温度控制系统的毕业设计
- 格式:doc
- 大小:367.00 KB
- 文档页数:39
CENTRAL SOUTH UNIVERSITY 本科生毕业论文题目PID温控系统的设计及仿真学生指导教师学院信息科学与工程学院专业班级完成时间年月摘要温度是工业控制的主要被控参数之一。
可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。
要对温度进行控制,有很多方案可选。
PID 控制简单且容易实现,在大多数情况下能满足性能要求。
模糊控制的鲁棒性好,无需知道被控对象的数学模型,且在快速性方面有着自己的优势。
研究分析了PID 控制和模糊控制的优缺点,把两者相互结合,采用了用模糊规则整定P K 、I K 两个参数的模糊自整定PID 控制方法。
本研究以电烤箱为控制对象,用MATLAB 软件对PID 控制、模糊控制和参数模糊自整定PID 控制的控制性能分别进行了仿真研究。
仿真结果表明PID 对于对象模型复杂和模型难以确定的控制系统具有很大的局限性,不能满足调节时间短、超调小的技术要求。
由于模糊控制的理论(如量化因子和比例因子的确定问题)并不完善,其可能获得的控制性能无法把握,而且模糊控制易受模糊规则有限等级的限制而引起稳态误差。
参数模糊自整定PID 控制吸收前两种方法的长处,满足了调节时间短、超调量为零且稳态误差较小的控制要求。
因此本论文最终确定采用参数模糊自整定PID 控制方案。
本系统硬件采用了以 AT89C52 单片机为核心的温度控制器,选用 k 型热电偶为温度传感器结合MAX6675芯片构成前向通道,同时双向晶闸管和SSR 构成后向通道,由按键、LED 数码显示器及报警单元等组成人机联系电路。
关键词:单片机,PID ,模糊控制,仿真ABSTRACTTemperature is one of the main parameters in the industrial process control.Yetthere are difficultiesto have a good control oftemperature becauseof the characteristics of the temperature itself:the temperature inertia is great, its time-lag is serious and it is hardto establish an accurate mathematical model.There are many methods to be selected in order to control a system. The PID controlis simple,easily realized andin most casesit meetsthe control demand. Fuzzy control has the advantage of quickness,itsrobustness is good and there is no needto know theobject ’smathematical model.This paper analyses the advantages and disadvantages of both PID control and fuzzycontrol and es to the method of bining them together,fuzzy self-tuningPID control. In this method,P K and I K of the PID controller are adjusted by fuzzy control rules .In the paper simulations of PID control, fuzzy control and fuzzyself-tuning PID control are done by MATLAB to control a electric oven.Conclusions are that for those control objects of which models are plicated or hard to establish,the PID method has limitation and doesn ’t meet the control demand. As the fuzzy control method theory is not perfect, a good control performance cannot be expected. And it could easily cause the steady-state error for it is restricted by limited grades of the fuzzy rules.Finally the fuzzy self-tuning PID control method is selected, since it meets the control demands.In this paper AT89C52 is used as controller, toward access is posed of K which is used as the temperature sensor and MAX6675.Backward access is posed of bidirectional thyristor and SSR. Man-machine circuit is posed of keyboard, LED and warning unit, etc.Key words :Micro Controller, PID Control, Fuzzy Control, Simulation目 录摘要IABSTRACTII第一章绪论11.1 课题的提出及意义11.2 控制系统背景介绍11.3 当代温控系统及智能算法2第二章温控系统的设计52.1 温控系统的总体设计52.1.1 温控系统设计的基本原则52.1.2 温控系统的结构及设计62.2 温控系统的硬件设计72.2.1 前向通道设计72.2.2 后向通道设计102.2.3 人机通道设计11小结15第三章系统控制方案163.1 PID 控制163.1.1 PID的概述163.1.2 PID 控制的基本理论及特点163.2 模糊控制183.2.1 模糊控制的概述183.2.2 模糊控制的基本原理及特点183.3 模糊PID 控制19小结21第四章仿真研究224.1 MATLAB及其模糊逻辑工具箱和仿真环境simulink224.2 仿真和优选234.2.1 控制对象模型234.2.2 仿真和方案选择25小结32第五章总结与展望335.1 主要工作容335.2 工作小结335.3 存在的问题及未来的方向34结束语35参考文献36第一章绪论1.1 课题的提出及意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。
温度控制系统的设计_毕业设计论文摘要:本文基于温度控制系统的设计,针对工况不同要求温度的变化,设计了一种通过PID控制算法实现温度控制的系统。
该系统通过传感器对温度进行实时监测,并将数据传输给控制器,控制器根据设定的温度值和反馈的实际温度值进行比较,并通过PID算法进行控制。
实验结果表明,该温度控制系统具有良好的控制性能和稳定性。
关键词:温度控制系统;PID控制;控制性能;稳定性1.引言随着科技的发展,温度控制在很多工业和生活中都起到至关重要的作用。
温度控制系统通过对温度的监测和控制,可以保持系统的稳定性和安全性。
因此,在各个领域都有大量的温度控制系统的需求。
2.温度控制系统的结构温度控制系统的结构主要包括传感器、控制器和执行器。
传感器负责对温度进行实时监测,并将监测到的数据传输给控制器。
控制器根据设定的温度值和反馈的实际温度值进行比较,并通过PID控制算法进行控制。
执行器根据控制器的输出信号进行操作,调节系统的温度。
