函数的概念 人教版
- 格式:doc
- 大小:102.50 KB
- 文档页数:3
二、函数及其表示(一)函数的概念1.函数的概念(1)函数的传统定义设在一个变化过程中,有两个变量x和y,如果给定了一个函数值,相应的就有唯一确定的一个y值与之相对应,那么我们就称y是x的函数,其中x是自变量,y是因变量(2)函数的近代定义一般地,设A,B是非空的数集,如果按照某种确定的对应关系f使对于集合A中的任意一个数x在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
其中x是自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y叫做函数值,函数值的集合{f(x)|x∈A} 叫做函数的值域就不是函①A,B都是非空的数集,因此定义域或值域为空集的函数不存在,例如,y=x−1x+1数②集合A是函数的定义域,给定A中一个x值有唯一的y值与之对应;集合B不一定是函数的值域,因为B中的元素可以没有x与之对应,即{f(x)|x∈A}⊆B③符号y=f(x)表示“x对应的函数值”,f表示对应关系,“f(x)”是一个整体,不可分开,也不能理解成“f·x”④f(a),a∈A与f(x)的区别⑤函数的实质是集合A,B的对应关系,可以一对一、多对一,但不能一对多,而且集合A中的元素必须要用完,而集合B中的元素可以不用完例1:设集合M={x|0≦x≦2},N={y|0≦y≦2},给出的下列四个图形中,其能够表示集合M 到集合N的函数关系的是()2.函数的构成要素与函数相等一个函数构成要素为定义域、对应关系、值域值域是由定义域和对应关系决定的,所以确定一个函数就只需要确定定义域和对应关系,即定义域和对应关系使“y是x的函数”的而两个基本条件要检验给定的两个变量之间是否具有函数关系,只需检验(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x在其定义域中的每一个值,是否都有唯一的函数值和它对应如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等①函数的定义域和对应关系一旦确定,值域就确定了,所以判断两个函数是否相等只需要判断他们的定义域和解析式是否相等就可以了,不需要在判断值域②满足定义域和值域相同的两个函数,不一定是相等的函数,例如:函数f(x)=x²与函数f(x)=(x-3)²例2:判断下列各组中的函数是否表示同一个函数(1)f(x)=|x-1|与g(x)=x−1,x≧1 1−x,x<1(2)f(x)=x与f(t)=(33)在判断对应关系是否相同时,两个函数可能表现形式不同,但经过适当地变形,可以化为相同的形式,这是也可以说它们具有相同的对应关系3.函数的定义域函数的定义域是自变量x的取值范围,有时可以省略,如果未加特殊说明,那么函数的定义域就是指能使函数式有意义的所有实数x构成的集合在实际问题中,喊必须考虑自变量x所代表的具体量的允许范围求函数的定义域:①如果f(x)是整式,那么其定义域是实数R②如果f(x)是分式,那么其定义域是使分母不为0的实数集合③如果f(x)是二次根式(偶次根式),那么其定义域是使根号内的式子不小于0的实数集合④如果f(x)是由以上几个部分式子构成的,那么其定义域是使各部分式子都有意义的实数集合⑤f(x)=x0的定义域是{x∈R|x≠0}例3:求下列函数的定义域(1)f(x)=x+1+12−x(2)f(x)=x−2+233x+7(3)f(x)=4.函数的值域函数的值域是在对应法则f的作用下,自变量x在定义域内取值是相应的函数的集合求函数的某个函数值是,可以直接代入解析式,求的相应的函数值;求函数的值域时,可以采取不同的方法求解(1)观察法:对所求的函数解析式进行简单变形,通过观察,得出所求函数的值域如:函数y=11+x(2)配方法:若函数是二次函数,或可以化为二次函数形式,则可以通过配方法求出其值域,但是要注意自变量的取值范围如:求y=x-2x+3的值域(3)判别式法:将函数化为因变量y的二次方程,利用判别式∆≥0求函数的值域,常用于分母是二次函数的分式函数的值域如:求y=x+1x²+2x+2(4)换元法:对函数解析式进行适当换元,将复杂的函数化为几个简单的函数,从而利用基本函数取值范围来求函数的值域如:求y=2x-3+13−4x的值域的函数的值域,舱采用分离常数法(5)分离常数法:用于求形如y=cx+dax+b的值域如:求y=3x−2x−1(6)图像法:做出函数的图像,有图像直观的得出函数值域5.