动生化分析仪在临床实验室中应用广泛,能够满足快速准确的生化分析需求。
3.2 单通道生化分析仪单通道生化分析仪是一种用于特定分析的仪器,每次只能处理一个样品。
它通常用于特定分析项目的研究和开发,具备高精确度和准确性。
单通道生化分析仪适用于科研实验室和一些特殊应用场景。
3.3 便携式生化分析仪便携式生化分析仪是一种小型、便携的生化仪器,适用于野外或临床现场应用。
它通常具有简化的操作界面和快速的分析速度,能够在短时间内得到分析结果。
便携式生化分析仪在急救、疫情监测等应用中具有重要意义。
4. 系统设计在完成设备选型之后,需要进行系统设计,包括硬件设计和软件设计两个方面。
全自动生化分析仪技术参数1.技术规格:1.1 仪器类型:全自动分立式,急诊优先检测;分析参数和试剂全开放★1.2 分析速度:比色恒速≥400T/H1.3 同时分析项目:78个比色项目1.4样本位:≥90个样本位1.5样本管规格:标准杯、微量杯、原始采血管,规格(Φ12-13)mm×(25~100)mm1.6加样技术:液面探测、随量跟踪、立体防撞、堵针检测、空吸检测1.7 分析方法:终点法、两点法、速率法1.8试剂位:≥80个1.9 试剂针:液面探测、随量跟踪、立体防撞、气泡检测1.10试剂针携带率:自动清洗,携带率小于或等于0.1%1.11 反应杯:≥90个1.12反应杯清洗:自动8阶清洗,清洗水预加温2.校准与质控:校准方法包括1点线性法、2点线性法、多点线性法。
可自动描绘校准K值趋势图进行校准追踪。
可进行失控样本测试结果报警并记录失控原因3.软件主要功能:自动校准、自动条码扫描、项目组合测试、试剂信息管理、血清指数、反映全过程监测、脏杯记忆回避、防交叉污染程序、病人信息记忆及联想输入、自动报告审核、数据多参数查询、报表统计与打印、参考范围分级、报警信息分级、用户操作权限分级管理、自动休眠与唤醒、实时在线帮助4.报告打印:中文报告,8种格式可选。
报告单支持用户自定义模式,质控与状态信息等5. 基本配置要求5.1 主机1台5.2 操作电脑1台,19寸以上液晶显示屏,5.3打印机1台5.4 样本、试剂条码扫描仪选配5.5纯水系统一套5.6UPS电源一块5.7外置打印机一台B超技术参数1.设备用途说明腹部、妇科、产科、浅表组织与小器官、颅脑、术中、介入性超声2.主要规格及系统概述:2.1 高档黑白便携式超声波诊断仪包括:2.1.1 高分辨率LCD显示器2.1.2 全数字化二维灰阶成像单元2.1.3 全数字化波束形成器*2.1.4组织二次谐波成像(应用于凸阵、高频线阵探头)2.1.5 二维图像优化技术* 2.1.6 可配置可变角度解剖M型(超声仪器主机内置)*2.1.7多角度扩展探头技术2.2 测量和分析:(B 型、M 型)2.2.1 一般测量(包括腹部、泌尿和小器官等软件包)2.2.2 妇科、产科测量(包括胎儿生长曲线和多胎计算等软件包)2.2.3 血管测量与分析2.3 图像存储与(电影)回放重现单元2.4 输出信号:复合视频2.5 图像管理与记录装置:2.5.1 超声图像存档与病案管理系统,一体化病案管理单元包括病人资料、报告、图像等的存储、检索和修改等2.5.2静态图像以PC 通用格式直接存储,无需特殊软件即能在普通PC 机上直接观看图像2.5.3 USB 接口3. 