3.PID控制算法PID控制算法是一种常用的控制算法,通过对控制器进行参数调节,可以实现对温度的精确控制。
PID算法主要包括比例控制、积分控制和微分控制三部分,通过对每一部分的权值调节,可以得到不同的控制效果。
4.实验设计为了验证温度控制系统的性能,我们设计了一组温度控制实验。
首先,我们将设定一个目标温度值,然后通过传感器对实际温度进行监测,并将数据传输给控制器。
控制器根据设定值和实际值进行比较,并计算控制信号。
最后,我们通过执行器对系统的温度进行调节,使系统的温度尽量接近目标温度。
5.实验结果与分析实验结果表明,通过PID控制算法,我们可以实现对温度的精确控制。
在设定目标温度值为40℃的情况下,系统的稳态误差为0.5℃,响应时间为2秒。
在不同工况下,系统的控制性能和稳定性都得到了有效的保证。
6.结论本文基于PID控制算法设计了一种温度控制系统,并进行了相应的实验验证。
实验结果表明,该系统具有良好的控制性能和稳定性。
目录第一章设计背景及设计意义 (2)第二章系统方案设计 (3)第三章硬件 (5)3.1 温度检测和变送器 (5)3.2 温度控制电路 (6)3.3 A/D转换电路 (7)3.4 报警电路 (8)3.5 看门狗电路 (8)3.6 显示电路 (10)3.7 电源电路 (12)第四章软件设计 (14)4.1软件实现方法 (14)4.2总体程序流程图 (15)4.3程序清单 (19)第五章设计感想 (29)第六章参考文献 (30)第七章附录 (31)7.1硬件清单 (31)7.2硬件布线图 (31)第一章设计背景及研究意义机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。
现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。
随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。
自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。
随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。
在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。
采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。
PID温控系统的设计及仿真毕业论文摘要:本论文针对PID温控系统的设计和仿真展开研究。
首先,介绍了PID控制器的基本原理和工作方式,并分析了PID控制器在温控系统中的应用。
然后,基于MATLAB/Simulink软件,建立了PID温控系统的数学模型,并进行了系统的仿真。
通过对比分析不同PID参数的变化对温度控制系统的影响,最终得到了最优的控制参数。
关键词:PID控制器,温控系统,MATLAB,仿真1.引言温控系统在日常生活中被广泛应用,例如家用温度控制、工业生产过程中的温度控制等。
PID控制器作为一种经典的控制方法,被广泛应用于温控系统中。
本论文旨在设计一个PID温控系统,并通过仿真实验分析不同PID参数对系统性能的影响,从而得到最优的控制参数。
2.PID控制器原理及应用PID控制器是一种反馈控制器,根据控制量与设定值之间的差异来调整输出信号。
它由比例环节、积分环节和微分环节组成,可以有效地抑制温度偏差、提高控制系统的稳定性和精度。
PID控制器在温控系统中的应用十分广泛。
通过对温度传感器采集到的信号进行处理,PID控制器可以实时调整控制系统的输出信号,从而控制温度在设定范围内波动。
PID控制器的参数调整对于系统性能和稳定性具有重要影响。
3.温控系统的数学模型建立基于PID控制器的温控系统可以用数学模型来描述。
以温度T为控制对象,控制量为输出温度U,设定温度为R,PID控制器的输出为Y。
根据温控系统的动力学特性,可以建立如下的数学模型:T * dY(t)/dt = Kp * (R - Y(t)) + Ki * ∫(R - Y(t))dt + Kd * d(R - Y(t))/dt其中Kp为比例系数,Ki为积分系数,Kd为微分系数。
4.温控系统的仿真实验通过MATLAB/Simulink软件,搭建了PID温控系统的仿真模型。
根据数学模型,设定了温度的变化范围和输出的控制参数。
在仿真实验中,通过对比分析不同PID参数的变化对温度控制系统的影响。
基于单片机的温度控制系统设计毕业论文目录摘要 (I)Abstract (I)目录 (II)第一章绪论 (1)1.1课题研究背景及意义 (1)1.2国外研究现状 (1)1.2.1国外研究现状 (1)1.2.2国研究现状 (1)1.2.3总的发展阶段 (2)1.3课题研究的容 (2)第二章硬件系统总体方案设计 (3)2.1硬件系统总体设计方案一 (3)2.2硬件系统总体设计方案二 (4)2.3硬件系统的方案选择 (4)第三章控制系统硬件设计 (6)3.1单片机 (6)3.2 数字温度计DS18B20 (9)3.2.1 DS18S20数字温度计的主要特性 (9)3.3 4X4键盘 (9)3.4数码管 (10)3.5光电耦合器 (12)3.6 双向晶闸管 (13)3.7 PTC加热器 (14)3.8 反相器7406 (15)3.9双四输入与门74LS21 (16)3.9蜂鸣器 (16)第四章控制系统软件设计 (17)4.1 主程序模块设计 (17)4.1.1主程序流程图 (17)4.2温度采集模块程序设计 (18)4.2.1 DS18B20的时序 (18)4.2.3 读温度子程序流程图 (20)4.3温度设定模块程序设计 (21)4.3.1中断服务子程序 (21)4.3.2 键盘扫描子程序 (21)4.4温度显示模块设计 (23)4.4.1设定值显示子程序 (23)4.4.2 实际值显示子程序 (24)4.5温度控制模块设计 (25)4.5.1双位控制算法设计 (25)4.5.2温度控制子程序流程图 (25)4.6报警模块程序设计 (26)第五章结果分析 (27)5.1 PROTEUS仿真 (27)5.1.1 键盘设定温度仿真 (27)5.1.2 温度采集仿真 (28)5.1.3 整体仿真 (28)5.2实际运行结果 (29)第六章总结与展望 (31)6.1总结 (31)6.2展望 (31)致谢 (32)附录程序 (33)参考文献 (42)第一章绪论1.1课题研究背景及意义温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的参数。
东华理工大学毕业设计题目:基于单片机的温度控制系统的研究英文题目:Design of Temperature Control SystemBased on SCM作者: XXXXXXX摘要单片微型计算机是随着超大规模集成电路技术的发展而诞生的,由于它具有体积小、功能强、性价比高等特点,把单片机应用于温度控制中,采用单片机做主控单元,无触点控制,可完成对温度的采集和控制的要求。
所以广泛应用于电子仪表、家用电器、节能装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。
本文主要介绍单片机在热处理炉温度控制中的应用,对温度控制模块的组成及主要所选器件进行了详细的介绍。
并根据具体的要求本文编写了适合本设计的软件程序。
温度控制在热处理工艺过程中,是一个非常重要的环节。
控制精度直接影响着产品质量的好坏。
本文研究的电炉是一种具有纯滞后的大惯性系统,传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。
因此本文将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统。
关键词:单片机;热处理温度控制;模糊 PID。