区间设a,b是两个实数,且a<b,区间的定义、名称、符号及数轴表示如下表:①区间的左端点必小于右端点②用数轴表示区间是,要特别注意包括在这个区间内的端点用实心圆点表示,不包括在这个区间内的端点用空心圆点表示③无穷大∞是一个符号,不是一个数,它不具备数的已瞎性质和运算法则④以“+∞”或“- ∞”为区间的一端时,这一端必须是小括号⑤单元素集合不能用区间表示,如集合{0}不能表示为[0]或[0,0]的定义域可用区间表示为__________例4:函数y=1−1−x例5:已知集合A={x|5-x≥0},集合B={x||x|-3≠0},求A∩B,并用区间表示考点1:函数的求值问题1.已知函数f(x)=3x 3+2x,求f(f(1))的值2.已知f(x)=1-2x ,则f(12)=______3.已知f(x)=11+x (x ∈R ,且x ≠-1),g(x)=x ²+2(x ∈R )(1)求f (2),g (2)的值(2)求f(g(2)) 的值考点2:求函数定义域1.求已知解析式的函数定义域1.求下列函数的定义域(1)y= −x 2x²−3x −2(2)y=4x+83 3x −2(3)y= x ²−3· 5−x ²(4)y= x +2+13−x。
人教版函数知识点总结一、函数的定义1.1 函数的基本概念函数是一种特殊的关系,它将每一个自变量映射到唯一的因变量上。
在数学中,我们通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
1.2 函数的符号表示在函数的定义中,我们通常通过符号来表示函数。
例如,y=f(x)、y=g(x)等。
1.3 函数的定义域和值域函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
在函数的图像中,定义域通常对应横坐标的取值范围,值域对应纵坐标的取值范围。
1.4 函数的判定确定一个关系是否为函数,可以通过水平线测试或者垂直线测试来进行判断。
如果任意一条垂直线只与图像相交一次,则该关系是函数。
1.5 函数的表示方法函数可以通过一张表格、一条曲线、一个公式等方式进行表示。
在实际应用中,我们通常通过表格、曲线等方式来描述函数的性质和特点。
二、函数的性质2.1 奇函数与偶函数奇函数指的是满足f(-x)=-f(x)的函数,偶函数指的是满足f(-x)=f(x)的函数。
奇函数通常以原点对称,偶函数通常以y轴对称。
2.2 单调递增与单调递减单调递增指的是当自变量增大时,因变量也随之增大;单调递减指的是当自变量增大时,因变量却减小。
单调递增函数通常在定义域内是一个递增的曲线,单调递减函数则是一个递减的曲线。
2.3 周期函数周期函数指的是具有周期性的函数,它在一个周期内重复自身。
常见的周期函数有正弦函数和余弦函数。
2.4 反函数函数f(x)的反函数通常表示为f^(-1)(x),它满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的性质。
反函数是原函数的镜像,它的定义域和值域与原函数互换。
三、函数的图像3.1 直角坐标系中的函数图像在直角坐标系中,函数的图像通常用曲线来表示。
曲线的形状与函数的性质密切相关,通过观察曲线的变化可以了解函数的单调性、奇偶性、周期性等性质。
3.2 参数方程中的函数图像在参数方程中,函数的图像通常用参数的取值来表示。
人教版八年级数学知识点梳理函数与方程式函数与方程是数学中的重要概念,是数学建模与解决实际问题的工具。
在人教版八年级数学课程中,函数与方程也是重要的知识点。
本文将对八年级数学课程中的函数与方程进行梳理,旨在帮助学生全面了解和掌握相关知识。
一、函数的概念和性质函数是数学中的基本概念之一,指的是两个集合之间的映射关系。
在八年级数学课程中,学生将学习到函数的定义、表达方式和性质等内容。
1. 函数的定义函数是两个集合A和B之间的映射关系,设A中的元素为x,B中的元素为y,则函数f的定义可以表达为:y = f(x),其中x∈A,y∈B。
2. 函数的表达方式函数可以通过函数图像、解析式和数据表等方式进行表达。
3. 函数的性质八年级数学课程中涉及的函数性质有:定义域、值域、单调性、奇偶性以及最值等。
二、线性函数与一元一次方程线性函数和一元一次方程是八年级数学中的重要内容,两者之间有着密切的联系。
在学习线性函数时,学生也需要掌握一元一次方程的相关知识。
1. 线性函数的概念和性质线性函数是一个特殊的函数,其解析式可以表示为y = kx + b,其中k为斜率,b为截距。
学生需要掌握线性函数的图像特征和数学性质,如平行、垂直、斜率等。
2. 一元一次方程的概念和解法一元一次方程是方程的一种,也称为一元线性方程。
其解法包括等式转化、消元法和代入法等。
三、二次函数与一元二次方程二次函数和一元二次方程是八年级数学中的重点内容,涉及到二次函数的图像特征和一元二次方程的解法。
