当前位置:文档之家› BTU校正原理

BTU校正原理

BTU校正原理
BTU校正原理

BTU校正原理:当锅炉的负荷指令与热负荷之间存在偏差时,系统修正热值信号,同时将修正后的热值信号对锅炉主控指令进行修正。

BTU手动改变时的影响:

1.在汽机跟随方式时(TF)手动控制煤主控加减煤量,假如煤主控不变,实际煤量不变。关小BTU,燃料指令变小,校正后的煤量减少,为了维持煤水比不变,给水自动减少,造成煤水比失调,中间点温度升高,(此时实际煤量不变)。开大BTU时,燃料指令增加,实际煤量不变时,校正后的煤量增加,为了维持煤水比不变,水自动增加,中间点温度下降。(TF 时手动改变BTU,实际改变的是水,反应速度很快)

2.在协调方式(CCS)负荷不变,煤水比正常,若手动关小BTU,燃料指令不变,由于煤质发热系数降低,校正后的煤量减少,为了维持煤水比不变,实际煤量会增加,水此时不变。中间点温度升高。开大BTU时,燃料指令不变,由于煤质发热系数升高,校正后的煤量增加,为了维持煤水比不变,实际煤量会减少,水此时不变。中间点温度下降。(CCS时手动改变BTU,实际改变的是煤,反应速度较慢)

自己慢慢体会下,其实比较简单(煤水比中的煤指令时经过校正的设计煤指令即,给煤指令)BTU在锅炉的调整中的作用有哪些;武汉锅炉为您详解:

超临界直流锅炉机组是强耦合、多参数、非线性的控制对象,在系统控制中,应尽可能的保证机组的稳定性。在目前锅炉的运行中多数不能达到设计煤种的运行要求,并且煤种的变化多样,因此在众多的系统设计中考虑了BTU修正。

在汽包炉中,通常用热量信号修正燃料的热值,这种方法主要考虑了锅炉热量信号的整定使热量信号

仅代表燃料的变化,不反映汽机调门外扰的变化,这种修正较好的利用了直吹式给煤机燃料可以直接测量的优势,燃烧控制系统可以较快的克服燃料侧的扰动,同时热量信号又可以在线对燃料的热值进行修正。

直流锅炉蓄能较小无法得到类似于汽包锅炉的热量信号,因此在直流炉中BTU修正中最多的是采用蒸汽流量对热值的修正,考虑的基本点是根据设计煤种的热值,所燃烧的煤量应该产生的热量与实际煤种产生的热量的偏差对燃料进行补偿。这种BTU修正的方法在实际应用中往往造成系统的不稳定。

燃料回路作为控制系统的内环应尽快克服燃料的扰动,其控制目的是在稳定的负荷工况下保证压力或负荷的稳定,任何汽机侧的外扰不应该构成对燃料的扰动。如果以蒸汽流量修正燃料量,当汽机调门发生扰动(如一次调频)使蒸汽流量发生变化,必然导致燃料的变化,使燃料控制系统不能稳定的运行。

因此在系统中可以考虑用设计煤种的热值与实际煤种的热值对燃料进行修正,电厂应每天对燃料取样热值通知运行,运行人员根据燃烧的产地煤输入燃料热值,保证燃烧控制的稳定。

超临界机组控制的综述

作者:安全管理网来源:安全管理网点击: 234 评论:0更新日期:2008年05月08日

1. 对超临界机组控制系统的讨论

随着电力系统的发展,600MW超临界机组已经成为我国电力行业的主力机组,但由于超临界机组的直流运行特性、变参数的运行方式、多变量的控制特点,与亚临界汽包炉比较在控制上具有很大的特殊性,因此对超临界机组的运行方式和控制策略应进行必要的讨论。

超临界机组的运行特性

1.1. 超临界火电机组的技术特点

1.1.1. 超临界火电机组的参数、容量及效率

超临界机组是指过热器出口主蒸汽压力超过22.129Mpa。目前运行的超临界机组运行压力均为24Mpa~25Mpa, 理论上认为,在水的状态参数达到临界点时(压力22.129、温度374.℃),水完全汽化会在一瞬间完成,即在临界点时饱和水和饱和蒸汽之间不再有汽、水共存的二相区存在,二者的参数不再有区别。由于在临界参数下汽水密度相等,因此在超临界压力下无法维持自然循环即不能采用汽包锅炉,直流锅炉成为唯一型式。

提高蒸汽参数并与发展大容量机组相结合是提高常规火电厂效率及降低单位容量造价最有效的途径。与同容量亚临界火电机组的热效率相比,在理论上采用超临界参数可提高效率2%~2.5%,采用超超临界参数可提高4%~5%。目前,世界上先进的超临界机组效率已达到47%~49%。

1.1.

2. 超临界机组的启动特点

超临界锅炉与亚临界自然循环锅炉的结构和工作原理不同,启动方法也有较大的差异,超临界锅炉与自然循环锅炉相比,有以下的启动特点:

设置专门的启动旁路系统

直流锅炉的启动特点是在锅炉点火前就必须不间断的向锅炉进水,建立足够的启动流量,以保证给水连续不断的强制流经受热面,使其得到冷却。

一般高参数大容量的直流锅炉都采用单元制系统,在单元制系统启动中,汽轮机要求暖机、冲转的蒸汽在相应的进汽压力下具有50℃以上的热度,其目的是防止低温蒸汽送入汽轮机后凝结,造成汽轮机的水冲击,因此直流炉需要设置专门的启动旁路系统来排除这些不合格的工质。

配置汽水分离器和疏水回收系统

超临界机组运行在正常范围内,锅炉给水靠给水泵压头直接流过省煤器、水冷壁和过热器,直流运行状态的负荷从锅炉满负荷到直流最小负荷,直流最小负荷一般为25%~45%。

低于该直流最小负荷,给水流量要保持恒定。例如在20%负荷时,最小流量为30%意味着在水冷壁出口有20%的饱和蒸汽和10%的饱和水,这种汽水混合物必须在水冷壁出口处分离,干饱和蒸汽被送入过热器,因而在低负荷时超临界锅炉需要汽水分离器和疏水回收系统,疏水回收系统是超临界锅炉在低负荷工作时必需的另一个系统,它的作用是使锅炉安全可靠

的启动及其热损失最小。

启动前锅炉要建立启动压力和启动流量

启动压力是指直流锅炉在启动过程中水冷壁中工质具有的压力,启动压力升高。汽水体积质量差减小,锅炉水动力特性稳定,工质膨胀小,并且易于控制膨胀过程,但启动压力越高对屏式过热器和再热过热器的保护越不利。启动流量是指直流锅炉在启动过程锅炉的给水流量。