AbstractThe single slice of microcomputers emerges with development of very large scale integration technology, because it has small , the function is strong , high characteristic of cost performance, applies the one-chip computer to temperature control, adopt the one-chip computer to do the top management unit, control contactlessly , can finish the requisition for collection and control of temperature . So apply to such a great deal of fields as electronic instrument , household appliances , energy-conservation fitting , the robot , industrial control ,etc. extensively, make the products miniaturized , intelligented , has already improved the function and quality of the products, have lower costs again, has simplified and designed. This text introduces the application of the one-chip computer in the temperature control of heat-treatment furnace mainly, composition and selecting to introduce the detailed one with device mainly of the temperature control module . And has written the suitable software procedure originally designed according to the concrete demand this text.Temperature in heat treatment craft is very important. Control precision effect directly the quality of the product. The electric stove is a kind pure great inertia system, and the traditional heat control system is based on some certain model, so is hard to satisfy the technological requirement.This paper will adopt fuzzy control algorithm to build a intelligent fuzzy control system.Keyword:SCM;Temperature control;Fuzzy PID.目录第1章绪论 (1)1.1 引言 (1)1.2 控制器发展现状 (1)1.2.1 PID 控制器的发展现状 (1)1.2.2 模糊 PID 控制 (2)1.2.3 模糊自整定 PID 控制 (2)1.3 电炉采用模糊自整定 PID 控制的可行性 (3)第2章方案简介 (4)2.1 课题背景与意义 (4)2.2 系统方案概述 (5)2.3 系统设计方案 (6)第3章系统硬件和电路设计 (7)3.1引言 (7)3.2 系统的总体结构 (7)3.3 温度检测电路 (8)3.3.1 温度传感器 (8)3.3.2 测量放大器的组成 (8)3.3.3 热电偶冷端温度补偿方法 (9)3.4 多路开关的选择 (9)3.5 A/D转换器的选择及连接 (10)3.6 单片机系统的扩展 (11)3.6.1 系统扩展概述 (11)3.6.2 常用扩展器件简介 (12)3.7 存储器的扩展 (13)3.7.1 程序存储器的扩展 (13)3.7.1.1只读存储器简介 (13)3.7.1.2 EPROM2764简介 (13)3.7.2 数据存储器的扩展 (15)3.7.2.1数据存储器概述 (15)3.7.2.2静态RAM6264简介 (15)3.7.2.3数据存储器扩展举例 (15)3.8 单片机I/O口的扩展(8155扩展芯片) (16)3.8.1 8155的结构和引脚 (16)3.8.2 8155的控制字的及其工作方式 (17)3.8.3 8155与8031的连接 (18)3.9 看门狗、报警、复位和时钟电路的设计 (19)3.9.1看门狗电路的设计 (19)3.9.2报警电路的设计 (20)3.9.3复位电路的设计 (20)3.9.4 时钟电路的设计 (21)3.10 键盘与显示电路的设计 (22)3.10.1 LED数码显示器的接口电路 (22)3.10.2键盘接口电路 (23)3.11 DAC7521数模转换接口 (24)3.12 隔离放大器的设计 (25)3.13 可控硅调功控温 (26)3.13.1过零触发调功器的组成 (25)3.13.2主要电路介绍 (27)3.14 单片机开关稳压电源设计 (28)第4章系统软件设计 (30)4.1 主要程序的框图 (30)4.1.1主程序框图 (30)4.1.2显示子程序 (31)4.1.3键盘中断服务子程序 (32)4.1.4恒温及升温测控子程序 (33)4.1.5降温测控子程序 (34)4.2 模糊自整定 PID 控制算法 (35)参考文献 (38)设计总结 (38)致谢 (40)附录 (41)第1章 绪论1.1 引言工业生产中使用的热处理设备种类繁多,如窖炉、鼓风炉、烘炉、退火炉、锅炉等。
前言微机控制技术、传感器在工业控制、机电一体化、智能仪表、通信、家用电器等方面得到了广泛应用,显著提高了各种设备的技术水平和自动化程度。
因此对这些原理和结构我们就需要很好的了解并掌握。
本设计是关于温度控制系统的设计,在整个设计过程中即用到单片机、传感器、微控技术,也用到了控制系统中的知识,可以说是我们所学知识的大综合。
本设计重点介绍了系统的硬件部分,即有关常用芯片的介绍,如MCS—98、8155、DAC0832等等。
软件介绍了数字调节器的设计、PID参数的整定、PID算法程序清单、以及相关的程序;最后介绍了系统特性的测量与识别。
本设计在指导老师和同学的指导帮助以及本人的努力下完成了。
但由于本人水平有限,设计中尚有不妥之处,恳请批评指正。
编者2010年5月一、任务二、工艺要求三、本系统的性能指标四、系统组成和基本工作原理五、硬件设计六、调试步骤和方法七、调试结果及分析八、对象特性的测量与识别九、设计总结镀锌薄板锌槽温度自动调节系统设计一、任务:用单片机自动控制为镀锌薄板锌槽设计一个温度自动调节系统。
二、工艺要求:1.系统应具有良好的操作性能,为了满足用户使用方便和操作人员维修,系统控制的开关要少。
2.通用性好,便于扩充。
3.系统可靠性要高。
三、本系统的性能指标:控制容量:20KW温度设定:键盘温度显示:4位LED数码管显示误差:±5°C控制温度:400°C控制过程:设定(1min)对炉内测温、控温四、系统组成和基本工作原理:1.确定系统总体控制方案。
A.初步选定系统用闭环控制,且采用单闭环控制。
因为所带负载是阻性元件,其线性度比较好,温度变化不太高,但对控制精度有一定的要求。
B.执行机构采用三相电热丝,其发热量随电流的变化而变化,我们采用控制电流的变化来控制温度的变化。
C.计算机部分起巡回检测、闭环调节和计算推理的作用。
2.系统的结构框图:五、硬件设计:1、MCS-988098是MCS-96系列单片机的一个子系列,它的外部数据总线为8位,内部CPU保持16位结构。
第1章绪论1.1研究的目的和意义温度是工业生产中主要被控参数之一,温度控制自然是生产的重要控制过程。
