当前位置:文档之家› 人工智能本科习题

人工智能本科习题

人工智能本科习题
人工智能本科习题

中南大学人工智能本科习题

第一章绪论

1-1. 什么是人工智能?试从学科和能力两方面加以说明。

1-2. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用?

1-3. 为什么能够用机器(计算机)模仿人的智能?

1-4. 现在人工智能有哪些学派?它们的认知观是什么?

1-5. 你认为应从哪些层次对认知行为进行研究?

1-6. 人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?

第二章知识表示方法

2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?

2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。该船的负载能力为两人。在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。他们怎样才能用这条船安全地把所有人都渡过河去?

2-3 利用图2.3,用状态空间法规划一个最短的旅行路程:此旅程从城市A开始,访问其他城市不多于一次,并返回A。选择一个状态表示,表示出所求得的状态空间的节点及弧线,标出适当的代价,并指明图中从起始节点到目标节点的最佳路径。

2-4 试说明怎样把一棵与或解树用来表达图2.28所示的电网络阻抗的计算。单独的R、L 或C可分别用R、jωL或1/jωC来计算,这个事实用作本原问题。后继算符应以复合并联和串联阻抗的规则为基础。

图2.28

2-5 试用四元数列结构表示四圆盘梵塔问题,并画出求解该问题的与或图。

2-6 把下列句子变换成子句形式:

(1) ( x){P(x)→P(x)}

(2) x y(On(x,y)→Above(x,y))

(3) x y z(Above(x,y)∧Above(y,z)→Above(x,z))

(4) ~{( x){P(x)→{(y)[p(y)→p(f(x,y))]∧( y)[Q(x,y)→P(y)]}}}

2-7 用谓词演算公式表示下列英文句子(多用而不是省用不同谓词和项。例如不要用单一的谓词字母来表示每个句子。)

A computer system is intelligent if it can perform a task which,if performed by a human, requires intelligence.

2-8 把下列语句表示成语义网络描述:

(1) All man are mortal.

(2) Every cloud has a silver lining.

(3) All branch managers of DEC participate in a profit-sharing plan.

2-9 作为一个电影观众,请你编写一个去电影院看电影的剧本。

2-10 试构造一个描述你的寝室或办公室的框架系统。

第三章搜索推理技术

3-1 什么是图搜索过程?其中,重排OPEN表意味着什么,重排的原则是什么?

3-2 试举例比较各种搜索方法的效率。

3-3 化为子句形有哪些步骤?请结合例子说明之。

3-4 如何通过消解反演求取问题的答案?

3-5 什么叫合适公式?合适公式有哪些等价关系?

3-6 用宽度优先搜索求图3.33所示迷宫的出路。

图3.33 迷宫一例

3-7 用有界深度优先搜索方法求解图3.34所示八数码难题。

2

1

2

3

1

6

3

8

4

7

5

4

7

6

5

So Sg

图3-34八数码难题

3-8 应用最新的方法来表达传教士和野人问题,编写一个计算机程序,以求得安全渡过全部6个人的解答。

提示:在应用状态空间表示和搜索方法时,可用(Nm,Nc)来表示状态描述,其中Nm和Nc 分别为传教士和野人的人数。初始状态为(3,3),而可能的中间状态为(0,1),(0,2),(0,3),(1,1),(2,1),(2,2),(3,0),(3,1)和(3,2)等。

3-9 试比较宽度优先搜索、有界深度优先搜索及有序搜索的搜索效率,并以实例数据加以说

3-10 一个机器人驾驶卡车,携带包裹(编号分别为#1、#2和#3)分别投递到林(LIN)、吴(WU)和胡(HU)3家住宅处。规定了某些简单的操作符,如表示驾驶方位的drive(x,y)和表示卸下包裹的unload (z) ;对于每个操作符,都有一定的先决条件和结果。试说明状态空间问题求解系统如何能够应用谓词演算求得一个操作符序列,该序列能够生成一个满足AT(#1,LIN)∧AT(#2,WU)∧AT(#3,HU)和目标状态。

3-11 规则演绎系统和产生式系统有哪几种推理方式?各自的特点为何?