1.1.3. 置式汽水分离器的控制方式

超临界机组具有外置式启动分离器和内置式启动分离器。本文仅就内置式启动分离器进行讨论。

内置式启动分离器在湿态和干态的控制是不相同的,而且随着压力的升高,湿干态的转换是内置式汽水分离器的一个显著特点。

内置式汽水分离器的湿态运行

如前所述,锅炉负荷小于35%时,超临界锅炉运行在最小水冷壁流量,所产生的蒸汽要小

于最小水冷壁流量,汽水分离器湿态运行,汽水分离器中多余的饱和水通过汽水分离器液位控制系统控制排出。

内置式汽水分离器的干态运行

当锅炉负荷大于35%以上时,锅炉产生的蒸汽大于最小水冷壁流量,过热蒸汽通过汽水分

离器,此时汽水分离器为干式运行方式,汽水分离器出口温度由煤水比控制,即由汽水分离器湿态时的液位控制转为温度控制。

汽水分离器湿干态运行转换

在湿态运行过程中锅炉的控制参数是分离器的水位和维持启动给水流量,在干态运行过程中锅炉的控制参数是温度控制和煤水比控制,在湿干态转换中可能会发生蒸汽温度的变化,故在此转换过程中必须要保证蒸汽温度的稳定。

1.2. 超临界机组控制系统概述

作为实现机组安全经济运行目标的有效手段,自动控制系统在机组安全运行所起的作用日益

重要,其功能也日益复杂,担负着机组主、辅机的参数控制、回路调节、联锁保护、顺序控制、参数显示、异常报警、性能计算、趋势记录和报表输出的功能,已从辅助运行人员监控机组

运行发展到实现不同程度的设备启停功能、程控和联锁保护的综合体系,成为大型火电机组

运行必不可少的组成部分。经过几十年的发展,目前超临界发电技术已经相当成熟,其控制系统从总体上来说与常规亚临界发电机组相比并没有本质的区别。但就超临界机组本身来说,其直流炉的运行方式、大范围的变压控制,使超临界机组具有特殊的控制特点和难点。

1.2.1. 超临界机组控制中存在的问题

1.1 机、炉之间耦合严重,常规的控制系统难以达到高的控制效果,超临界机组难点之一在

于非线性耦合。

由于直流锅炉在汽水流程上的一次性循环特性,没有汽包这类参数集中的储能元件,在直流运行状态汽水之间没有一个明确的分界点,给水从省煤器进口就被连续加热、蒸发与过热,根据水、湿蒸汽与过热蒸汽物理性能的差异,可以划分为加热段、蒸发段与过热段三大部分,在流程中每一段的长度都受到燃料、给水、汽机调门开度的扰动而变化,从而导致了功率、压力、温度的变化。

1.2.2. 汽机扰动对锅炉的耦合特性

直流锅炉汽水一次性循环特性,使超临界锅炉动态特性受末端阻力的影响远比锅筒式锅炉大。当汽机主汽阀开度发生变化,影响了机组的功率,同时也直接影响了锅炉出口末端阻力特性,改变了锅炉的被控特性,由于没有汽包的缓冲,汽机侧对直流锅炉的影响远大于对汽包锅炉

的影响。其特性不但影响了锅炉的出口压力,而且由于压力的变化引起了给水流量的变化,延长了锅炉侧汽水流程的加热段,导致了温度的变化。

1.2.2.1. 锅炉燃料扰动对压力、温度、功率的影响

燃料发生变化时,由于加热段和蒸发段缩短,锅炉储水量减少,在燃烧率扰动后经过一个较短的延迟蒸汽量会向增加的方向变化,当燃烧率增加时,一开始由于加热段蒸发段的缩短而使蒸发量增加,也使压力、功率、温度增加。

1.2.2.2. 给水扰动对压力、温度、功率的影响

当给水流量扰动时,由于加热段、蒸发段延长而推出一部分蒸汽,因此开始压力和功率是增加的,但由于过热段缩短使汽温下降,最后虽然蒸汽流量增加但压力和功率还是下降,汽温经过一段时间的延迟后单调下降,最后稳定在一个较低的温度上

1.2.2.3. 被控参数之间的耦合关联

在直流锅炉中,压力控制是最重要的被控对象,因为压力的变化不仅影响机组负荷的变化,还会影响给水流量的变化,从而导致对温度的影响。

从上面的分析可以看出,直流锅炉的一次循环特性,使机组的主要控制参数功率、压力、温度均受到了汽机调门开度、燃料量、给水量的影响。从而也说明直流锅炉是一个三输入/三

输出相互耦合关联及强的被控特性。

1.2.2.4. 强烈的非线性是超临界机组又一主要特征

超临界机组采用超临界参数的蒸汽,其机组的运行方式采用滑参数运行,机组在大范围的变

负荷运行中,压力运行在10MPa~25MPa.之间。超临界机组实际运行在超临界和亚临界两种工况下,在亚临界运行工况给水具有加热段、蒸发段与过热段三大部分,在超临界运行工况汽水的密度相同,水在瞬间转化为蒸汽,因此在超临界运行方式和亚临界运行方式机组具

有完全不同的控制特性,是复杂多变的被控对象。

1.3. 超临界机组的控制策略

从上面的分析中已经看到,超临界机组是以汽水一次循环为特征的直流锅炉,是具有三输入/三输出的强耦合、非线性、多参数的被控对象。接下来讨论采用怎样的控制策略实现对超

临界机组的控制。

对于具有内置式启动分离器的超临界机组,具有干式和湿式两种运行方式。在启动过程锅炉建立最小工作流量,蒸汽流量小于最小给水流量,锅炉运行在湿式方式,此时机组控制给水流量,利用疏水控制启动分离器水位,启动分离器出口温度处于饱和温度,此时直流锅炉的运行方式与汽包锅炉基本相同。控制策略基本是燃烧系统定燃料控制、给水系统定流量控制、启动分离器控制水位、温度采用喷水控制。

当锅炉蒸汽流量大于最小流量,启动分离器内饱和水全部转为饱和蒸汽,直流锅炉运行在干式方式,即直流控制方式。此时锅炉以煤水比控制温度、燃烧控制压力。我们讨论的超临界直流锅炉的控制策略主要讨论锅炉处于直流方式的控制方案。

假如直流锅炉处在定压力控制方式,那末对于直流锅炉机组负荷、压力、温度三个过程变量中就具有两个稳定点,一个是压力,另一个是温度。因为压力一定分离器出口的微过热温度也就确定了。在机组负荷变化过程中对压力和温度的控制应该是定值控制。

在锅炉变压力运行时,机组负荷、压力、温度是三个变化的控制量,在负荷发生变化时,压力的控制根据负荷按照预定的滑压曲线控制,分离器出口温度按照分离器出口压力的饱和温度加上微过热度控制。

协调控制系统建立方案时应该以变负荷、变压力、变温度的控制特征考虑控制策略。

1.3.1. 系统设计中应考虑的问题:

1.3.1.1. 在前面的分析中已经提出,压力控制是直流锅炉控制系统的关键环节,压力的变化对机组的外特性来说将影响机组的负荷,对内特性来说将影响锅炉的温度。因此无论协调控制系统采用机跟炉为基础还是采用炉跟机为基础的协调方式,均应考虑汽机调门变化和锅炉燃烧变化对压力的动态响应,协调锅炉与汽机的控制。

1.3.1.