1. 二次函数的概念和性质二次函数的解析式可以表示为y = ax^2 + bx + c,其中a、b和c为常数,a不等于0。
学生需要掌握二次函数的开口方向、顶点坐标、对称轴和最值等性质。
2. 一元二次方程的概念和解法一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c为常数,a不等于0。
解一元二次方程可以使用因式分解法、配方法和求根公式等方法。
八年级(人教版)函数知识点总结1. 函数的概念1.1 函数的定义- 函数是一种具有特定输入和输出的关系。
1.2 函数的表示方法- 显式函数表达式- 隐式函数表达式- 函数图像2. 函数的性质2.1 奇偶性- 如果对于任何$x$,都满足$f(-x) = f(x)$,则称函数为偶函数。
- 如果对于任何$x$,都满足$f(-x) = -f(x)$,则称函数为奇函数。
2.2 周期性- 如果对于任何$x$,都满足$f(x+T) = f(x)$,则称函数为周期函数。
2.3 单调性- 如果对于$x_1 < x_2$,都满足$f(x_1) < f(x_2)$,则称函数为单调递增。
- 如果对于$x_1 < x_2$,都满足$f(x_1) > f(x_2)$,则称函数为单调递减。
3. 函数的基本图像与简单变形3.1 常函数$f(x) = C$3.2 一次函数$f(x) = kx + b$3.3 二次函数$f(x) = ax^2 + bx + c$,其中$a\neq 0$ 3.4 绝对值函数$f(x) = |x|$3.5 倒数函数$f(x) = \frac{1}{x}$3.6 反比例函数$f(x) = \frac{k}{x}$,其中$k\neq 0$ 4. 函数的运算4.1 函数的和、差、积、商- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- 和函数:$(f+g)(x) = f(x)+g(x)$,$D_{f+g} = D_f \cap D_g$ - 差函数:$(f-g)(x) = f(x)-g(x)$,$D_{f-g} = D_f \cap D_g$- 积函数:$(f\times g)(x) = f(x)\times g(x)$,$D_{f\times g} = D_f \cap D_g$- 商函数:$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$,$D_{\frac{f}{g}} = \{x\in D_f \cap D_g|g(x)\neq 0\}$4.2 复合函数- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- $(f\circ g)(x) = f(g(x))$,$D_{f\circ g} = \{x\in D_g|g(x)\in D_f\}$5. 函数的应用5.1 解方程- 通过函数图像的交点来求解方程。
知识图谱-函数的概念与表示-函数的定义域-函数的值域函数及区间的概念判断同一函数映射与函数具体函数的定义域抽象函数的定义域直接法与分离常数法换元法与配方法判别式法函数的表示方法第02讲_函数的概念错题回顾函数的概念与表示知识精讲一. 函数的定义1. 传统定义:在某个变化过程中有两个变量,如果对于在某个范围内的任何一个,都有唯一的值与之对应,则成是的函数,叫自变量,叫因变量.2. 现代定义:设是两个非空数集,如果按照某个确定的对应关系,使对于集合中的任何一个数,在集合中都有唯一确定的数和它对应,那么就称为从集合到集合的一个函数,记作,其中叫做自变量,的取值集合叫做函数的定义域,与的值对应的值叫做函数值,函数值的集合叫做函数的值域.二. 相同函数的判定函数的定义含有三个要素,即定义域、值域和对应法则.当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数;定义域不同而解析式相同的函数要看做是不同的函数另外,要理解的意义,对应法则与我们选择表示自变量的符号没有关系,例如与等都表示同一函数.三. 区间的概念及表示设是两个实数,且,则可以作为端点表示一个区间,区间的长度为.如图所示,其中符号读作“正无穷大”,符号读作“负无穷大”,用作为区间的一端或两端的区间成为无穷区间.数轴上所有点四. 映射1.对应关系设有两个非空集合,如果有法则,把集合和集合的一个子集的元素联系起来,那么就形成了集合到集合的一个对应.它是两个集合中的元素之间的一种联系.2. 映射的概念设是两个非空集合,按照某种对应关系,对于集合中的任何一个元素,在集合中都有唯一的元素与它对应,那么,这样的对应关系就叫从集合到集合的映射,记作.3. 