3-12 为什么需要采用系统组织技术?有哪几种系统组织技术?

3-13 研究不确定性推理有何意义?有哪几种不确定性?

3-14 单调推理有何局限性?什么叫缺省推理?非单调推理系统如何证实一个节点的有效性?

3-15 在什么情况下需要采用不确定推理或非单调推理?

3-16 下列语句是一些几何定理,把这些语句表示为基于规则的几何证明系统的产生式规则:

(1) 两个全等三角形的各对应角相等。

(2) 两个全等三角形的各对应边相等。

(3) 各对应边相等的三角形是全等三角形。

(4) 等腰三角形的两底角相等。

第四章计算智能(1):神经计算模糊计算

4-1 计算智能的含义是什么?它涉及哪些研究分支?

4-2 试述计算智能(CI)、人工智能(AI)和生物智能(BI)的关系。

4-3 人工神经网络为什么具有诱人的发展前景和潜在的广泛应用领域?

4-4 简述生物神经元及人工神经网络的结构和主要学习算法。

4-5 考虑一个具有阶梯型阈值函数的神经网络,假设

(1)用一常数乘所有的权值和阈值;

(2)用一常数加于所有权值和阈值。

试说明网络性能是否会变化?

4-6 构作一个神经网络,用于计算含有2个输入的XOR函数。指定所用神经网络单元的种类。

4-7 假定有个具有线性激励函数的神经网络,即对于每个神经元,其输出等于常数c乘以各输入加权和。

(1)设该网络有个隐含层。对于给定的权W,写出输出层单元的输出值,此值以权W和输入层I为函数,而对隐含层的输出没有任何明显的叙述。试证明:存在一个不含隐含单位的网络能够计算上述同样的函数。

(2)对于具有任何隐含层数的网络,重复进行上述计算。从中给出线性激励函数的结论。

4-8 试实现一个分层前馈神经网络的数据结构,为正向评价和反向传播提供所需信息。应用这个数据结构,写出一个神经网络输出,以作为一个例子,并计算该网络适当的输出值。

4-9 什么是模糊性?它的对立含义是什么?试各举出两个例子加以说明。

4-10 什么是模糊集合和隶属函数或隶属度?

4-11 模糊集合有哪些运算,满足哪些规律?

4-12 什么是模糊推理?有哪几种模糊推理方法?

4-13 有哪些模糊蕴含关系?

4-14 什么叫模糊判决?有哪几种常用的模糊判决方法?

4-15 对某种产品的质量进行抽查评估。现随机选出5个产品x1,x2,x3,x4,x5进行检验,它们质量情况分别为:

x1=80,x2=72,x3=65,x4=98,x5=53

这就确定了一个模糊集合Q,表示该组产品的“质量水平”这个模糊概念的隶属程度。

试写出该模糊集。

4-16 设有下列两个模糊关系

试求出R1与R2的复合关系R1○R2。

第五章计算智能(2):进化计算人工生命

5-1 什么是进化计算?它包括哪些内容?它们的出发点是什么?

5-2 试述遗传算法的基本原理,并说明遗传算法的求解步骤。

5-3 如何利用遗传算法求解问题,试举例说明求解过程。

5-4 用遗传算法求的最大值

5-5 进化策略是如何描述的?

5-6 简述进化编程的机理和基本过程,并以四状态机为例说明进化编程的表示。

5-7 遗传算法、进化策略和进化编程的关系如何?有何区别?

5-8 人工生命是否从1987年开始研究?为什么?

5-9 什么是人工生命?请按你的理解用自己的语言给人工生命下个定义。

5-10 人工生命要模仿自然生命的特征和现象。自然生命有哪些共同特征?

5-11 为什么要研究人工生命?

5-12 人工生命包括哪些研究内容?其研究方法如何?

第六章专家系统

6-1 什么叫做专家系统?它具有哪些特点与优点?

6-2 专家系统由哪些部分构成?各部分的作用为何?

6-3 建造专家系统的关键步骤是什么?