2. 在直流锅炉中采用煤水比控制温度,在超临界机组中仍应采用煤水比的控制方案,一般来说煤水比控制的温度的选择应以控制特性快为主要考虑依据。目前对内置式启动分离器的超临界直流锅炉一般取分离器出口温度。在超临界状态下由于汽水转换可以在瞬间完成,蒸汽的热容量很大,此时的温度控制性能很好,温度控制稳定。但在湿干态转换过程中温度变化很大,系统设计应考虑湿干态转换过程中温度的控制。

1.3.1.3. 对于直吹式制粉系统来说,燃烧过程对压力、温度影响较慢,系统设计应考虑煤水的时间协调。

1.3.1.4. 超临界直流锅炉机组是强耦合、多参数、非线性的控制对象,在系统控制中,应尽

可能的保证机组的稳定性。在目前锅炉的运行中多数不能达到设计煤种的运行要求,并且煤种的变化多样,因此在众多的系统设计中考虑了BTU修正。

在汽包炉中,通常用热量信号修正燃料的热值,这种方法主要考虑了锅炉热量信号的整定使热量信号仅代表燃料的变化,不反映汽机调门外扰的变化,这种修正较好的利用了直吹式给煤机燃料可以直接测量的优势,燃烧控制系统可以较快的克服燃料侧的扰动,同时热量信号又可以在线对燃料的热值进行修正。

直流锅炉蓄能较小无法得到类似于汽包锅炉的热量信号,因此在直流炉中BTU修正中最多的是采用蒸汽流量对热值的修正,考虑的基本点是根据设计煤种的热值,所燃烧的煤量应该产生的热量与实际煤种产生的热量的偏差对燃料进行补偿。这种BTU修正的方法在实际应用中往往造成系统的不稳定。燃料回路作为控制系统的内环应尽快克服燃料的扰动,其控制目的是在稳定的负荷工况下保证压力或负荷的稳定,任何汽机侧的外扰不应该构成对燃料的扰动。如果以蒸汽流量修正燃料量,当汽机调门发生扰动(如一次调频)使蒸汽流量发生变化,必然导致燃料的变化,使燃料控制系统不能稳定的运行。因此在系统中可以考虑用设计煤种的热值与实际煤种的热值对燃料进行修正,电厂应每天对燃料取样热值通知运行,运行人员根据燃烧的产地煤输入燃料热值,保证燃烧控制的稳定。

1.3.1.5. 超临界机组是高参数、大容量的被控对象,机组的变负荷率应满足锅炉的运行要求。目前制造厂对超临界直流锅炉的变负荷率限制在1%/分。在满足机组负荷变化率的要求下,为稳定机组压力,对超临界机组来说以机跟炉为基础的协调控制系统不失是一个好的控制方案。

1.3.1.6. 对于DCS系统控制的大型机组来说,控制系统必须要完成机组的稳定负荷控制、变负荷控制、主要辅机故障工况下的快速减负荷控制。因此机组指令控制系统必须适时监视风、水、煤系统的运行状况,一旦检测到机组主要辅机出现跳闸,控制系统必须要以特定的控制方式,特定的机组负荷变化率,特定的机组目标负荷发出快速减负荷指令,适时的控制机组的负荷、压力、温度,完成RUNBACK功能。

在直流锅炉中,事故处理情况下必须要考虑分离器出口温度,这就必须考虑在事故工况下有合适的煤水比。系统设计必须要以适当的控制方案保证煤水比的控制。在超临界直流锅炉中,最典型的设计是实测的燃料量信号实现煤水比的控制。比起用锅炉指令实现煤水比控制来说,这种设计的主特点是在任何燃料的扰动都反映到煤水比的控制。

几何校正操作步骤(精)

几何校正操作步骤 实验目的: 通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 实验内容: ERDAS软件中图像预处理模块下的图像几何校正。几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地里参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下:

3、图像校正的具体过程 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下: ERDAS图表面板菜单条:Session→Title Viewers 然后,在Viewer1中打开需要校正的Lantsat图像:xiamen,img 在Viewer2中打开作为地理参考的校正过的(图象或)矢量图层:xmdis3.shp 第二步:启动几何校正模块(Geometric Correction Tool)Viewer1菜单条:Raster→Geometric Correction →打开Set Geometric Model对话框(2-2) →选择多项式几何校正模型:Polynomial→OK →同时打开Geo Correction Tools对话框(2-3)和Polynomial Model Properties对话框(4)。 在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数:→定义多项式次方(Polynomial Order)(图2-4):2 →定义投影参数:(PROJECTION):略 →Apply→Close →打开GCP Tool Referense Setup 对话框(2-5)

遥感图像的几何校正(配准)

遥感图像的几何校正(配准) 1.实验目的与任务: (1)了解几何校正的原理; (2)学习使用ENVI软件进行几何校正; 2.实验设备与数据: 设备:遥感图像处理系统ENVI 数据:TM数据 3 几何校正的过程: 注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配 准或几何校正。 1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2.在主菜单上选择map->Registration->select GCPs:image to image 3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。BASE图像指参考图像而warp则指待校正影像。选择OK! 4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方, 就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大)如果要放弃该点选择 右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择 你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以 预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参 考影像相对应的位置,而后再进行适当的调整并选点。 5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII.. 当然你没有选完点也可以保存,下次就直接启用就可以:ground control points->file->restore gcps from ASCII... 6.接下来就是进行校正了:在ground control points.对话框中选择: options->warp file(as image to map) 在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters 对话框: 首先点change proj按钮,选择坐标系 然后更改象素的大小,如果本身就是你所需要大小则不用改了 最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了