象与原象若是从到的映射,那么与中的元素对应的中的元素叫做的象,称为原象.4. 一一映射如果是从集合到集合的映射,并且对于集合中的任意一个元素,在集合中都有且只有一个原象,我们称这个映射为从集合到集合的一一映射5. 函数与映射的关系对于定义域内每个自变量的值,根据确定的法则对应唯一的函数值,函数值也在一个数集内变化,所以函数也就是非空数集到非空数集的映射.映射是函数概念的推广,函数是一种特殊的映射,是建立在两个非空数集上的映射.五. 函数的表示方法1. 解析法:用代数式(或解析式)表示两个变量之间的函数对应关系的方法,如.优点:一是简明、全面地概括了变量之间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.2. 图象法:把一个函数定义域内的每个自变量的值和它对应的函数值构成的有序实数对作为点的坐标,所有这些点的集合就称为函数的图象,即.这种用“图形”表示函数的方法叫做图象法.优点:能够直观形象地表示与自变量的变化相应的函数值的变化趋势,方便通过数形结合研究函数的相关性质.3. 列表法:列出自变量与对应函数值的表格来表达两个变量之间的关系的方法.优点:不需要计算就可以直接得到与自变量的值相对应的函数值,对于由统计数据得到的函数关系,列表法很适用.三点剖析一. 注意事项1. 函数符号意义是“是的函数”,可以用任意的字母表示,如“”;其中的表示与对应的函数值,是一个数,而不是乘;2. 与既有区别又有联系,表示当自变量时函数的值,是一个常量;而是自变量的函数,一般情况下是一个变量;是在时的一个特殊值。
函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点 (1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
一次函数和正比例函数1、一次函数的概念:一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
2、一次函数、正比例函数的图像 所有一次函数的图像都是一条直线一次函数y =kx +b (k ≠0)的图像是经过点(0,b )的直线(b 是直线与y 轴的交点的纵坐标,即一次函数在y 轴上的截距);正比例函数kx y =的图像是经过原点(0,0)的直线。
3、斜率:1212tan x x y y k --==α①直线的斜截式方程,简称斜截式: y =kx +b (k ≠0) ②由直线上两点确定的直线的两点式方程,简称两点式:111212)()(tan y x x x x x y y b x b kx y +---=+=+=α③由直线在x 轴和y④设两条直线分别为,1l :11y k x b =+l 若12//l l ,则有1212//l l k k ⇔=且1b ⑤点P (x 0,y 0)到直线y=kx+b(即:4寻求解题方法)如图:点A 坐标为(x 1,y 1)点B 则AB 间的距离,即线段AB5、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
人教版高中函数知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它将一个自变量映射到一个因变量上。
数学上通常用f(x)来表示函数,其中x为自变量,f(x)为因变量。
2. 定义域和值域函数的定义域是自变量能够取到的所有值的集合,而值域是函数得到的因变量的所有可能值的集合。
3. 函数的符号表示通常用f(x)和y来表示函数,其中y=f(x)。
此外,还有其他表示函数的方式,比如y=f(x), y=f(u), z=f(x,y)等。
4. 函数的图像函数的图像是函数在直角坐标系中的表示,可以通过图像的形状和特点来理解函数的性质和特点。
二、函数的性质1. 奇函数和偶函数奇函数满足f(-x)=-f(x)的函数,偶函数满足f(-x)=f(x)的函数。
2. 单调性当函数在定义域内的任意两点x1和x2满足x1<x2时,如果f(x1)<=f(x2),则函数在此区间上是递增的;如果f(x1)>=f(x2),则函数在此区间上是递减的。
3. 有界性函数在定义域内是否有上界和下界的性质。
4. 周期性如果对于任意的x,有f(x)=f(x+T),其中T是一个正数,则称函数具有周期性,而T称为函数的周期。
三、函数的运算1. 函数的和、差、积、商两个函数的和、差、积、商分别定义如下:(f+g)(x) = f(x) + g(x)(f-g)(x) = f(x) - g(x)(f*g)(x) = f(x) * g(x)(f/g)(x) = f(x) / g(x)2. 复合函数给定两个函数f(x)和g(x),我们可以定义它们的复合函数为h(x) = f(g(x))。