6-4 专家系统程序与一般的问题求解软件程序有何不同?开发专家系统与开发其它软件的任务有何不同?

6-5 基于规则的专家系统是如何工作的?其结构为何?

6-6 基于框架的专家系统与面向目标编程有何关系?其结构有何特点?其设计任务是什么?

6-7 为什么要提出基于模型的专家系统?试述神经网络专家系统的一般结构。

6-8 新型专家系统有何特征?什么是分布式专家系统和协同式专家系统?

6-9 在设计专家系统时,应考虑哪些技术?

6-10 什么是建造专家系统的工具?你知道哪些专家系统工具,各有什么特点? 6-11 专家系统面临什么问题?你认为应如何发展专家系统?

6-12 用基于规则的推理系统证明下述推理的正确性:

已知狗都会吠叫和咬人

任何动物吠叫时总是吵人的

猎犬是狗

结论猎犬是吵人的

第七章机器学习

7-1 什么是学习和机器学习?为什么要研究机器学习?

7-2 试述机器学习系统的基本结构,并说明各部分的作用。

7-3 试解释机械学习的模式。机械学习有哪些重要问题需要加以研究?

7-4 试说明归纳学习的模式和学习方法。

7-5 什么是类比学习?其推理和学习过程为何?

7-6 试述解释学习的基本原理、学习形式和功能。

7-7 试比较说明符号系统和连接机制在机器学习中的主要思想。

7-8 用C语言编写一套计算机程序,用于执行BP学习算法。

7-9 试应用神经网络模型优化求解销售员旅行问题。

7-10 考虑一个具有阶梯型阈值函数的神经网络,假设

(1) 用一常数乘所有的权值和阈值;

(2) 用一常数加于所有权值和阈值。

试说明网络性能是否会变化?

7-11 增大权值是否能够使BP学习变慢?

7-12 什么是知识发现?知识发现与数据挖掘有何关系?

7-13 试说明知识发现的处理过程。

7-14 有哪几种比较常用的知识发现方法?试略加介绍。

7-15 知识发现的应用领域有哪些?试展望知识发现的发展和应用前景。

第八章机器人规划

8-1 有哪几种重要的机器人高层规划系统?它们各有什么特点?你认为哪种规划方法有较大的发展前景?

8-2 让right(x),left(x),up(x)和down(x)分别表示八数码难题中单元x左边、右边、上面和下面的单元(如果这样的单元存在的话)。试写出STIPS规划来模拟向上移动B(空格)、向下移动B、向左移动B和向右移动B等动作。

8-3 考虑设计一个清扫厨房规划问题。

(1) 写出一套可能要用的STRIPS型操作符。当你描述这些操作符时,要考虑到下列情况:·清扫火炉或电冰箱会弄脏地板。

·要清扫烘箱,必须应用烘箱清洗器,然后搬走此清洗器。

·在清扫地板之前,必须先行打扫。

·在打扫地板之前,必须先把垃圾筒拿出去。

·清扫电冰箱造成垃圾污物,并把工作台弄脏。

·清洗工作台或地板使洗涤盘弄脏。

(2) 写出一个被清扫厨房的可能初始状态描述,并写出一个可描述的(但很可能难以得到的)目标描述。

(3) 说明如何把STRIPS规划技术用来求解这个问题。(提示:你可能想修正添加条件的定义,

以便当某个条件添加至数据库时,如果出现它的否定的话,就能自动删去此否定)。

8-4 曲颈瓶F1和F2的容积分别为C1和C2。公式CONT(X,Y)表示瓶子X含有Y容量单位的液体。试写出STRIPS规划来模拟下列动作:

(1) 把F1内的全部液体倒进F2内。

(2) 用F1的部分液体把F2装满。

8-5 机器人Rover正在房外,想进入房内,但不能开门让自已进去,而只能喊叫,让叫声促使开门。另一机器人Max在房间内,他能够开门并喜欢平静。Max通常可以把门打开来使Rover停止叫喊。假设Max和Rover各有一个STRIPS规划生成系统和规划执行系统。试说明Max和Rover的STRIPS规则和动作,并描述导致平衡状态的规划序列和执行步骤。