系统概述3.1 系统通用功能:3.1.1 监视器:>10″LCD显示器3.1.2 全激活电子探头接口:2 个3.2 探头规格*3.2.1 频率:超宽频变频探头,工作频率明确显示,二维显示频率可选择≥4 种*3.2.2 腹部用凸阵探头,最高频率≥6MHZ,最低频率≤2.5MHZ(请附图)*3.2.3 可配置高频线阵探头中心频率≥13MHz3.2.4 探头配置:电子凸阵(腹部)探头1 个3.2.5 穿刺导向:探头可配穿刺导向装置,具有穿刺测量功能3.3 二维灰阶显像主要参数:3.3.1变频探头工作频率范围:电子凸阵:超声频率2.5 — 6.0MHz电子线阵:超声频率5.0 — 13MHz电子微凸(含腔内):超声频率3.0 — 9MHz3.3.2 灰阶≥2563.3.3 扫描速率:电子凸阵探头,全视野,18 cm 深,帧频≥15帧/秒,可显示帧频3.3.4 发射声束聚焦:发射≥4 段3.3.5 体位标记≥50个*3.6.6 数字声束形成器:数字式全程动态聚焦,数字式可变孔径及动态变迹,A/D≥12 bit(需提供原厂date sheet 证明)*3.3.7 回放重现:灰阶图像电影回放≥1000 帧,回放时间≥30秒3.3.8 增益调节:B/M 可独立调节,TGC 分段≥6*3.4 超声功率输出调节:B/M 输出功率可调,可调级数≥50级自动分析心电图机技术参数输入电路心电输入:12导联同步采集,10电极导联选择:自动或手动输入方式:浮地输入输入保护:标配导联线内附除颤保护电路采样率:8000 Hz/8Ch模数转换精度≤2.5 μV输入阻抗:≥50MΩ耐极化电压:≥±500mV共模抑制比:≥110dB频率响应:0.05Hz-150Hz(+0.4/-3 dB)标准灵敏度:10mm/mV, 误差≤±2%时间常数:≥3.2秒滤波器:低通滤波、肌电滤波、交流滤波、基线抑制滤波低通滤波75Hz, 100Hz, 150Hz 三档肌电滤波25Hz/35Hz 二档交流滤波50Hz或60Hz基线抑制强/弱二档增益/灵敏度选择:5,10,20mm/mV,手动或自动不正常状态检测:电极脱落报警,高频噪声过高报警电极脱落:液晶显示器显示脱落部位显示和记录显示方式:≥4.8"液晶显示显示分辨率:320x240显示导联数:同屏12导联,≥2.8s显示内容:程序型号、版本、日期和时间、走纸速度、灵敏度、导联名称、滤波器、患者信息(ID号码、年龄、性别)、计时标记、电极松脱、噪音等。
全自动生化分析仪的原理
全自动生化分析仪是一种用于测定生物样品中各种生物化学指标的仪器。
其原理基于光学、电学、化学和计算机技术的综合应用。
在全自动生化分析仪中,首先需要将待测生物样品加载到仪器中。
该仪器使用自动进样系统,能够精确地控制进样体积和速度,确保样品的准确性和重复性。
接下来,仪器通过光学技术测量光学仪器进入和退出的光线的强度变化来确定生化指标的浓度。
例如,利用光谱分析,仪器可以通过测量样品对特定波长的光的吸收或透射,来确定测定物质的浓度。
此外,仪器还使用电学技术来测量电子或离子的电流,从而确定样品中电子或离子的浓度。
这种电学测量可以用于测定一些离子浓度,如钠离子、钾离子和氯离子的浓度等。
在化学方面,仪器可以通过反应试剂与样品中的目标物质反应,产生可测量的变化。
例如,仪器可以利用酶促反应,通过测量与之相关的酶活性来确定某种生化指标的浓度。
最后,通过计算机技术,仪器能够将测得的数据进行处理和分析,然后输出最终的检测结果。
计算机可以根据预先设定的算法和标准曲线,将测定的光学或电学信号转化为浓度值或其他相关指标。
总之,全自动生化分析仪通过应用光学、电学、化学和计算机技术综合作用,能够快速、准确地测定生物样品中的各种生化指标,并为临床医学、生物学研究等领域提供了强有力的工具。
生化分析仪校正系数计算生化分析仪校正系数计算是为了保证分析结果的准确性和可靠性,其目的是将测得的分析值与标准值进行比较,并进行修正。
校正系数是指校正样品测定结果与其真实值之间的关系,其计算通常包括线性回归、光学密度校正、浓度校正等多种方法。
一、线性回归法线性回归法是较为常用的校正计算方法,其基本原理是根据已知浓度的标准样品测量结果与其真实浓度之间的关系,建立测量值与浓度之间的线性回归方程,从而推算出未知样品的浓度值。