3. 函数的逆如果一个函数f(x)在定义域D上是单射的,即对于任意的x1和x2,如果f(x1)=f(x2),则x1=x2,那么f(x)在D上就存在逆函数f^-1(x)。
四、函数的极限1. 函数在无穷远处的极限当自变量x趋于无穷大时,我们研究函数f(x)的极限:lim[f(x)] (x→∞)。
人教版初二数学函数的概念与性质函数是数学中的基础概念之一,它在数学和现实生活中起着重要作用。
本文将对人教版初二数学中函数的概念与性质进行论述。
一、函数的定义函数是一个映射关系,它将一个自变量的值映射到一个与之对应的因变量的值。
用符号表示,函数通常记作f(x),其中x为自变量,f(x)为因变量。
二、函数的性质1. 定义域和值域函数的定义域是自变量的取值范围,而值域是因变量的取值范围。
在函数的图像中,定义域对应自变量的取值范围,值域对应因变量的取值范围。
2. 一一对应如果函数的每一个自变量对应唯一的因变量,并且每一个因变量也有唯一的自变量对应,那么这个函数就是一一对应的。
3. 奇偶性对于定义在整个实数集上的函数,如果满足f(-x) = - f(x),则这个函数为奇函数;如果满足f(-x) = f(x),则这个函数为偶函数。
4. 单调性如果函数在定义域上任意两个不同的自变量对应的因变量的大小关系与自变量的大小关系一致,那么这个函数就是单调的。
5. 周期性如果存在一个正数T,使得对于定义在整个实数集上的函数f(x)有f(x+T) = f(x),那么这个函数就是周期函数,T称为函数的周期。
三、实例分析以一道具体的题目为例,来分析函数的概念与性质。
假设有函数f(x) = 2x + 1,求其定义域、值域、奇偶性、单调性和周期性。
1. 定义域与值域由于函数f(x) = 2x + 1是一次函数,它的自变量可以取任意实数,因此定义域为整个实数集R。
对于值域,由于斜率为2是正数,所以函数的值域也是整个实数集R。
2. 奇偶性将f(-x)代入函数f(x) = 2x + 1中,得到f(-x) = 2(-x) + 1 = -2x + 1。
将f(x)和f(-x)进行比较,可以看到f(-x) = -f(x),因此该函数为奇函数。
3. 单调性对于函数f(x) = 2x + 1来说,当x1 < x2时,f(x1) < f(x2),所以函数是递增的,即单调递增函数。
必修第一册第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念:一般地,设A、B是非空的数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
2.构成函数的三要素:定义域、对应关系和值域(1)函数的定义域的求法:①自然型:解析式自身有意义,如分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数;②实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域的方法:①配方法(将函数转化为二次函数);②不等式法(运用不等式的各种性质);③函数法(运用函数的单调性、函数图象等)。
(3)两个函数的相等:当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
3.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。
4.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;5.区间的概念:设a,b是两个实数,且a<b,我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,表示[a,b)或(a,b];a,b都叫做区间的端点。
(4)代数与几何表示对照表(数轴上用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点)(5)3.2 函数的基本性质⊆: 1.单调性:(1)定义:一般地,设函数y=f(x)的定义域为I,区间D I①∀ x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数;特别地,当函数f(x)在它的定义域上单调递增时,我们成它是增函数。
函数的概念
教学目标:
1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素;
2.理解静与动的辩证关系,激发学生学习数学的兴趣和积极性
教学重点:函数的概念,定义域,值域.