8-6 用本章讨论过的任何规划生成系统,解决图8.22所示机械手堆积木问题。

8-7 考虑图8.23所示的寻找路径问题。

(1) 对所示物体和障碍物(阴影部分)建立一个结构空间。其中,物体的初始位置有两种情况,一种如图所示,另一种情况是把物体旋转90°。

(2) 应用结构空间,描述一个寻求上述无碰撞路径的过程(程序)把问题限于无旋转的二维问题。

(a)初始布局(b)目标布局

图8.22 机械手堆积木规划问题

8-8 指出你的过程结构空间求得的图8.23问题的路径,并叙述如何把你在上题中所得结论推广至包括旋转情况。

图8.23 一个寻找路径问题

8-9 图8.24表示机器人工作的世界模型。要求机器人Robot把3个箱子BOX1、BOX2和BOX3移到如图E23(b)所示目标位置,试用专家系统方法建立本规划,并给出规划序列。

(a)初始世界模型M0 (b)目标世界模型G0

图8.24 移动箱子于一处的机器人规划

8-10 图8.25表示机器人工作的世界模型。要求机器人把箱子从房间R2初始位置移至房间R1目标位置。试建立本机器人规划专家系统,并给出规划结果。

图8.25 从一房间移至另一房间的机器人规划

第九章Agent (艾真体)

9-1 分布式人工智能系统有何特点?试与多艾真体系统的特性加以比较。

9-2 什么是艾真体?你对agent的译法有何见解?

9-3 艾真体在结构上有何特点?在结构上又是如何分类的?每种结构的特点为何?

9-4 艾真体为什么需要互相通信?

9-5 试述艾真体通信的步骤、类型和方式。

9-6 艾真体有哪几种主要通信语言?它们各有什么特点?

9-7 多艾真体系统有哪几种基本模型?其体系结构又有哪几种?

9-8 试说明多艾真体的协作方法、协商技术和协调方式。

9-9 为什么多艾真体需要学习与规划?

9-10 你认为多艾真体系统的研究方向应是哪些?其应用前景又如何?

9-11 选择一个你熟悉的领域,编写一页程序来描述艾真体与环境的作用。说明环境是否是可访问的、确定性的、情节性的、静态的和连续的。对于该领域,采用何种艾真体结构为好?

9-12 设计并实现几种具有内部状态的艾真体,并测量其性能。对于给定的环境,这些艾真体如何接近理想的艾真体?

9-13 改变房间的形状和摆设物的位置,添加新家具。试测量该新环境中各艾真体,讨论如何改善其性能,以求处理更为复杂的地貌。

9-14 有些艾真体一旦得知一个新句子,就立即进行推理,而另一些艾真体只有在得到请求

后才进行推理。这两种推理方法在知识层、逻辑层和执行层将有何区别?

9-15 应用布尔电路为无名普斯世界设计一个逻辑艾真体。该电路是一个连接输入(感知阀门)和输出(行动阀门)的逻辑门的集合。

(1) 试解释为什么需要触发器。

(2) 估计需要多少逻辑门和触发器。

第十章机器视觉

10-1 可用广义锥体语言把楔形物体描述为一个具有一定尺寸的三角形沿着一根直轴移动而成的。请给出另一种描述。

10-2 (1)除了表面法线(p,q,-1)外,还有另外两个感兴趣的矢量:一个矢量指向光源,它对应于某些特别的p和q值,记为ps和(s为假设日光),表示指向日光的矢量(ps,qs,-1);另一指向观察者,即矢量(0,0,-1)。

利用表面法线、日光矢量和观测矢量,可以求出一些用p和q表示的与出射角、入射角和相位角有关的公式。试证明下列公式成立:

(2)对和推导类似公式。

10-3 已知朗伯表面亮度等于。如果光源正好在观察者的后面,即,于是可得对应于p和q的亮度为:

当为一常数时,亮度E为一恒值。由于是平面PQ上某个圆的方程式,所以我们可得如下结论:当光源位于观察者后面时,PQ反射图上的等亮度线是一些圆周线。试证明阴影线是直线。

10-4 把一个篮球或其它球形物体固定起来,并在室内单一小光源下对它进行试验。光源是在观察者的背后。

(1)球面的光线亮度如何变化?