【VIP专享】实验二使用ENVI进行正射校正

实验二使用ENVI进行正射校正 1正射校正 正射校正是对一个影像空间和几何畸变进行校正生成平面正射影像的处理过程。将相机或卫星模型与有限的地面控制点结合起来,可以建立正确的校正公式,产生正确的,经几何校正的具有地图精度级的正射影像。 2 使用ENVI进行正射校正的步骤 使用ENVI进行正射校正需要几个步骤来完成,不考虑采集数字影像数据的传感器和像 片类型。这些步骤包括: 1 进行内定向(Interior Orientation,只针对航空像片而言):内定向将建立相机参数和航空像片之间的关系。它将使用航空像片间的条状控制点、相机框标(fiducial mark)和相机的焦距,来进行内定向。 2 进行外定向(Exterior Orientation)外定向将把航片或卫片上的地物点同实际已知的地面位置(地理位置)和高程联系起来。通过选取地面控制点,输入相应的地理坐标,来进行外定向。这个过程同影像到影像的配准(image to map registration)比较相似。 3 使用数字高程模型(DEM)进行正射校正,这一步将对航片和卫片进行真正的正射校正。校正的过程将使用定向文件、卫星位置参数,以及共线方程(collinearity equation)。共线方程是由以上两步,并协同数字高程模型共同建立生成的。 在进行正射校正之前,需要考虑影像空间分辨率的大小。正射校正的处理同ENVI影像 配准有所不同,它有三个关键的参数: DEM的像元大小 输出影像的像元大小 正射校正后输出影像的像元大小 允许对任何像元大小的影像进行处理,但是这些参数将对输出结果有很大的影响。理想情况下,DEM的像元大小应该同要创建的输出正射影像大小相同(或者更小)。如果DEM 分辨率明显大于所需的输出分辨率,那么得到的正射校正影像结果将有了一些明显的误差。在结果影像中,这些误差成阶梯状或块状分布,这种情况通常发生在像素集群的边缘处,这些位置通常会被赋予相同的 DEM高程。因此在ENVI中进行正射校正之前,要使用Basic Tools →Resize Images(spatial/spectral),将重采样成所需的输出正射影像的分辨率。在这里建议 使用双线性插值法(bilinear interpolation)进行重采样。 这次实验的数据为IKONOS数据,由美国space Imaging和Digital Globe公司提供。ENVI中的IKONOS影像的正射校正功能将使用RPC相机模型,RPC工具既不需要DEM文件,也不需要地面控制点。 3 查看正射校正所涉及的影像 1要打开一个文件,从ENVI主菜单中,选择file →open image file。 2 在出现的Enter data filename文件选择对话框中,点击open file按钮,选择envidata目录下的ortho子目录,从文件夹中选择po_101515_pan_0000000.tif文件,然后点击open。 3 在可用波段列表中,选择grey scale单选按钮,选择刚打开IKONOS影像文件的第一个波段,然后点击load band按钮显示该波段。 4 从ENVI主菜单栏中,选择file →open external file→Digital Elevation→USGS DEM,选择进入envidata目录下的ortho子目录的conus_USGS.dem文件,然后点击open。

配准与几何校正的区别与联系

几何校正与几何配准有什么区别? 我在其他论坛上看到“其实几何校正和影像配准原理是一样的,几何校正是借助一组地面控制点,对一幅图像进行地理坐标的校正;把影像纳入一个投影坐标系中,有坐标信息地理参考;影像配准是用一影像对另一幅图像的校准,一式两幅图像的同名像元配准”,如果写的对的话,我觉得几何配准其实也是一种几何校正。 我的感觉配准是相对不同影像之间的处理,几何校正是对数据自己的处理。为了进一步明确两者的区别,在Baidu,Google上进行了搜索,将其总结的定义记录如下: 1、几何校正geometric rectification; geometric correction; 是指消除或改正遥感影像几何误差的过程。遥感影像的几何畸变,大体分为两类:①内部畸变。由传感器性能差异引起,主要有:比例尺畸变(a),可通过比例尺系数计算校正;歪斜畸变(b),可经一次方程式变换加以改正;中心移动畸变(c),可经平行移动改正;扫描非线性畸变(d),必须获得每条扫描线校正数据才能改正;辐射状畸变(e),经2次方程式变换即可校正;正交扭曲畸变(f),经3次以上方程式变换才可加以改正;②外部畸变。由运载工具姿态变化和目标物引起。包括:由运载工具姿态变化(偏航、俯仰、滚动)引起的畸变,如因倾斜引起的投影畸变(g),可用投影变换加以校正;因高度变化引起的比例尺不一致(h),可用比例尺系数加以改正;由目标物引起的畸变,如地形起伏引起的畸变(i),需要逐点校正;若因地

球曲率引起的畸变(j),则需经2次以上高次方程式变换才能加以改正。多光谱、多时相影像配准和遥感影像制图,必须经过上述几何校正。因人们已习惯于用正射投影地图,故多数遥感影像的几何校正以正射投影为基准进行。某些小比例尺遥感影像专题制图,可采用不同地图投影作为几何校正基准,主要是解决投影变换问题,一些畸变不能完全得到消除。遥感影像的几何校正可应用光学、电子学或计算机数字处理技术来实现。 遥感的几何校正:遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为象元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,针对几何畸变进行的误差校正就叫几何校正。 2、几何配准geometric registration 将不同时间、不同波段、不同遥感器系统所获得的同一地区的图像(数据),经几何变换使同名像点在位置上和方位上完全叠合的操作。 另外还查到很多关于几何配准的论文,基本内容都是讲不同数据之间的几何配准,同时又找到了图像配准这个概念: 图像配准(或图像匹配)是评价两幅或多幅图像的相似性以确定同名点的过程。图像配准算法就是设法建立两幅图像之间的对应关系,确定相应几何变换参数,对两幅图像中的一幅进行几何变换的方法。 可以看出这个图像配准和几何配准属于同一个意义。

遥感卫星影像辐射校正、几何校正、正射校正的方法

北京揽宇方圆信息技术有限公司 遥感卫星影像辐射校正、几何校正、正射校正的方法 a)辐射校正:进入传感器的辐射强度反映在图像上就是亮度值(灰度值)。辐射强度越大,亮度值(灰度值)越大。该值主要受两个物理量影像:一是太阳辐射照射到地面的辐射强度,二是地物的光谱反射率。当太阳辐射相同时,图像上像元亮度值差异直接反映了地物目标光谱反射率的差异。但实际测量时,辐射强度值还受到其他因素的影响而发生改变。这一改变就是需要校正的部分,故称为辐射畸变。引起辐射畸变有两个原因:一是传感器本身的误差;二是大气对辐射的影响。 仪器引起的误差是由于多个检测器之间存在的差异,以及仪器系统工作产生的误差,这导致了接收的图像不均匀,产生条纹和“噪声”。 一般来说,这种畸变在数据生产过程中已经由生产单位根据传感器参数进行了校正,不需要用户自行校正。 b)几何校正:当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变时,即说明遥感影像发生了几何畸变。遥感影像的总体变形(相对与地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进