工业生产中温度很难控制,对于要求严格的的场合,温度过高或过低将严重影响工业生产的产质量及生产效率,降低生产效益。
这就需要设计一个良好温度控制器,随时向用户显示温度,而且能够较好控制。
单片机具有和普通计算机类似的强大数据处理能力,结合PID,程序控制可大大提高控制效力,提高生产效益。
本文采用单片机STC89C52设计了温度实时测量及控制系统。
单片机STC89C52能够根据温度传感器DS18B20所采集的温度在LCD1602液晶屏上实时显示,通过PID控制从而把温度控制在设定的范围之内。
通过本次课程实践,我们更加的明确了单片机的广泛用途和使用方法,以及其工作的原理。
1.2国内外发展状况温度控制采用单片机设计的全数字仪表,是常规仪表的升级产品。
温度控制的发展引入单片机之后,有可能降低对某些硬件电路的要求,但这绝不是说可以忽略测试电路本身的重要性,尤其是直接获取被测信号的传感器部分,仍应给予充分的重视,有时提高整台仪器的性能的关键仍然在于测试电路,尤其是传感器的改进。
现在传感器也正在受着微电子技术的影响,不断发展变化。
恒温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求。
但从对控制方法的分析来看,PID控制方法最适合本例采用。
另一方面,由于可以采用单片机实现控制过程,无论采用上述哪一种控制方法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案。
因此本系统可以采用PID的控制方式,以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。
现在国内外一般采用经典的温度控制系统。
采用模拟温度传感器对加热杯的温度进行采样,通过放大电路变换为 0~5V 的电压信号,经过A/D 转换,保存在采样值单元;利用键盘输入设定温度,经温度标度转换转化成二进制数,保存在片内设定值单元;然后调显示子程序,多次显示设定温度和采样温度,再把采样值与设定值进行 PID 运算得出控制量,用其去调节可控硅触发端的通断,实现对电阻丝加热时间的控制, 以此来调节温度使其基本保持恒定。
第一章绪论温度控制,在工业自动化控制中占有非常重要的地位。
单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。
将单片机控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。
现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。
但随之而来的是巨额的成本。
在很多的小型系统中,处理机的成本占系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。
温度控制,在工业自动化控制中占有非常重要的地位,如在钢铁冶炼过程中要对出炉的钢铁进行热处理,才能达到性能指标,塑料的定型过程中也要保持一定的温度。
随着科学技术的迅猛发展,各个领域对自动控制系统控制精度、响应速度、系统稳定性与自适应能力的要求越来越高,被控对象或过程的非线性、时变性、多参数点的强烈耦合、较大的随机扰动、各种不确定性以及现场测试手段不完善等,使难以按数学方法建立被控对象的精确模型的情况。
随着电子技术以及应用需求的发展,单片机技术得到了迅速的发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。
伴随着科学技术的发展,电子技术有了更高的飞跃,我们现在完全可以运用单片机和电子温度传感器对某处进行温度检测,而且我们可以很容易地做到多点的温度检测,如果对此原理图稍加改进,我们还可以进行不同地点的实时温度检测和控制。
1.1 设计指标设计一个温度控制系统具体化技术指标如下。
1. 被控对象可以是电炉或燃烧炉,温度控制在0~100℃,误差为±0.5℃;2. 恒温控制;3. LED实时显示系统温度,用键盘输入温度;1.2 本文的工作详细分析课题任务,设计了电源电路,键盘电路,单片机系统,显示电路,执行器电路,报警电路,复位电路,时钟电路,A/D转换电路等系统。
温湿度控制毕业设计1. 引言控制温湿度是现代生活中非常常见而重要的任务之一。
在许多场景中,如办公室、仓库、病房、药房等,维持适宜的温湿度是至关重要的,这不仅可以提供舒适的环境,还可以保护物品、促进人体健康等。
本毕业设计旨在设计和开发一个温湿度控制系统,通过实时监测温湿度,并根据设定的阈值进行自动调节,以维持适宜的温湿度环境。
2. 系统设计2.1 硬件设计本系统的硬件主要包括以下部分:•温湿度传感器:用于实时监测环境的温湿度,常用的传感器有DHT11、DHT22等。
•控制器:负责接收传感器数据,并根据设定的阈值进行控制决策,可以选择单片机或微处理器作为控制器。
•执行机构:根据控制器的指令,执行相应的动作,如控制加热器、制冷器、加湿器、除湿器等。
2.2 软件设计软件设计包括以下几个部分:•数据采集:通过与温湿度传感器的连接,实时获取温湿度数据。
•控制算法:根据采集到的温湿度数据和设定的阈值,设计控制算法进行决策。
•控制逻辑:根据控制算法的结果,生成控制指令,发送给执行机构。
•用户界面:提供用户界面,允许用户设定温湿度阈值和查看当前环境温湿度。
3. 系统实现3.1 硬件实现硬件实现的关键是选择合适的传感器和控制器,根据实际需求进行硬件连接和布局。
在本设计中,选择了DHT22传感器和Arduino Uno作为传感器和控制器。
传感器与控制器的连接通常通过数字引脚或模拟引脚实现,根据传感器和控制器的规格说明书进行正确的引脚连接。
3.2 软件实现软件实现主要包括控制算法的设计和编程,以及用户界面的设计和编程。
控制算法可以根据具体需求进行设计,一种常见的算法是使用模糊控制。
模糊控制通过建立模糊规则和调整模糊集合来决策控制指令,以实现温湿度的控制。
用户界面可以使用图形化界面开发工具进行设计和开发。
界面应包括设置温湿度阈值、实时显示当前温湿度等功能。
4. 系统测试与验证在系统实现完成后,需要进行测试和验证以确保系统的正常工作和满足需求。
(完整版)基于PLC的温度控制系统毕业设计论⽂基于PLC的温度控制系统设计摘要可编程控制器(plc)作为传统继电器控制装置的替代产品已⼴泛应⽤⼯业控制的各个领域,由于它可通过软件来改变控制过程,⽽且具有体积⼩,组装灵活,编程简单抗⼲扰能⼒强及可靠性⾼等特点,⾮常适合于在恶劣的⼯业环境下使⽤。
本⽂所涉及到的温度控制系统能够监控现场的温度,其软件控制主要是编程语⾔,对PLC⽽⾔是梯形语⾔,梯形语⾔是PLC⽬前⽤的最多的编程语⾔。
关键字:PLC 编程语⾔温度Design of the temperature control Systems based on PLCAbstractProgramming controler ( plc ) the replacing product as traditional relay control equipment each that already applies industrial control extensively field ,Since it can change control course through software ,It is little to is strong and reliability bad industrial environment use. The temperature control system that this paper is concerned with can the temperature of monitoring , its software control is programming language mainly, for PLC is ladder-shaped language, ladder-shaped language is the most programming language that PLC now uses.Keyword:PLC Programming language Temperature⽬录摘要----1Abstrack1引⾔-31.1课题研究背景1.2温度控制系统的发展状况1.3 总体设计分析2系统结构模块63.1 PLC的定义--73.2 PLC的发展--83.2.1 我国PLC的发展-83.3 PLC的系统组成和⼯作原理-----93.3.1 PLC的组成结构--93.3.2PLC的扫描⼯作原理3.4PLC的发展趋势3.5 PLC的优势--103.6 PLC的类型选择4.1 PID控制程序设计4.1.1 PID控制算法---124.1.2PID在PLC中的回路指令-144.1.3PID参数设置4.23A模块及其温度控制4.2.13A模块的介绍--174.2.2 数据转换4.2.3软件编程的思路---195程序的流程图---196 整个系统的软件编程---207结束语谢词24参考⽂献1 引⾔1.1 课题研究背景温度是⼯业⽣产中常见的⼯艺参数之⼀,任何物理变化和化学反应过程都与温度密切相关。