具体步骤如下:1.收集一组已知浓度的标准样品,并使用生化分析仪进行测量,记录相应的测量值。
2. 根据测量值和标准样品的真实浓度,建立测量值与浓度之间的线性回归方程。
常见的回归方程可以是一次线性方程:y = kx + b,其中y 为测量值,x为浓度,k和b为回归系数。
3.使用建立的线性回归方程,将未知样品的测量值代入方程中,得到未知样品的浓度。
二、光学密度校正法光学密度校正法常用于酶标仪等直读型生化分析仪器的校正计算。
其基本原理是根据标准样品的光学密度与其浓度之间的关系,建立测量值与光学密度之间的线性回归方程,从而计算出未知样品的浓度值。
具体步骤如下:1.收集一组已知浓度的标准样品,并使用生化分析仪进行测量,记录相应的光学密度值。
2. 根据光学密度值和标准样品的真实浓度,建立测量值与光学密度之间的线性回归方程。
常见的回归方程可以是一次线性方程:y = kx + b,其中y为测量值,x为光学密度,k和b为回归系数。
3.使用建立的线性回归方程,将未知样品的光学密度值代入方程中,得到未知样品的浓度。
三、浓度校正法浓度校正法适用于一些无法直接测量样品浓度的情况,例如一些物质的浓度无法直接通过光学密度或其他参数来测定。
其基本原理是通过对标准样品的浓度进行合适的稀释,使其在可以测量范围内,然后测量其浓度值。
根据已知稀释倍数和测量值,可以计算出未稀释样品的浓度。
具体步骤如下:1.收集一组已知浓度的标准样品,并进行适当的稀释。
全自动生化分析仪原理全自动生化分析仪,简称生化仪,是一种常用于临床和科研领域的仪器设备。
它主要用于分析生物体内的化学成分,包括血液、尿液、体液等样本中的各种生化指标,如蛋白质、糖类、脂类、酶类等。
生化仪的原理涉及光学技术、电子技术以及医学生化分析的基本原理。
下面将详细介绍全自动生化分析仪的原理。
全自动生化分析仪的工作原理主要包括:光学测量原理、光电传感器原理、生化反应原理和分析算法原理。
首先,光学测量原理是全自动生化分析仪实现生化分析的基础。
该仪器利用了光学测量技术,通过测量样本与特定波长光线的相互作用来得到样本中化学成分的信息。
一般来说,生化仪中的光学系统由光源、样本池、入射光束、检测器和数据采集系统组成。
当样本进入仪器后,光源会发出特定波长的光,样本会吸收、散射、透射部分光线,这些被样本处理后的光线进入到检测器中,通过检测器接收并转换为电信号。
最后,数据采集系统对这些电信号进行处理和分析,从而得到样本中化学成分的浓度等信息。
其次,光电传感器原理是实现全自动生化分析仪的关键技术之一。
光电传感器是一种能将光信号转换为电信号的器件。
在生化仪中,光电传感器用于将样本处理后的光信号转换为电信号。
一般来说,光电传感器直接集成在仪器的光学系统中,能够精确地测量光强度的变化。
通过光电传感器的检测,仪器可以获得样本中化学成分的光学信号,并将其转换为电信号进行下一步的计算和分析。
再次,生化反应原理是全自动生化分析仪实现生化分析的基本原理之一。
生化反应是指样本中的化学成分与特定试剂发生化学反应,并产生可用于分析和检测的光学信号。
生化仪通过预先设定的检测方法,将样本与特定试剂混合,诱发特定的化学反应。
这些化学反应会在样本中产生可测量的光学变化,如吸光度、荧光等,从而间接地反映出样本中化学成分的含量和浓度。
最后,分析算法原理是全自动生化分析仪分析样本中化学成分的重要基础。
通过对样本处理后的光学信号进行处理、计算和分析,生化仪可以得到样本中各种生化指标的浓度和含量。
生化分析仪技术参数一、技术要求1、全自动,分立/任选式2、测试速度:≥360测试/小时(纯生化),≥600测试/小时(带ISE),3、测试方法: 终点法、速率法、两点终点法,两点速率法、双波长法、免疫比浊法、双试剂法、非线性检测等4、项目存储:≥1000个5、吸光度测试范围:0。