行处理。而用户拿到这种产品后,由于使用目的的不同或者投影及比例尺的不同,仍然需要作进一步的几何校正。几何校正一般包括精校正和正射校正。 精校正:利用地面控制点对由于各种因素引起的遥感图像的几何畸变进行校正。简单理解:和地形图的校正,校正后有准确的经纬度信息。精校正适合于在地面平坦,不需要考虑高程信息,或地面起伏较大而无高程信息的情况。有时根据遥感平台的各种参数已做过一次校正,但仍不能满足要求,就可以用该方法作遥感影像相对于地面坐标的配准校正,遥感影像相对于地图投影坐标系统的配准校正,以及不同类型或不同时相的遥感数据之间的几何配准和复合分析,以得到比较精确的结果。 C)正射校正:正射影像制作一般是通过在像片上选取一些地面控制点,并利用原来已经获取的该像片范围内的数字高程模型(DEM)数据,对影像同时进行倾斜改正和投影差改正,将影像重采样成正射影像。将多个正射影像拼接镶嵌在一起,并进行色彩平衡处理后,按照一定范围内裁切出来的影像就是正射影像图。正射影像同时具有地形图特性和影像特性,信息丰富,可作为GI S的数据源,从而丰富地理信息系统的表现形式。 所谓正射影像,指改正了因地形起伏和传感器误差而引起的像点位移的影像。数字正射影像不仅精度高,信息丰富,直观真实,而且数据结构简单,生产周期短,能很好的满足社会各行业的需要。在地势起伏较大的地方,使用正射校正来解决地势起伏较大引起的误差,做正射校正需要用DEM 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。

实验四 几何校正

实验四 几何校正 图像校正主要指辐射校正和几何校正。 1、辐射校正包括传感器的辐射校正、大气校正、照度校正以及条纹和斑点的判定和消除。 2、几何校正就是校正成像过程中造成的各种几何畸变,包括几何粗校正和几何精校正。 图像几何校正的一般步骤: 掌握遥感图像几何校正的方法,利用Data Preparation 模块通过采集控制点实现图像的几何校正 第一步 数据和校正模型的准备 1.请直接点击桌面IMAGINE 图标,等待Viewer1出现。 2.由Viewer1打开开启欲校正的图像 C: \linchuan\linchuang-TM.img 。 3.点击 Viewer 图标,等待Viewer2出现。读取已校正过的参考图像C: \linchuan\linchuang-geo.img 。 数据准备 输入显示数字影像 确立校正变换模型 确定输出影像范围 像元空间坐标变换 像元的灰度重采样 输出纠正数字影像

4.由主菜单中,点击"DataPrep"图标,选择其中之Image Geometric Correction。 5.在出现的Set Geo Correction Input File对话框中,点击"Select Viewer"此选项,然后将鼠标光标对Viewer1点一下。 6.接着屏幕会出现Set Geometric Model之对话框,请选取第二项Polynomial,按 7.在出现的Polynomial Model Properties对话框中,如下图设置

因为参考图像panAtlanta.img 已经含有投影参数,故不再需要定义投影参数 请按下apply,然后按下close关闭对话框。 8.接着会出现GCP Tool Reference Setup之对话框,选择校正参考坐标的来源,由于先前已开启Viewer2图像,故于此选取第一项Existing Viewer,按下OK,屏幕会出现Viewer Selection Instructions对话框,

ENVI中的几何校正

几何校正 1.遥感图像产生几何畸变的原因 地物目标发出的电磁波被卫星上所载传感器接收,这些电磁波上记录和传达了地物目标的信息,这是遥感图像成像的过程也是它的内在规律。在这个过程中图像的几何畸变也随即产生了,其中原因很多,主要表现在以下几个方面: 1. 1卫星位置和运动状态变化的影响 卫星围绕地球按椭圆轨道运动,引起卫星航高和飞行速度的变化,导致图像对应产生偏离与在卫星前进方向上的位置错动。另外,运动过程中卫星的偏航、翻滚和俯仰变化也能引起图像的畸变。 以上误差总的来说,都是因为传感器相对于地物的位置、姿态和运动速度变化产生的,属于外部误差。此外,由于传感器本身原因产生的误差,即内部误差,这类误差一般很小,通常人们不作考虑。 1. 2地球自转的影响 大多数卫星都是在轨道运行的降段接收图像,即当地球自西向东自转时,卫星自北向南运动。这种相对运动的结果会使卫星的星下位置产生偏离,从而使所成图像产生畸变。 1. 3地球表面曲率的影响 地球表面是不规则的曲面,这使卫星影像成像时像点发生移动,像元对应于地面的宽度不等。特别是当传感器扫描角度较大时,影响更加突出。 1. 4地形起伏的影响 当地形存在起伏时,使原来要反映的理想的地面点被垂直在其上的实际某高点所代替,引起图像上像点也产生相应的偏离。 1. 5大气折射的影响 由于大气圈的密度是不均匀分布的,从下向上越来越小,使得整个大气圈的折射率不断变化,当地物发出的电磁波穿越大气圈时,经折射后的传播路径不再是直线而是一条曲线,从而导致传感器接收的像点发生位移。 2.进行几何校正并保证精度的必要性 遥感图像几何校正的精确与否直接关系到应用遥感信息反应地表地物的地理位置和面积的精确度,关系到从图像上获取的信息准确与否,因此在选择控制点上要十分小心,尽可能提高其精度,并且要对校正结果进行反复的分析比较,必要时还要进行多次校正。几何校正让图像上地物对应的像元出现在它应该在的地方,再通过辐射校正、影像增强等遥感图像处理技术,还图像以“本来面目”。然后通过对图像的识别、分类、解译处理实现地面空间上各类资源信息的空间分析研究,使遥感技术投入到实际生产应用中。 3.几何精校正 遥感影像图的几何校正目前有3种方案,即系统校正、利用控制点校正以及混合校正。遥感数据接收后,首先由接收部门进行校正,这种校正叫系统校正(又叫几何粗校正) ,即把遥感传感器的校准数据、传感器的位置、卫星姿态等测量值代入理论校正公式进行几何畸变校正;而用户拿到这种产品后,由于使用目的不同或投影及比例尺不同,仍旧需要做进一步的几何校正,这就需要对其进行几何精校正即利用地面控制点GCP ( GroundContr ol2Point,遥感图像上易于识别,并可精确定位的点)对因其他因素引起的遥感图像几何畸变进行纠正。混合校正则是由一般地面站提供的遥感CCT已经完成了第一阶段的几何粗校正,用户所要完成的仅仅是对图像做进一步的几何精校正。 几何精校正就是利用地面控制点GCP对各种因素引起的遥感图像几何畸变进行校正。从数学上说,其原理是通过一组GCP建立原始的畸变图像空间与校正空间的坐标变换关系,