单片机温度控制系统的设计毕业设计论文摘要:本文设计了一种基于单片机的温度控制系统,旨在实现对温度的准确测量和控制。
系统采用温度传感器作为温度检测元件,通过单片机对温度进行采样和处理,然后根据预设的温度范围,控制风扇的启停,以达到调节室内温度的目的。
实验结果表明,该系统能够准确地测量温度并进行有效的控制。
关键词:单片机;温度控制系统;温度传感器;风扇1.引言温度控制是一种常见的自动化控制方法,广泛应用于工业、农业、医疗等领域。
温度控制系统通过对温度的测量和调节,实现了对环境温度的精确控制。
单片机作为一种微型计算机,具有体积小、功耗低、可编程性强等优点,被广泛应用于温度控制系统中。
2.系统设计系统由温度传感器、单片机和风扇组成。
温度传感器将实时温度传递给单片机,单片机根据设定的温度范围进行判断,并控制风扇的启停。
3.硬件设计(1)温度传感器选型采用数字温度传感器DS18B20,该传感器具有精度高、体积小、抗干扰能力强等特点。
(2)单片机选型采用AT89C52单片机,该单片机具有较高的性能和稳定性,适合于温度控制应用。
(3)风扇选型根据室内温度控制要求,选用功率适中的风扇,并设计驱动电路。
4.软件设计(1)温度测量通过单片机与温度传感器进行通信,实时获取温度数据,并进行精确测量。
(2)温度控制根据设定的温度范围,单片机判断当前温度是否在合理范围内,如果超出范围,则控制风扇启停,达到温度调节的目的。
5.实验结果通过实验,温度控制系统能够准确地测量室内温度,并根据设定的温度范围进行有效的控制。
系统响应速度快,温度波动范围小,能够满足实际应用需求。
6.结论本文设计了一种基于单片机的温度控制系统,并进行了实验验证。
实验结果表明,该系统能够准确地测量温度并进行有效的控制,具有一定的实用性和应用价值。
未来可以进一步优化系统性能,提高温度控制的精确度和稳定性。
[1]张三.基于单片机的温度控制系统设计[D].大学。
[2]李四.单片机在温度控制中的应用[J].仪器仪表学报。
单片机温度控制系统毕业设计论文标题:基于单片机的温度控制系统设计与实现摘要:本论文设计和实现了一种基于单片机的温度控制系统。
该系统利用单片机的强大计算和控制能力,通过传感器采集环境温度,并运用PID控制算法,控制温度在预定的范围内波动。
本系统具有设计灵活、控制精度高、反应迅速等优势,非常适合温度控制领域应用。
关键词:单片机、温度控制、传感器、PID算法第一章引言1.1研究背景随着科技的进步和人们生活质量的提高,温度控制在各个领域都变得日益重要。
例如,家庭中的恒温器、温室中的温度调节、工业生产过程中的温度控制等。
传统的温度控制方法费时费力,且精度和效率较低,因此需要开发一种新的温度控制系统来满足各种需求。
1.2目的和意义本论文旨在设计和实现一种基于单片机的温度控制系统,以提高温度控制的精度和效率,满足不同领域对温度控制的需求。
通过论文的研究,可以为相关领域的温度控制系统设计提供参考,并促进温度控制技术在各个领域的应用。
第二章设计与实现方法2.1系统硬件设计本系统的硬件设计主要包括单片机选择、传感器选择以及执行设备选择等。
选用一款功能强大的单片机,例如ATmega328P,作为系统的核心控制器。
此外,选择一个高精度的温度传感器用于采集环境温度,并根据采集到的数据进行控制。
2.2系统软件设计本系统的软件设计主要包括温度采集与控制算法的设计和实现。
采用PID控制算法,通过单片机进行计算和控制,实现温度控制的闭环反馈。
同时,设计界面友好的人机交互界面,使操作更加简便。
第三章系统测试与分析3.1硬件测试对系统硬件进行测试,包括传感器的准确性测试、单片机的功能性测试以及执行设备的工作状态测试。
通过测试,验证系统的硬件设计的正确性和稳定性。
3.2软件测试对系统的软件进行测试,包括温度控制算法的准确性测试以及人机交互界面的操作测试。
通过测试,验证系统的软件设计的正确性和可靠性。
第四章结果与讨论4.1实验结果通过实验,得到了系统在不同环境下的温度控制效果,并进行数据统计和分析。
水温自动控制系统毕业设计论文摘要本文设计了一种水温自动控制系统,用于控制水温自动调节和保持。
该系统基于单片机控制技术,具有灵活、精度高、稳定性好等优点,并且适用于各种大中小型水族箱的水温控制。
首先,本文分析了水温控制系统的原理和工作原理,讨论了其执行机理和功能。
其次,通过阐述硬件设计,包括测温原理、传感器选择、控制器密度和其他电路部分等。
在软件设计方面,本文采用C语言编程,实现了自动监测水温变化、自动开关附加加热器和调整温度等功能,并且采取多重保护措施,保证了该系统的安全性和稳定性。
最后,本文通过实验验证了该系统的可行性和实用性,在保证了水族箱内水体温度稳定的基础上,实现了节能和自动化控制的优势,为水族箱饲养提供了一定的实用性支持。
关键词:水温自动控制;水温计;单片机;附加加热器;C语言编程;节能。
AbstractThis paper designs a water temperature automatic control systemfor automatic regulation and maintenance of water temperature. Based on the single-chip control technology, the system has the advantages of flexibility, high accuracy and good stability, and is suitable for controlling the water temperature of various large,medium and small aquariums.Firstly, the principle and working principle of the water temperature control system are analyzed, and its executing mechanism and function are discussed. Secondly, by elaborating on hardware design, including temperature measurement principle, sensor selection, controller density and other circuit parts, and in software design, the paper adopts C language programming to achieve automatic monitoring of water temperature changes, automatic switching of additional heaters and adjusting temperatures, and takes multiple protection measures to ensure the safety and stability of the system.Finally, the feasibility and practicality of the system are verified through experiments, which has the advantages of energy saving and automatic control, and provides practical support for the breeding of aquariums by ensuring the stability of water temperature.Keywords:water temperature automatic control;thermometer;single-chip;additional heater;C language programming;energy saving.。