0-5。
0Abs6、吸光度的重复性CV≤1。
0%7、样品位:≥70个样本位,支持样本杯、原始采血管、塑料试管等8、样本量:5μL -75μL 0。
1μL递增9、试剂位:≥60个试剂位10、试剂量:10μL-400μL 0。
5μL递增11、试剂冷藏功能:24小时冷藏系统,冷藏温度2-8℃12、样本和试剂加样针具有液面感应、随量跟踪功能,具有立体防撞、自动保护功能13、试剂和样本加样针去离子水内外壁清洗14、仪器具有独立搅拌针▲15、携带污染率:≤0。
1%16、光学系统:全封闭静态阵列式斩波后分光光学系统17、波长范围:340nm ~ 800 nm,共10个波长,波长准确度±1nm18、反应量:150μL~900μL19、温度控制:37℃±0。
1℃▲20、比色杯:≥120个比色位21、比色杯清洗系统:八步一体化清洗,具有独立反应杯清洗液通道;针对高污染项目,项目间可插入独立清洗22、质控:仪器在测试过程中可随时插入质控,可预定义不同质控物,每项检测可同时带四种以上质控物,可存储、显示、打印质控图23、预稀释/重测功能:软件可自动识别底物耗尽、超线性范围等样本,可选择重测,稀释倍数可自行编程;稀释倍数最大可达250倍24、数据重置:对于测试异常样本能够再次选择测量点,重新计算而无需重新检测;25、耗水量≤6L/H蒸馏水▲26、试剂配套:可提供与仪器同品牌的配套生化试剂,且生化试剂项目≥50个(附产品注册证予以证明)27、溯源体系:提供与仪器同品牌原厂配套、经药监局注册的复合校准品和质控品的注册证,且经药监局注册的项目校准品≥25种。
全自动生化分析仪的原理全自动生化分析仪是一种用于临床医学实验室的仪器设备,它能够对血液、尿液等生化样本进行全面、快速、准确的分析,为医生提供临床诊断和治疗提供了重要的数据支持。
那么,全自动生化分析仪是如何实现这一功能的呢?接下来,我们将详细介绍全自动生化分析仪的原理。
首先,全自动生化分析仪的原理基于光学检测技术。
当样本进入分析仪内部后,首先会经过光学系统的检测。
光学系统通过特定的波长和光谱来测量样本中的各种生化成分,比如葡萄糖、蛋白质、酶等。
通过光学检测,分析仪可以获取样本中各种成分的浓度和含量,从而为后续的分析提供数据支持。
其次,全自动生化分析仪的原理还基于化学反应原理。
在光学检测之后,样本会进入化学反应模块。
在这个模块中,样本会与特定的试剂发生化学反应,产生特定的颜色、气体或光谱变化。
通过检测这些变化,分析仪可以进一步确定样本中各种生化成分的含量和浓度。
化学反应原理是全自动生化分析仪实现生化分析的关键环节,也是保证分析结果准确性的重要基础。
此外,全自动生化分析仪的原理还涉及到液体分离和样本处理技术。
在样本进入分析仪之前,需要进行一系列的样本处理操作,比如离心、分离、稀释等。
这些操作可以有效地减少样本中的干扰物质,提高分析的准确性和稳定性。
液体分离技术则可以将血液、尿液等样本中的各种成分分离开来,为后续的光学检测和化学反应提供清晰的样本基础。
总的来说,全自动生化分析仪的原理是基于光学检测、化学反应和样本处理技术的综合应用。
通过这些技术的协同作用,分析仪可以实现对生化样本的全面、快速、准确的分析,为临床医学实验室提供了重要的技术支持。
这些原理的应用不仅提高了分析的效率和准确性,也为医生的临床诊断和治疗提供了更可靠的数据支持。
在实际应用中,全自动生化分析仪的原理不仅可以用于临床医学实验室,还可以应用于科研、药物研发、食品安全等领域。
随着科技的不断进步,全自动生化分析仪的原理和技术也在不断创新和完善,为人们的健康和生活提供了更多的可能性和便利。