Geomatica91正射校正ZY3卫星影像流程

Geomatica9.1正射校正ZY3卫星影像流程 该影像操作流程适用于PCI Geomatica9.1及以上版本。 正射纠正前先把原始数据中的*.txt文件修改为*_RPC.txt。 正射校正步骤: 1、工程设置,启动OrthoEngine,点击file/NEW,在filename处给新建的工程 命名。 2、设置投影信息,添加输出影像的投影方式、空间分辨率及参考资料控制点的 投影信息;

3、导入数据; 4、采集控制点

5、正射校正,输入DEM,设置输出路径,名称,工作缓存,采样间隔,采 样方式等相关参数。 PCI 10.3软件制作核线影像操作流程 1.打开PCI主菜单,选择OrthoEngine正射模块,如下图所示, 建立工程,选择选项。注意Options选项下应选择第二项

Rational Function(Extract from image),让软件自动选取适合的RPC文件格式。 工程设置 2.第二步是设置输入输出影像的坐标系统和影像分辨率。 坐标系统设置 3.输入影像,只要在“New Image”中能够打开影像,就说明能

够读入它的RPC文件,只是无法显示出来而已,在输出的结果中会体现出来。如图打开前后视和正视影像。 读入影像界面 4.控制点和连接点的选取界面。 控制点、连接点选取界面 5.模型计算,会出现完成提示。 6.生成核线影像,目的是显示立体效果和为提取DEM做准备, 将前后视影像分别赋予左右影像。

7.然后打开核线影像,用红绿眼镜就能够看到立体效果了。 8.提取DEM结果,设置输出分辨率,本实验输出为8m分辨率的

ENVI4.5中的正射校正说明

ENVI4.5中的正射校正说明 在ENVI中能对绝大多数的高分辨率影像通过严格物理模型进行正射校正。 1、概述 ENVI4.5目前支持的正射校正包括两种模型:严格轨道模型(Pushbroom Sensor)和RPC有理多项式系数(Rational Polynomial Coefficient),如表1所示。包括ALOS/PRISM、ASTER、IKONOS、OrbView-3、QuickBird、SPOT1-5、CARTOSAT-1(P5)、FORMOSAT-2、worldview-1校正模型,即将推出的ENVI4.6还将增加GeoEye-1、RADARSAT-2、KOMPSAT-2、TerraSAR-X传感器模型。

表1传感器模型 ENVI还具有根据星历表参数建立RPC文件来正射校正数据的功能(Map->Build RPCs)。也可以根据地面控制点(GCP)或者外方位元素(XS, YS, ZS, Omega, Phi, and Kappa)建立RPC文件,校正一般的推扫式卫星传感器、框幅式航空相片和数码航空相片。如图1为生成RPC文件面板。当获得的卫星数据提供的是轨道参数,诸如ALOS PRISM and AVINIR, ASTER, CARTOSAT-1,, IKONOS, IRS-C, MOMS, QuickBird, WorldView-1,也可以利用这个功能来生成RPC文件做正射校正。 图1生成RPC文件面板 2、正射校正简单操作说明

第一步、打开显示数据 在主界面中,选择File-> Open External File,选择对应的传感器类型和文件格式。这里需要注意,当对SPOT5数据做正射校正时,数据格式要选择DIMAP 格式。QuickBird和WorldView-1数据很多时候提供的是Tile形式的数据,这个时候可以选择Mosiic Tiled QuickBird Product。如果需要从影像或者矢量数据中选择控制点,还需要一并将参考数据源打开。 图2 打开数据文件

医疗器械纠正和预防措施CAPA管理规程

模板一、纠正和预防措施(CAPA)管理规程 1 目的 建立纠正措施和预防措施(CAPA)程序,纠正与预防不符合、潜在不符合、不期望事件的发生,确保公司持续、有效地执行GMP规范及相关法律法规,实现质量管理体系的持续改进。 2 适用范围 本规程适用于生产质量管理活动中所有纠正措施和预防措施的制定、实施和控制。 3 定义 3.1 纠正措施:为消除已发现的不合格或其他不期望情况的发生所采取的措施,纠正措施是针 对问题的根本原因,减少或消除问题再发生的措施。 3.2 预防措施:为消除潜在不合格或其他潜在不期望情况的发生所采取的措施,采取预防措施 是为了防止不合格或其他潜在不期望情况的发生。 3.3 根本原因:通过各种方法和工具,深入分析而确定问题发生的内在根本因素。 4 纠正预防措施(CAPA)的范围 来源于客户投诉、产品缺陷、召回、生产偏差、实验室异常检验结果偏差、自检、外部审计(包括政府检查)、工艺性能和产品质量监测趋势、变更控制、产品年度回顾等活动中发现问题所采取的措施。整改措施的深度和形式应与风险评估的级别相适应。 5 职责 5.1 企业所有员工: (1)正确理解纠正和预防措施(CAPA)规程的要求 (2)在不合格总是发生时,按要求采取适当的措施,并报告主管或直接领导 5.2 生产部经理、工程部经理、物料供应部经理及车间负责人: (1)根据批准的计划,在规定期限内完成相应的整改措施。 (2)定期检查整改措施计划的进展,直到所有的整改措施均已完成并最终得到质量部的确认批准。 (3)因特殊原因,整改措施计划需要进行变更或延长时,在原计划完成日之前提出申请,并得到部门负责人、质量管理部经理的批准。 5.3 质量部: (1)负责建立和维护纠正和预防措施(CAPA)系统。 (2)批准(CAPA)的执行。 (3)批准(CAPA)的变更、包括完成期限的延长。 (4)跟踪(CAPA)实施进展情况。

遥感图像的几何校正实验报告

实验报告 实验名称:遥感图像的几何校正课程名称:《遥感导论》 教师: 院系:矿业工程学院 班级: 姓名:

遥感图像的几何校正实验报告 一、实验目的 通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。 二、实验环境 操作系统:windows 8.1 软件:ENVI 4.3 三、实验内容 ERDAS 软件中图像预处理模块下的图像几何校正 几何校正的必要性: 由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。 几何校正的原理: 遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像 遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。 在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数:25243210'2 5243210'y b x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=,得到变换后的图像坐标(x ′,y ′)与参考图 像坐标的关系,从而对图像进行几何校正。 实验步骤: 运行ENVI 软件

ERDAS正射校正

WERDAS正射校正操作流程 一、将正摄校正所需要的DEM文件的坐标信息改成与底图一致 1、观察底图的坐标投影信息:首先在VIEWER打开底图,点击工具栏上的“i”图标,选择“Projection”选项卡,就可以看到底图的坐标投影信息。 2、对DEM进行转投影:

选择Data Prep 模块,选择“Peproject Images”重投影功能,打开如下对话框。在Input File 文件中选择想要重投影的DEM文件,Output File 文件中添输出的DEM文件名。点击下面的小地球图标,定义要转投影的椭球体等。 在Custom选项卡中填写与底图一样的投影信息,并保存或直接应用,设置完毕后在Peproject Images 点击“OK”完成转投影。

3、给DEM赋予高程信息: 打开转投影后的DEM文件,点击工具栏上的“i”——Edit——Add/Change Elevation Info 设置与底图对应的高程信息,点击OK结束。

4、重新计算高程 在打开的DEM文件上点击工具栏上的“i”——Edit——Recalculate Elevation Values ——Define Output Elevation Info,设置好高程信息,设置好输入和输出文件口点击OK完成高程计算。

二、开始正摄校正 1、打开两个VIEWER,分别打开待校正影像和底图。 2、点击待校正影像上的Raster——Geometric Correction,在弹出的对话框中选择适当的模型,如图。

3、在模型设置对话框中做如下设置,并选择刚刚做完处理的DEM文件。 点击第一个打开文件图标,选择RPC文件格式,选择对应的RPC文件,设置结束后点击Apply ——Close

浅析遥感图像的几何校正原理及方法

浅析遥感图像的几何校正原理及方法 摘要:几何校正,就是清除遥感图像中的几何变形,是遥感影像应用的一项重要的前期处理工作。本文简单分析了几何校正的原理和基本方法,并以ERDAS软件为例,对青海海东地区遥感影像进行了几何校正,从而直观地表述了遥感图像几何校正的完整过程。结果表明,几何校正的精度受多方面因素影响,最主要的是控制点GCP的选取数量和选取位置。本次校正精度小于0.5个像元,符合要求。 关键词:遥感、ERDAS、几何校正、GCP 引言:遥感20世纪60年代发展起来的对地观测综合性技术。狭义遥感指从远距离、高空,以至外层空间的平台上,利用可见光、红外、微波等遥感器, 通过摄影、扫描等各种方式,接收来自地球表层各类地物的电磁波信息,并对这些信息进行加工处理,从而识别地面物质的性质和运动状态的综合技术。遥感已然成为地理数据获取的重要工具。但是遥感技术的成图规律决定了遥感图像不能直接被应用,因为遥感图像在成像时, 由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响, 使得遥感图像存在一定的几何变形[2] , 即图像上的像元在图像坐标系中的坐标与其在地图坐标系等参考坐标系统中的坐标之间存在差异, 其主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲[3] 。而且随着当今遥感技术的飞速发展,人们对遥感数据的需求也多源化,它们可以是来自不同的波段, 不同的传感器, 不同的时间。这些多源数据在使用时, 必须具有较高的空间配准精度。这就需要对原始影像进行高精度的几何校正。因此, 几何校正是遥感影像应用的一项重要的前期处理工作。 ERDAS IMAGINE 是美国ERDAS 公司开发的遥感图像处理系统,它以先进的图像处理技术友好灵活的用户界面和操作方式、面向广阔应用领域的产品模块、服务于不同层次用户的模型开发工具以及高度RS/GIS 集成功能为遥感及相关应用领域的用户提供内容丰富且功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势[5]。基于此软件强大的功能性和灵活的操作性,本文采用erdas软件对海东地区影像图进行几何纠正。 2 研究区概况与研究方法 海东地区位于青海省东北部,"海东"以位于青海湖东而得名。地处祁连山支脉大板山南麓和昆仑山系余脉日月山东坡,属于黄土高原向青藏高原过渡镶嵌地带,海拔在1650~2835米之间。境内山峦起伏,沟整纵横,气候属于高原气候,高寒、干旱、日照时间长,太阳辐射强,昼夜温差大。年平均气温6.9℃,年均降水量为323.6 毫米,总蒸发量为1644毫米。本文采用校正过的2004年的海东地区参考影像对2009年对应影像进行校正。 3 几何校正的原理与方法 遥感图像几何校正包括光学校正和数字纠正。本文主要介绍数字纠正。 数字纠正是通过计算机对图像每个像元逐个地解析纠正处理完成的,其包括两方面,一是像元坐标变换,二是像元灰度值重新计算(重采样)。 (三) 数字图像灰度值的重采样 校正前后图像的分辨率变化、像元点位置相对变化引起输出图像阵列中的同名点灰度值变化,如图3所示

正射校正步骤

环境星影像正射纠正 遥感图像在成像时,由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响,使获得的遥感图像相对于地表目标存在一定的几何变形,图像上的几何图形与该物体在所选定的地图投影中的几何图形产生差异,产生了几何形状或位置的失真。主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲。 消除这种差异的过程称为几何校正。 借助于地面控制资料及DEM,将数字图像投影到平面上,使其符合正射投影要求。 使用IMAGINE AutoSync模块对环境星做正射校正,具体步骤: 1.在ERDAS EMAGINE 主界面上,点击AutoSync 模块,点击AutoSync Workstation下拉菜单。

2.打开IMAGINE AutoSync Workstation Startup对话框。 3.在IMAGINE AutoSync Workstation Startup 对话框中选择Create a new project,点击OK。打开Create New Project 对话框。 这里输入工程名 点击这里选择地理参考 点击这里选择重采样 点击打开 Resample Settings

打开Resample Settings,选择重采样方法为“Nearest Neighbor”,点击ok。 4.在Default Output File Name Suffix字段中,键入输出文件名的后缀,这里选择默认的后缀为_output。 5. 确定工程文件的输出路径及名字后点击确定,即可进入自动正射校正界面。

6.加载图像。在IMAGINEAutoSync工具条上,点击打开输入图像图标 Select Image To Open 对话框,将待校正影像加载进来。 7.点击打开参考图像图标,或者从菜单条上选择File-Add