毕业论文基于S7-200的温度控制系统设计附表三、毕业论文答辩情况学术诚信声明本人所呈交的毕业论文,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、图片资料均真实可靠。
除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品或成果。
对本论文的研究作出重要贡献的个人和集体,均已在文中以明确的方式标明。
本毕业论文的知识产权归属于培养单位。
本人完全意识到本声明的法律结果由本人承担。
本人签名:日期:摘要温度是各种工业生产和科学实验中最普遍、也是最重要的热工参数之一。
温度控制的精度对产品或实验结果会产生重大的影响。
温度控制的模式多样,而PLC可靠性高,抗干扰能力强,易学易用,采用PLC控制是其中一种比较优越的控制。
本文介绍了基于西门子可编程控制器(PLC)S7-200和组态软件组态王的炉温监控系统的设计方案。
硬件方面采用了CPU型号为224的S7-200、K型热电偶和温度模块EM231。
热电偶作为温度的采集元件,采集的信号经过EM231的处理后就可把数据送入PLC中进行处理。
PLC的程序中采用了位置式PID算法,脉宽调制PWM方式,运用了粗调和细调的思想,程序在不同的温度段使用不同的PID 参数,实现温度的自动控制。
人机界面采用的是国内的一个比较流行的组态王软件。
组态王可以实现在线监控。
组态项目中制作了曲线画面、报表画面、报警画面和参数监控画面,用户可方便地查询PLC的运行情况、数据采集和在线控制。
实验结果表明,采用了粗调和细调思想的程序的PLC系统,具有反应速度快,超调量小,调节迅速,精度高等特点。
组态王功能强大,操作方便,有助于系统的监视与控制,表明了组态软件的具有很好的发展前景。
关键词:温度控制;可编程控制器;PID;组态王AbstractTemperature is the most universal and important industrial parameter in all kinds of technical produce and scientific experiment. The manipulative precision of temperature will take a great effect on production or experimental result. In many cases,we need to control the temperature of various types of furnace, heat treatment furnaces, reactors .But they are complex and changing .As a result, its control over demand regulator .The mode of temperature control is various. The programmable logic controller(PLC) is Reliable、not easily to be jamming and easily to be learned and used , welcomed by workers and widely used in industry.Programmable controller (PLC) is a digital electronic computing operating system, designed for applications in industrial environments designed. It uses a programmable memory for storage in its internal implementation of logic operations, sequence control, timing, calculation and arithmetic operations, such as operating instructions, and through digital and analog input and output, control of various types of machinery or the production process.Configuration is to use application software to provide the tools, methods, and to complete the works in the course of a specific task. Configuration software applications is broad, it can be applied to power systems, water supply systems, petroleum, chemical and other fields of data acquisition and supervisory control and process control and many other fields. Before the concept of the configuration, in order to achieve a particular task, using the preparation process is achieved. Programming is not only a heavy workload, long and easy to make mistakes, can not guarantee period. The emergence of the configuration software can solve the problem. The Kingview can help complete the task in a few days.This thesis mainly introduces a design of temperature control system with SIMATIC programmable logic controller (PLC) S7-200 and the Kingview configuration soft .We use the PLC s7-200 with cup 224、the K type thermocoupleand temperature module EM231 as the hardware, and use the V4.0 STEP 7 Micro WIN to programming . The thermocouple can measure the temperature of the stove, and translate the temperature signal to the voltage signal. And then the EM235 will transmit it to the PLC after disposing the