第八章 t检验
- 格式:ppt
- 大小:892.00 KB
- 文档页数:38
第八章 t 检验t 检验(t test)亦称Student’s t 检验,是以t 分布为基础定量资料分析中常用的假设检验方法,用于两均数间的比较。
t 检验的应用条件为:①在单样本t 检验中,总体标准差σ未知且样本含量较小,要求样本来自正态分布总体;②配对t 检验是单样本t 检验的特殊情况,配对设计是指同质受试对象配成对子分别接受两种不同处理或同一受试对象分别接受两种不同处理;③两小样本均数比较时,要求两样本均来自正态分布总体,且两样本总体方差相等;若两样本总体方差不相等,则用t '检验;④对两大样本(12n n 、均大于50)的均数比较,可用Z 检验。
但在实际应用时,与上述条件略有偏差,只要其分布为单峰且近似对称分布即可。
第一节 样本均数与总体均数的比较样本与总体均数比较的检验亦称为单样本t 检验(one sample t test),用于样本均数代表的未知总体均数μ与已知总体均数0μ(一般为理论值或标准值)的比较。
在00:H μμ=成立的条件下,检验统计量的计算公式如下01X X X t v n S μ-===- (8.1) 式中,X 为样本均数,S 为样本标准差,v 为自由度。
例8.1 已知某地新生儿出生体重均数为3.36 kg 。
从该地农村随机抽取40名新生儿,测得其平均体重为3.27 kg ,标准差为0.44 kg ,问该地农村新生儿出生体重是否与该地新生儿平均出生体重不同?1.建立检验假设,确定检验水准0: 3.36H μ=,该地农村新生儿体重与该地新生儿平均出生体重相同 1: 3.36H μ≠,该地农村新生儿体重与该地新生儿平均出生体重不同0.05α=2.计算检验统计量 由式(8.1),得1.294140139X X X t S v n μ-====-=-=-= 3.确定P 值,作出统计推断根据39v =和 1.294t =-的绝对值查t 界值表(附表3),得0.20.4P <<,则按0.05α=的检验水准,不拒绝0H ,差异无统计学意义,尚不能认为该地农村新生儿体重与该地新生儿平均出生体重不同。
医学统计学——t检验课件xx年xx月xx日contents •t检验的基本概念•t检验的原理•t检验的步骤•t检验的应用•t检验的注意事项•t检验的实例演示目录01 t检验的基本概念统计假设检验的一种,用于比较两个独立样本的平均数是否有显著差异,或一个样本的平均数与一个已知的参考值之间是否有显著差异。
t检验常用于小样本数据,特别是两个独立样本的比较。
t检验的定义t检验的适用范围适用于小样本数据,特别是两个独立样本的比较;常用于检验一个样本的平均数与一个已知的参考值之间是否有显著差异;可用于二分类变量和等级变量的比较。
两个独立样本来自的总体服从正态分布;两个独立样本来自的总体方差相等;样本数据是随机样本。
t检验的假设条件02 t检验的原理两独立样本t检验适用条件样本应来自正态分布总体,且方差相等。
结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
统计假设比较两组独立样本的均值是否存在显著差异,即H0:μ1=μ2与H1:μ1≠μ2。
两配对样本t检验统计假设比较两组配对样本的差值均值是否显著非零,即H0:μ1-μ2=0与H1:μ1-μ2≠0。
适用条件样本应来自正态分布总体,且方差相等。
结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
单因素方差分析t检验统计假设比较三组或多组独立样本的均值是否存在显著差异,即H0:μ1=μ2=…=μn与H1:μ1≠μ2≠…≠μn。
适用条件样本应来自正态分布总体,且方差相等。
结果解释根据F值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
如果P值小于预设显著性水平α,则认为各组均值存在显著差异;否则,认为无显著差异。
03 t检验的步骤明确研究目的明确研究目的是t检验的首要步骤,决定了数据的类型和数量。