纠正预防措施培训试题及答案

纠正预防措施培训试题及答案 部门:姓名:工号:得分: 一、填空(24分) 1.5Why分析法是指(2分):________________________________________________。 2.5W2H指:____、____、____、____、____、____、____,从而找到问题的真正原因 3.SMART原则(每空2分):___、____、____、____、____ 4.4MEI分析法指:从____、____、____、____、____分析问题,以找到问题的真正原因 二、多项选择题(76分) 1.A商场的玻璃门被撞破了,于是换了块玻璃门,然后贴上红色“小心玻璃”字样,对面 的B商场看到后,也在自家的玻璃门上贴上了“小心玻璃”。则换玻璃门属于( C ),A商场贴“小心玻璃”字样属于(A ),B商场贴“小心玻璃”字样属于(B )(6分) A、纠正措施 B、预防措施 C、纠正 D、以上都不是 2.纠正针对的是(AD ),纠正措施针对的是(ACD ),预防措施针对的是(BE )(14 分) A、已发生的不合格 B、未发生的不合格 C、已发生的不合格原因 D、防止再发生 E、防止发生D、改正错误 3.8D方法是指以下8个方面(CAFDEGHK )(4分) A、描述问题 B、初步分析 C、组建团队 D、根本原因 E、长期 措施F、临时措施G、执行和验证长期措施验证H、防止再发生 I、小组聚餐J、拍照取证K、团队激励 4.下面关于因果图的说法正确的是(BCDEFG )。(6分) A、因果图是种复杂的方法 B、因果图也称为鱼刺图 C、可利用逻辑推理法或发散整理法绘制 D、绘制因果图要集思广益、充分 讨论 E、确定原因应尽可能具体 F、因果图本身也需要不断改进 G、最终往往因素越少越有效H、可以同时分析两个以上的质量问题 5.FMEA最常用的是(AB )(2分)

遥感图像几何校正原理及效果分析

第25卷第9期 计算机应用与软件 V o l .25N o .9 2008年9月 C o m p u t e r A p p l i c a t i o n s a n d S o f t w a r e S e p .2008 遥感图像几何校正原理及效果分析 王学平 (中国地质大学数学地质遥感地质研究所 湖北武汉430074) 收稿日期:2007-09-10。地质过程与矿产资源国家重点实验室基金项目(M G M R 2002-11)。王学平,副教授,主研领域:遥感应用与研究。 摘 要 几何校正是遥感图像处理的一个重要环节,是削弱遥感图像与地面真实形态差异的重要手段。以广东省从化市E T M + 遥感数据和G I S 数据为例,较深入地分析遥感图像几何校正原理并介绍E R -M a p p e r 7.0遥感软件的几何校正应用,指出提高遥感图像几何校正精度的有效途径和效果分析。 关键词 E T M+图像 G I S 数据 几何校正 效果分析 G E O ME T R I CR E C T I F I C A T I O NA N DE F F E C TA N A L Y S I SO FR E MO T ES E N S I N GI MA G E W a n g X u e p i n g (I n s t i t u t e o f M a t h e m a t i c a l a n dR e m o t e S e n s i n gG e o l o g y ,C h i n aU n i v e r s i t y o f G e o s c i e n c e s ,W u h a n 430074,H u b e i ,C h i n a ) A b s t r a c t G e o m e t r i c r e c t i f i c a t i o ni s a n i m p o r t a n t c o m p o n e n t i n r e m o t e s e n s i n g i m a g e p r o c e s s ,a n d i s a n e s s e n t i a l m e a n s t o r e d u c e o r e l i m -i n a t e d i f f e r e n c e s b e t w e e nr e m o t e s e n s i n g i m a g e a n d r e a l g e o g r a p h i c s h a p e .I n t h i s p a p e r i t d e e p l y a n a l y z e s t h e g e o m e t r i c r e c t i f i c a t i o nt h e o r y ,t a k i n g G u a n g d o n g C o n g h u a E T M +r e m o t e s e n s i n g d a t a a n d G I Sd a t aa s a ne x a m p l e ,i n t r o d u c e s t h e a p p l i c a t i o ni n g e o m e t r i c r e c t i f i c a t i o no f t h e s o f t w a r eE R -M a p p e r 7.0,a n dp o i n t s o u t t h e a v a i l a b l e a p p r o a c hf o r i m p r o v i n g t h e p r e c i s i o no f g e o m e t r i c r e c t i f i c a t i o n a n d t h e e f f e c t a n a l y -s i s .K e y w o r d s E T M+i m a g e G I Sd a t a G e o m e t r i c r e c t i f i c a t i o n E f f e c t a n a l y s i s 0 引 言 在二十一世纪的今天,遥感已揭开她神秘的外纱,与多种应用学科相结合,从理论遥感已发展出资源遥感、环境遥感、生态遥感、海洋遥感、地质遥感等领域,遥感应用方面的教材和专著也层出不穷。本人多年从事遥感理论与应用方面的研究和教学工作,发现遥感图像处理中的几何校正是一个易被忽视的研究内容,常造成处理后遥感图像的质量下降。本文结合实例,较深入地剖析几何校正原理,较全面地指出提高几何校正精度的有效参数和途径。重视几何校正在遥感图像处理中的作用,它不仅可以有效提高遥感图像的几何精度,而且可以进行遥感图像与其它数据源如G I S 图形的配准。 1 遥感图像几何校正原理分析 在分析遥感图像几何校正原理的同时,有必要了解几何校 正产生的背景以及与遥感图像几何精度的关系。 1.1 几何畸变与几何校正 几何畸变和几何校正是遥感理论的一对派生词,几何校正是因几何畸变而产生,是解决几何畸变的方法体系。 在遥感理论上,将遥感平台位置和运动状态、地形起伏、地球表面曲率、大气折射等遥感系统内外因素影响造成的遥感图像几何位置上的变化统称为几何畸变,也就是遥感图像在几何位置上与实际地面位置有差异。在图像上表现为像元行列分布不均匀,像元大小与地面大小对应不准确等。针对不同因素产 生的图像几何畸变,发展出了多种多样的校正方法,如图像比例 尺的变化、中心位置的偏移以及旋转等畸变,通过不同的线性变 换进行校正。对于图像的不规则几何畸变,通过多项式法、三角 测量法、M Q 模型、自动纠正算法等众多方法[1-4] 来消除。 1.2 图像级别 遥感图像的几何精度级别与几何校正密切相关。一般遥感图像数据源分为3个级别,第1个级别是指卫星下行数据经过格式化同步、按景分幅、格式重整等处理后得到的图像数据。该数据未进行任何几何校正,几何畸变较大。第2个级别是经过系统几何校正的图像数据,即利用卫星所提供的轨道和姿态等参数、以及地面系统中的有关处理参数对第1个级别遥感数据进行几何校正所获得的数据,该工作通常是由遥感卫星地面接收站完成,是研究人员获取的主要遥感数据源。第3个级别是经过几何精校正的图像数据,指采用地面控制点对第2个级别中的系统几何校正模型进行修正,使之更精确地描述卫星与地面位置之间的关系。该工作可以由遥感卫星地面接收站完成,也可以由研究人员来实现。 对于第3级别的L a n d s a t 7E T M+遥感图像数据,几何定位精度可达一个像元以内,即几何误差为15米,可以作为1:10万以下中小比例尺的矿产、资源、测量等研究方面的数据源。 1.3 几何校正原理分析 几何校正,即图像级别中的几何精校正,主要方法是多项式

相关主题
文本预览
相关文档 最新文档