signal .This system use positional type PID arithmetic and Pulse-Width Modulation methodology .And the procedure use idea of coarse adjustment algorithm and the fine adjustment algorithm. The procedure will run with different PID parameter in different condition.We have designed Human Machine Interface(HMI)with the Kingview configuration soft which is developed by domestic company . The Kingview can monitor and control the PLC on line. We also have designed several menu ,including the historical curve screen 、the real time curve screen、the data report forms screen、the alarm screen and parameter monitoring screen. Users can easily query the operation of PLC, data acquisition and on-line control.The experimental results show that,the plc can work reliably, stably. The system using coarse adjustment algorithm and the fine adjustment algorithm can get a better result. That is fast response, small overshoot, rapid adjustment, high accuracy. The Kingview is powerful, easy to operate. We can speculate that configuration software will have a good prospect for development.Keywords:Temperature Control;PLC;PID;KingView目录第一章前言 (1)1.1课题研究背景 (1)1.2温度控制系统的发展状况 (2)1.3本文的研究内容 (4)第二章可编程控制器的概述 (5)2.1可编程控制器的产生 (5)2.2可编程控制器的基本组成 (5)第三章硬件配置和软件环境 (8)3.1实验配置 (8)3.1.1 西门子S7-200 (8)3.1.2 传感器 (8)3.1.3 EM 231模拟量输入模块 (9)3.2STEP7M ICRO/WIN32软件介绍 (10)3.2.1安装STEP 7-MWIN32 V4.0 (10)3.2.2 系统参数设置 (12)第四章控制算法描述 (14)4.1PWM技术 (14)4.2PID控制程序设计 (14)4.2.1 PID控制算法 (15)4.2.2 PID在PLC中的回路指令 (16)4.2.3 PID参数整定 (19)第五章程序设计 (21)5.1方案设计思路 (21)5.2程序流程图 (23)5.3助记符语言表 (24)5.4梯形图 (29)第六章组态画面设计 (35)6.1组态软件概述 (35)6.2组态王的介绍 (35)6.3组态画面的建立 (35)6.3.1创建项目 (36)6.3.2建立主画面 (38)6.3.3建立趋势曲线画面 (39)6.3.4建立数据报表 (41)6.3.5建立报警窗口 (43)6.3.6建立参数监控画面 (45)第七章系统测试 (46)7.1启动组态王 (46)7.2参数监控和设定 (47)7.3报警信息提示 (48)7.4报表系统查询 (49)7.5趋势曲线监控 (50)7.5.1实时趋势曲线 (50)7.5.2 分析历史趋势曲线 (51)第八章结论 (54)参考文献 (55)致谢 (56)第一章前言1.1 课题研究背景温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。
基于单片机的温度控制系统的毕业设计论文温度控制系统是一种通过控制温度传感器感知到的温度值,以达到用户设定的目标温度的自动控制系统。
在工业、农业、医疗和家庭等领域中,温度控制系统广泛应用于保温、散热、恒温和冷却等需要稳定温度环境的场合。
本论文将重点介绍基于单片机的温度控制系统的设计与实现。
该系统采用单片机作为控制核心,结合温度传感器、显示器、执行器等硬件,通过软件实现对温度的监测和控制。
首先,系统硬件部分包括温度传感器、单片机、显示器、执行器等元件的选取和电路的搭建。
温度传感器负责实时感知环境的温度,将采集到的温度值通过模拟信号传递给单片机。
单片机作为控制核心,负责接收和处理温度传感器的数据,通过控制执行器的开关状态,实现对温度的调节。
同时,可以将温度数值通过显示器显示出来,方便用户实时监测。
其次,系统软件部分包括单片机程序的编写和功能实现。
通过编写程序,实现温度的读取、控制和显示等功能。
具体包括读取温度传感器的数值,判断是否达到用户设定的目标温度,如果超过目标温度,控制执行器关闭,否则控制执行器打开,以使温度保持在设定的范围内。
同时,将温度数值转化为适合显示的格式,并通过显示器显示出来。
系统软件的编写需要考虑实时性和准确性,确保温度控制的稳定性和精确性。
最后,论文还将介绍系统的测试和优化。
通过对温度控制系统的测试,验证系统硬件和软件的正确性和稳定性。
并在测试的基础上,对系统进行优化,提高控制效果和系统性能。
本论文的研究内容主要包括基于单片机的温度控制系统的硬件设计和软件编程,以及系统的测试和优化。
通过对温度控制系统的设计和实现,研究单片机在温度控制领域的应用,为进一步的研究和应用提供参考和借鉴。
目录第一章设计背景及设计意义 (2)第二章系统方案设计 (3)第三章硬件 (5)3.1 温度检测和变送器 (5)3.2 温度控制电路 (6)3.3 A/D转换电路 (7)3.4 报警电路 (8)3.5 看门狗电路 (8)3.6 显示电路 (10)3.7 电源电路 (12)第四章软件设计 (14)4.1软件实现方法 (14)4.2总体程序流程图 (15)4.3程序清单 (19)第五章设计感想 (29)第六章参考文献 (30)第七章附录 (31)7.1硬件清单 (31)7.2硬件布线图 (31)第一章设计背景及研究意义机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。
现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。
随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。
自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。
随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。
在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。
采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。
,第二章系统方案的设计这次课程设计题目为热电偶构成的热处理炉的温度控制系统,技术要求:1.设定温度围为0~999°2.温度显示为0~999°3.到设定温度报警热处理炉炉温控制系统的控制过程是:单片机定时对炉温进行检测,经A/D 转换芯片得到相应的数字量,经过计算机进行数据转换,得到应有的控制量,去控制加热功率,从而实现对温度的控制。