(2)为什么满月看上去是扁平的?

10-5 考虑有一个朗伯立方体平放在朗伯墙前,如图(a)所示。沿ab线的光线强度大体上像图(b)那样,而当立方体的拐角为圆滑过渡时,其光线强度如图(c)所示。

题10-5图朗伯立方体及其光强分布图

(1)在PQ空间,指出此立方体各可见侧面的表面法线的准确位置。

(2)在PQ空间,对着光源方向,指出可取的位置。

(3)假设交界是陡变的,试画出沿cd线的光强度分布图。

(4)假设交界是圆滑的,试画出沿cd线的光强度分布图。

10-6 下列阵列表示航空照片图象上点阵的PQ投影以及所观察亮度Er的链式代码:

-1 -1 0.23 +1 -1 0.23 +1 -1 0.17

-1 -1 0.23 +1 -1 0.17 0 0 0.3

0 0 0.3 0 0 0.3 0 0 0.3

假设所观察的亮度为,其中,对应于光源直接在观察者背后和时的朗伯反射图上的等亮度线。试把每点图象分类为石头、树和墓石、假设它们的反射系数分别为0.7,0.5和0.3。

10-7 某盖板表面的反射系数ρ为未知。在不同时间从3个分离光源对该表面照明。对于的表面,这3个光源对此表面的反射图如图所示。用这些光分别照射时所观察到的亮度分别为:

题10-7图3个反射图

(1)在PQ空间画出当等于2,3和4时表示轨迹的线。同样地,画出当等于0.5,1和2时的线。

(2)求

10-8 把图中所示各物体量化为32×32的画面(方格纸自备)

题10-8图需要数字化的物体

(1)建立两个画面,每个画面包含上述3个物体。要求两画面上的物体具有不同的尺寸、位置和方向。

(2)计算两画面上6个物体的各阶矩量和。

(3)计算各物体的矩心。

(4)计算各物体的中心矩、标称中心矩和不变性矩,并讨论所得结果。

(5)计算6个物体的形状系数,并讨论所得结果。

10-9 为什么CONSIGHT系统要使用2个光源,而不是用1个光源?

10-10 在连通性分析中,相邻2行间的分段情况被定义为下列3种:

情况1不重迭

中间为零或有更多的列

×××××

×××××

情况2不重迭

中间为零或有更多的列

×××××

×××××

情况3重迭

既不同于情况1,又不同于情况2。

区域并合规则是较高的数取代较低的数(除背景“0”外)。

(1)从左至右逐行扫描下列8×8二进制图象(图中b为背景)。指出连通域被并合后图象矩阵上元素的数字,作为连通性分析的解答:

1 2 3 4 5 6 7 8

b b b b b b b b b b

1 b 0 0 0 1 1 1 0 0 b

2 b 1 1 0 0 1 1 1 0 b

3 b 0 1 0 1 1 0 1 1 b

4 b 0 1 1 1 1 0 0 1 b

5 b 0 1 1 1 0 0 0 1 b

6 b 0 1 0 1 1 0 1 1 b

7 b 0 1 0 0 1 1 1 0 b

8 b 0 0 0 0 0 1 0 0 b

b b b b b b b b b

(2)确定本题(1)中图象编码的扫描宽度。

第十一章自然语言理解

11-1 什么是语言和语言理解?自然语言理解过程有哪些层次,各层次的功能如何?

11-2 自然语言理解和语言自动生成的关系为何?研究这两者时有什么共同点。

11-3 语言的歧义性可出现在各个层次上:构词、词类、句法和语义。试各举一例来说明。11-4 写出下列上下文无关语法所对应的转移网络:

S→NP VP

NP→Adjective Noun

NP→Determiner Noun PP

NP→Determiner Noun

VP→Verb Adverb NP

VP→Verb

VP→Verb Adverb

VP→Verb PP

PP→Proposition NP

11-5 考虑下列句子

The old man′s glasses were filled with sherry.