教学难点:函数概念的理解.
教学过程:
一.复习提问
初中已经学过:正比例函数、反比例函数、一次函数、二次函数等
问题1:1=y (R x ∈)是函数吗?
问题2:x y =与x
x y 2
=是同一函数吗? 观察下列各图,找出它们的不同点?
二.新课讲授
(一)函数的有关概念
设A ,B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作 y =f(x),A x ∈.我们把x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|){{A x x f ∈叫做函数的值域.
注意:1.这里的f 代表对应关系,它和集合A ,B 一起称为从A 到B 的函数,不要误认为对应法则f 即为函数.“f :A →B ”意思是“从集合A 到集合的对应关系f ”.“y =f(x)”代表“从集合A 到集合B 的函数”,也就是“y 是x 的函数”,它只是一个符号也可以用“y =g(x)”来表示y 和x 的函数关系.
2.函数的三要素:定义域、值域和对应法则
(二)已学函数的定义域和值域
1.一次函数b ax x f +=)()0(≠a :定义域R, 值域R;
2.反比例函x
k x f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; 3.二次函数c bx ax x f ++=2)()0(≠a :定义域R
值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a 时,⎭⎬⎫⎩
⎨⎧-≤a b ac y y 44|2 (三)函数的值:关于函数值 )(a f
例:)(x f =2x +3x+1 则 f(2)=2
2+3×2+1=11 注意:1︒在)(x f y =中f 表示对应法则,不同的函数其含义不一样
2︒)(x f 不一定是解析式,有时可能是“列表”“图象”
3︒)(x f 与)(a f 是不同的,前者为变数,后者为常数
(四)函数的三要素: 对应法则f 、定义域A 、值域{}A x x f ∈|)(
只有当这三要素完全相同时,两个函数才能称为同一函数
三.课堂练习
下面大家判断一下下面这个例子是不是函数?
(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
表中所反应的恩格尔系数和时间的关系是函数关系吗?大家想一下?如果是,说出它的定义域,值域及对应关系.
生甲:定义域{}2001
1991|≤≤=t t A 值域{}8.532.39|≤≤=y y B 对于数集A 中的每一个时间t ,按照表中的关系,在数集B 中有唯一确定y 与之对应,因而构成函数关系.
师:再仔细想一下,定义域是自变量的取值范围,数集A 表示的是时间t 的取值范围吗?这的数集A ,B 构成函数关系吗?
生乙:定义域A ={1991,1992,……2001},值域B ={53.8,52.9,……,37.9},这样对于数集A 中的每一个时间t ,按照表中的关系,在数集B 中有唯一确定y 与之对应,因而构成函数关系.
师:很好.如果按照学生乙的话,是不是1991.5也在A 中,但表中并没有1991.5这一时间,这样按照表中的情况,也没有B 中的与之对应.
例:甲,乙,丙,丁,戊五位同学(y ),在一次数学测验中,他们的成绩(c )分别为80,83,70,83,90,同学y 是成绩c 的函数吗?反过来,成绩c 是不是同学y 的函数?
答:y 是c 的函数,而c 不是y 的函数,原因:对应关系不是唯一确定.
我们来看一下,我们所熟悉的一次函数的定义域,值域.y =f(x)=ax +b(a 0≠),很显然,它的定义域是R ,值域也是R ,在定义域R 中的任一x ,在值域R 中都有唯一的数ax +b 和x 对应.
再来看一下,二次函数y =f(x)=ax 2+bx +c (a 0≠),其定义域显然为R ,值域是多少呢?
当a>0时,值域为B =}a
4b ac 4y |y {2-≥ 当a<0时,值域为B =}a
4b ac 4y |y {2-≤
四.小结
函数是一种特殊的对应f :A →B ,其中集合A ,B 必须是非空的数集,y =f(x)表示y 是x 的函数,函数的三要素:定义域、值域和对应法则.。