如下图所示:进行系统设计时应考虑如下问题:1.炉温变化规律的控制,即炉温按预定的温度——时间关系变化。
2.温度控制围:如0~1000℃,这就涉及到测温元件、电炉功率的选择等。
3.控制精度、超调量等指标,这涉及到A/D转换精度、控制规律选择等。
温控系统主要由温度传感器、温度调节仪、执行装置、被控对象四个部分组成,其系统结构图如图1所示。
被控制对象是大容量、大惯性的电热炉温度对象,是典型的多阶容积迟后特性,在工程上往往近似为包含有纯滞后的二阶容积迟后;由于被控对象电容量大,通常采用可控硅作调节器的执行器,其具体的电路图如图2所示。
调节加热炉的温度,在工业上是通过在设定周期围,将电路接通几个周波,然后断开几个周波,改变晶闸管在设定周期通断时间的比例,来调节负载两端交流平均电压即负载功率,这就是通常所说的调功器或周波控制器;调功器是在电源电压过零时触发晶闸管导通的,所以负载上得到的是完整的正弦波,调节的只是设定周期T c导通的电压周波。
如图3所示,设周期T c导通的周期的波数为n,每个周波的周期为T,则调功器的输出功率为P=n×T×P n/T c,P n为设定周期T c电压全通过时装置的输出功率。
第三章硬件的设计3.1温度检测和变送器温度检测元件和变送器的类型选择与被控温度的围和精度等级有关。
镍铬/镍铝热电偶适用于0℃-1000℃的温度检测围,相应输出电压为0mV-41.32mV。
变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热电偶输出的0mV-41.32mV变换成4mA-20mA的电流;电流/电压变送器用于把毫伏变送器输出的4mA-20mA电流变换成0-5V的电压。
为了提高测量精度,变送器可以进行零点迁移。
例如:若温度测量围为500℃-1000℃,则热电偶输出为20.6mV-41.32mV,毫伏变送器零点迁移后输出4mA-20mA围电流。
这样,采用8位A/D转换器就可使量化温度达到1.96℃以。
其在控制系统的作用如下图所示:热处理炉图1:温度检测电路3.2 温度控制电路8051对温度的控制是通过双向可控硅实现的。
如图一所示,双向可控硅管和加热丝串接在交流220V、50Hz市电回路。
在给定周期T,8051只要改变可控硅管的接通时间即可改变加热丝的功率,以达到调节温度的目的。
可控硅接通时间可以通过可控硅控制极上触发脉冲控制。
该触发脉冲由8051用软件在P2.1引脚上产生,在过零同步脉冲同步后经光电耦合管和驱动器输出送到可控硅的控控制系统的制极上。
图1:调温电路3.3 A/D转换电路ADC0809是一种比较典型的8位8通道逐次逼近式A/D转换器,CMOS工艺,可实现8路模拟信号的分时采集,片有8路模拟选通开关,以及相应的通道地址锁存用译码电路,其转换时间为100μs左右,采用双排28引脚封装,其主要性能指标如下:1、分辨率为8位二进制数;2、电压围在0~+5V,对应A/D值00H~FF H;3、每路A/D转换完成时间100m s;4、可分时进行8路A/D转换;5、工作频率500KH z(本电路由8051A LE端输出经4分频后得到)。
引脚功能如下:I N0~I N7:8路0~+5V模拟电压输入(用IN0端);D B7~D B0:8位数字输出线,输出8位A/D转换值;S T AS T:启动A/D转换端;E O C:A/D转换完成端;O E:允许数字量输出信号;C L OC K:时钟500KH z;A D D A、B、C:I N0~IN7地址选择线;A L E:地址锁存允许输入信号。
A/D转换器0809与放大电路连接较简单,运放接成比例放大形式,放大倍数可调,总体A/D转换与8051接口电路如下:3.4 报警电路报警电路的作用主要是在温度超过规定的温度或低于下限温度或达到预定温度时,报警子程序就会控制报警信号的输出,温度低与或高于规定的温度围以及达到规定的温度时,音频装置就会发出不同频率的告警信号,同时相应的LED 显示,到底是高了还是低了,以便与自动调节。
报警电路如下图:图1:报警电路3.5看门狗电路计算机看门狗控制卡是为了使计算机或工控机在系统出现异常时,能自动控制计算机进行重新启动,使系统恢复正常运行,保证系统24小时不间断正常工作。
该控制卡可运用于无人职守的场所。
像采用计算机作为存储设备的数字硬盘录像系统,公路卡口监控记录设备等。
特点:●可固定在计算机部并且不占用计算机任何插槽。
●借电方便,可利用计算机本身的软驱电源接口。
●通过计算机并口或者串口跟计算机通讯。
●计算机操作系统发生死机后,30秒(时间可设置)控制卡控制计算机重新启动。
●控制卡有信号灯,在正常工作时有频率稳定持续的灯光闪动。
●提供开发控件,可启动看门狗功能、停止看门狗功能、设置串口还是并口。
●有两种型号的控制卡,有自带R S232转485的功能的控制卡。
现以MAX706监控电路为例(见图1)来说明“看门狗”硬件电路的工作过程,我们知道,MAX706是一种性能优良的低功耗CMOS监控电路芯片,其部电路由上电复位、可重触发“看门狗”定时器及电压比较器等组成[2]。
MAX706只要在1.6秒时间检测到WCI引脚有高低电平跳变信号,则“看门狗”定时器清零并重新开始计时;若超出1.6秒后,WCI引脚仍无高低电平跳变信号,则“看门狗”定时器溢出,WDO引脚输出低电平,进而触发MR手动复位引脚,使MAC706复位,从而使“看门狗”定时器清零并重新开始计时,WDO引脚输出高电平,MAX706的RST复位输出引脚输出大约200毫秒宽度的低电平脉冲,使单片机控制系统可靠复位,重新投入正常运行。
图1:看门狗电路3.6 显示电路单片机与显示器的接口电路图图MC14495部逻辑结构及引脚图用MC14495组成多位LED静态显示器接口程序:DIR: SETB RS0 ;保护第0组工作寄存器PUSH A ;保护现场MOV R2, #03H ;显示位数计数MOV R1, #00H ;设位码初值,初态从LED7开始 MOV R0, #DIS7 ;显示缓冲区末地址送R0DIR0: MOV A, RO ;取待显示的数据AND A, #07H ;屏蔽高3位,保留低4位BCD码 MOV R3, A ;暂存R3中MOV A, R1 ;位选码值送ASWAP A ;位码交换到高4位ADD A, R3 ;合并形成输出的BCD码和位选码 MOV P1,A ;输出到P1口INC R1 ;位码加1指向下一位DJNZ R2, DIR0 ;8个位未显示完重复CLR RS0 ;显示完恢复第0组工作寄存器 POP ARET ;返回主程序3.7 电源电路本模块将交流 220V输入电压变为3组直流电压,其中5V电压为CPU等数字电路提供电源;±15V电压为运放等模拟芯片提供电源;24V电压为温度变送器提供电源。
220v市电经变压器输出两组独立的25v交流,桥堆整流,大电容滤波得到+ 35v直流,再加一个0.1uF小电容滤出电源中的高频分量。
考虑到制作过程中电源空载似的电容放电可在输出电容并上1k大功率电阻。
另外这组直流还要给7812、7912来获得 + 12v。
电源模块如下图:图1:5V直流稳压源电路图2: + 12V/24V直流稳压源的原理电路第四章软件的设计4.1 软件实现方法根据热处理炉在上电复位后先处于停止加热状态,这时可以用“+1”键设定预置温度,显示器显示预定温度;温度设定好后就可以按启动键启动系统工作了。
温度检测系统不断定时检测当前温度,并送往显示器显示,达到预定值后停止加热并显示当前温度;当温度下降到下限(比预定值低3℃)时再启动加热。
这样不断重复上述过程,使温度保持在预定温度围之。
启动后不能再修改预置温度,必须按复位/停止键回到停止加热状态再重新设定预置温度。
炉温控制是这样一个反馈调节过程,比较实际炉温和需要炉温得到偏差,通过对偏差的处理获得控制信号,去调节电阻炉的热功率,从而实现对炉温的控制。
按照偏差的比例、积分和微分产生控制作用(PID控制),是过程控制中应用最广泛的一种控制形式。
系统控制程序采用两重中断嵌套方式设计。
首先使T0计数器产生定时中断,作为本系统的采样周期。
在中断服务程序中启动A/D,读入采样数据,进行数字滤波、上下限报警处理,PID计算,然后输出控制脉冲信号。