选择单词glasses合适的意思需要什么信息?什么信息意味着不合适的意思?

11-6 考虑下列句子:

Put the red block on the blue block on the table .

(1) 写出句中符合句法规则的所有有效的句法分析。

(2) 如何用语义信息和环境知识选择该命令的恰当含义?

11-7 对下列每个语句给出句法分析树:

(1) David wanted to go to the movie with Linda.

(2) David wanted to go to the movie with Georgy William.

(3) He heard the story listening to the radio.

(4) He heard the boys listening to the radio.

11-8 考虑一用户与一交互操作系统之间进行英语对话的问题。

(1) 写出语义文法以确定对话所用语言。这些语言应确保进行基本操作,如描述事件、复制和删除文件、编译程序和检索文件目录等。

(2) 用你的语义文法对下列各语句进行文法分析:

Copy from new test mss into old test mss.

Copy to old test mss out of new test mss.

(3) 用标准的英语文法对上述两语句进行分析,列出所用文法片断。

(4) 上述(2)与(3)的文法有何差别?这种差别与句法和语义文法之间的差别有何关系?

11-9 某大学开发出一个学生学籍管理数据库。试写出适于查询该数据库内容的匹配样本。11-10 试设计一个特定应用领域的自然语言问答系统。

第十二章智能控制

12-1 为什么说智能控制是人工智能的重要研究新领域?

12-2 智能控制有哪几种结构理论?它们的中心思想和内容是什么?与传统控制相比,智能控制有什么特点?

12-3 Saridis的分级递阶智能控制的要点是什么?各级的功能怎样?如何用熵来度量各级的作用?

12-4 设计专家控制器时应考虑哪些特点?专家控制系统的一般结构模型为何?

12-5 什么是学习控制系统?它有哪些研究课题?学习控制系统的设计原则为何?

12-6 试说明模糊控制器的结构原理和控制规则。模糊控制器有哪几种设计方法?

12-7 设论域X、Y均为有限模糊集合,它们分别为

模糊矩阵R表示从X到Y的一个模糊关系。试说明模糊矩阵R的元素rij的含义是什么?

12-8 模糊控制器工作过程中把输入的精确量转变为模糊量(模糊化)后,输出时又

把模糊量变为精确量(非模糊化)。这些转换各有什么作用?

12-9人工神经网络有哪些特性使它适于控制?有哪几种神经控制器,它们的结构

和作用原理为何?

12-10 智能控制有哪些应用领域?试举出一个你比较了解或熟悉的智能控制应用例子,并说明其工作原理和控制性能。

第十三章展望

13-1 你怎样评价人工智能的发展与争论?争论与发展的关系如何?

13-2 人工智能不同学派在理论、方法和技术路线上各有何争论?

13-2 人工智能的发展对人类有哪些方面的影响?试结合自己了解的情况何理解,从经济、社会何文化等方面加以说明?

13-4 试评述人工智能的未来发展。

13-5 你对“人工智能”或“智能系统”课程及其教学有何建议?

人工智能试题2010

内蒙古科技大学2010/2011 学年第一学期 《人工智能》试题 课程号:67111317 考试方式:大作业 使用专业、年级:计算机应用2007 任课教师:陈淋艳 班级: 学号: 姓名:

一、(12分)什么是人类智能?它有哪些特征或特点?什么是人工 智能?人工智能有哪些研究领域? 二、(18分)分别用语义网络表示法,产生式表示法,谓词逻辑表 示法,表示下列知识。 1,所有的鸽子都是鸟。 2,所有的鸽子都有翅膀。 3,信鸽是一种鸽子,它有翅膀,能识途。 三、(20分)用状态空间搜索法求解农夫,狐狸,鸡,小米问题。农 夫,狐狸,鸡,小米都在一条河的左岸,现在要把他们全部送 到左岸去,农夫有一条船,过河时,除农夫外,船上至多能载 狐狸,鸡和小米中的一样。狐狸要吃鸡,鸡要吃小米,除非农 夫在那里。试规划出一个确保全部安全过河的计划。(提示:a:用四元组(农夫,狐狸,鸡,小米)表示状态,其中每个元素的 取值为0或1,0表示在左岸,1表示在右岸。b:每次过河的 一种安排作为一个算子,每次过河必须有农夫,因为只有他可 以划船。) 四、(15-分)试用归结反演的方法证明G为F1,F2,F3的逻辑结论, 并画出归结树(要求写出化字句集的过程)。 F1:))) z A z y z∧ B → ? ∧ D ? ? , ( )) ( ) ( ( ) y C ((y ( z F2:))) A z z y D E z→ ? ( ∧ ? z ∧ ( , ) y ) ( (y ( E ) ( F3:)) E z z? → ? (z ( ) ( B G:)) E z∧ z ? ) ( ( (z C

《人工智能导论》试卷B

人工智能试卷(B) 试题部分: 一、选择题(15小题,共15分) 1、97年5月,著名的“人机大战”,最终计算机以3.5比2.5的总比分将世界国际象棋棋王卡斯帕罗夫击败,这台计算机被称为(A) A)深蓝B)IBM C)深思D)蓝天 2、下列不在人工智能系统的知识包含的4个要素中D A)事实B)规则C)控制和元知识D)关系 3、谓词逻辑下,子句, C1=L∨C1‘, C2= ? L∨C2‘, 若σ是互补文字的(最一般)合一置换,则其归结式C=(A ) A) C1’σ∨C2’σB)C1’∨C2’C)C1’σ∧C2’σD)C1’∧C2’ 4、或图通常称为D A)框架网络B)语义图C)博亦图D)状态图 5、不属于人工智能的学派是B A)符号主义B)机会主义C)行为主义D)连接主义。 6、人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是C A)明斯基B).扎德C)图林D)冯.诺依曼 7、要想让机器具有智能,必须让机器具有知识。因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫(B )。 A)专家系统B)机器学习C)神经网络D)模式识别 8、下列哪部分不是专家系统的组成部分(A) A.)用户B)综合数据库C)推理机D)知识库 9、产生式系统的推理不包括(D ) A)正向推理B)逆向推理C)双向推理D)简单推理 10、C(B|A) 表示在规则A->B中,证据A为真的作用下结论B为真的B A)可信度B)信度C)信任增长度D)概率 11、AI的英文缩写是B A)Automatic Intelligence B)Artifical Intelligence C)Automatice Information D)Artifical Information 12、反演归结(消解)证明定理时,若当前归结式是(C)时,则定理得证。 A)永真式B)包孕式(subsumed)C)空子句 13、在公式中?y?xp(x,y)),存在量词是在全称量词的辖域内,我们允许所存在的x可能依赖于y值。令这种依赖关系明显地由函数所定义,它把每个y值映射到存在的那个x。这种函数叫做(B ) A. 依赖函数 B. Skolem函数 C. 决定函数 D. 多元函数 14、子句~P∨Q和P经过消解以后,得到(B ) A. P B. Q C. ~P D.P∨Q

人工智能-知识表示方法

实验一:知识表示方法 一、实验目的 状态空间表示法是人工智能领域最基本的知识表示方法之一,也是进一步学习状态空间搜索策略的基础,本实验通过牧师与野人渡河的问题,强化学生对知识表示的了解和应用,为人工智能后续环节的课程奠定基础。 二、问题描述 有n个牧师和n个野人准备渡河,但只有一条能容纳c个人的小船,为了防止野人侵犯牧师,要求无论在何处,牧师的人数不得少于野人的人数(除非牧师人数为0),且假定野人与牧师都会划船,试设计一个算法,确定他们能否渡过河去,若能,则给出小船来回次数最少的最佳方案。 三、基本要求 输入:牧师人数(即野人人数):n;小船一次最多载人量:c。 输出:若问题无解,则显示Failed,否则,显示Successed输出一组最佳方案。用三元组(X1, X2, X3)表示渡河过程中的状态。并用箭头连接相邻状态以表示迁移过程:初始状态->中间状态->目标状态。 例:当输入n=2,c=2时,输出:221->110->211->010->021->000 其中:X1表示起始岸上的牧师人数;X2表示起始岸上的野人人数;X3表示小船现在位置(1表示起始岸,0表示目的岸)。 要求:写出算法的设计思想和源程序,并以图形用户界面实现人机交互,进行输入和输出结果,如: Please input n: 2 Please input c: 2 Successed or Failed?: Successed Optimal Procedure: 221->110->211->010->021->000