数据筛选对数据进行筛选,去除异常值和缺失值,以确保数据的有效性和可靠性。
数据分组根据研究目的,将数据分成两组或以上,以便进行比较和分析。
•t检验概述•t检验的前提条件•单一样本t检验•独立样本t检验•配对样本t检验•t检验的扩展•t检验在医学中的应用•t检验的常见错误及注意事项目录t检验的定义0102031t检验的适用范围23t检验主要用于比较两组数据的均值是否存在显著差异,例如比较两组病人的平均血压、平均血糖等指标是否存在显著差异。
t检验还可用于检测单个样本的均值与已知的某个值是否存在显著差异,例如检测某种新药的有效性。
在医学研究中,t检验常用于临床试验、流行病学调查等数据统计分析中。
t检验的历史与发展t检验起源于英国统计学家G.E.皮尔逊,最初用于解决科学实验中的数据分析问题。
随着科学技术的不断发展,t检验逐渐成为医学统计学中最常用的统计分析方法之一。
目前,t检验已经广泛应用于医学、生物、社会科学等领域的数据统计分析中,成为研究者和学者们必备的统计工具之一。
样本正态分布样本独立性独立性是指样本数据来自不同的总体,且各总体之间相互独立。
在进行t检验时,要求样本数据是来自两个或多个相互独立的总体。
如果样本数据不是来自相互独立的总体,那么t检验的结果可能会受到影响。
在实际应用中,如果样本数据不满足独立性要求,可以通过将数据分为不同的组(如按时间、按个体等)来满足独立性要求。
如果数据无法分组满足独立性要求,则可以考虑使用其他统计方法。
方差齐性单一样本t检验是用来检验一个样本均值是否显著地不同于已知的参考值或“零”(即检验假设H<sub>0</sub>:μ=μ<sub>0</sub>)。
这种检验通常用于检验单个观察值是否与已知的参考值有显著差异。
公式t=(X-μ<sub>0</sub>)/S<sub>X</sub>/√n,其中X是样本均值,μ<sub>0</sub>是已知的参考值或“零”,S<sub>X</sub>是样本标准差,n是样本大小。
专题八 t 检验⒈t 检验基础t 检验是一种以t 分布为基础,以t 值为检验统计量资料的假设检验方法。
⑴t 检验的基本思想:假设在H 0成立的条件下做随机抽样,按照t 分布的规律得现有样本统计量t 值的概率为P ,将P 值与事先设定的检验水准进行比较,判断是否拒绝H 0。
⑵t 检验的应用条件:①样本含量较少(n <50);②样本来自正态总体(两样本均数比较时还要求两样本的总体方差相等,即方差齐性)。
【注】实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,对结果影响不大。
⑶t 检验的主要应用:①单个样本均数与总体均数的比较;②配对设计资料的差值均数与总体均数0的比较;③成组设计的两样本均数差异的比较。
⑷单样本t 检验基本公式:t=x0s x μ-=nsx 0μ- υ=n-1⒉z 检验z 分布(标准正态分布)是t 分布的特例,当样本n ≥50或者总体σ已知时用z 检验。
⑴单样本z 检验基本公式:z=nsx 0μ- 或 z=nx 0σμ-⑵单样本z 检验的步骤与单样本t 检验的基本相似。
⒊配对设计均数的比较 配对设计是为了控制某些非处理因素对实验结果的影响而采用的设计方式,应用配对设计可以减少实验误差和个体差异对结果的影响,提高统计处理的效率。
⑴配对设计的主要四种情况:①配对的两受试对象分别接受两种处理,如在动物实验中,常先将动物按照窝别、体重等配对成若干对,同一对的两受试对象随机分配到实验组和对照组,然后观察比较两组的实验结果。
②同一样品用两种不同方法测量同一指标或接受不同处理。
③自身对比,即将同一受试对象(实验或治疗)前后的结果进行比较。
④同一对象的两个部位给予不同处理。
⑵对配对资料的分析:一般用配对t 检验,其检验假设为:差值的总体均数为0即μd =0。
计算统计量的公式为:t=ns 0d d-,υ=n-1式中d 为差值的均数;s d 为差值的标准差;n 为对子数。
⑶关于自身对照(同体比较)的t 检验:①在医学研究中,我们常常对同一批患者治疗前后的某些生理、生化指标进行测量以观察疗效,对于这些资料可以按照配对t 检验。