四、实验结果 四、实验心得 本次实验运用了状态空间表示法,这是人工智能领域最基本的知识表示方法之一,也是进一步学习状态空间搜索策略的基础,本实验强化我对知识表示的了解和应用,为人工智能后续环节的课程奠定基础。

人工智能试题

内蒙古科技大学2013/2014 学年第一学期 《人工智能》大作业 课程号:67111317、76807376 考试方式:大作业 使用专业、年级:计算机2011-1,2,3,4 任课教师:陈淋艳 班级: 学号: 姓名:

一、(15分)智能、智力、能力的含义是什么?什么是人工智能? 人类研究人工智能的最终目标是什么? 二、(15分)传教士与野人问题:有三个传教士和三个野人来到河 边,河边只有一条一次最多可供两个人过河的小船,传教士如 何用这条小船过河才能使河两边的野人数目决不会超过传教士 的数目? 指定状态描述的格式,开始状态和目标状态;画出状态空间图。 (只要画出河两边野人数目不会超过传教士数目的状态即可)。 三、(10分)用谓词公式表示下列语句:因为老百姓授法律管制,所 以晁盖劫了生辰纲,触犯了宋王朝的法律,受到官府追究;而 达官贵人和恶少不受法律管制,所以高衙内强抢民女,虽然也 违法,却可以横行无忌。 四、(20分)什么是演绎推理?他的推理规则是什么? 试用谓词演算语句集合表示下面这段话;并用归结反演的方法 回答下列问题: 设TONY,|MIKE和JOHN属于ALPINE俱乐部,ALPINE俱乐部的成员不是滑雪运动员就是登山运动员。登山运动员不喜 欢下雨,而且任何不喜欢雪的人都不是滑雪运动员。MIKE讨厌TONY所喜欢的一切东西,而喜欢TONY所讨厌的一切东西。 TONY喜欢雨和雪。试问有没有ALPINE俱乐部的成员,他是一个登山运动员但不是滑雪运动员。 五、(20分)在主观Bayes推理中,LS和LN的意义是什么?

设系统中有如下规则: R1:IF E1THEN (50 0,0.01)H1 R2 IF E2THEN (1,100)H1 R3:IF E3THEN (1000,1)H2 R4:IF H1THEN (20,1)H2 并且已知P(H1)=0.1,P(H2)=0.1,P(H3)=0.1,初始证据的概率为P(E1|S1)=0.5 ,P(E2|S2)=0 ,P(E3|S3)=0.8,用主观Bayes方法求H2的后验概率P(H2|S1& S2& S3)。 六、(20分)结课报告题目:选以下题目之一或自选题目写一篇5000 字左右的报告,要有关键字,图要有图号,最后要有参考资料。 1、总结知识表达技术。(选取三种知识表达放法加以介绍,并进行比较) 2、查找两篇或三篇已发表的与人工智能理论相关的论文,从文章所论述的问题,阐述的理论,其社会效益,与原有的方法相比,他的优缺点等。 3、介绍一已有的专家系统。 4、写一篇文章介绍人工神经网络。(应用领域,人工神经元模型,学习方法) 不符合以下要求的作业不收 本试题一律使用A4纸完成,一至五题要求手写。

人工智能期末试题及答案完整版

xx学校 2012—2013学年度第二学期期末试卷 考试课程:《人工智能》考核类型:考试A卷 考试形式:开卷出卷教师: 考试专业:考试班级: 一单项选择题(每小题2分,共10分) 1.首次提出“人工智能”是在(D )年 A.1946 B.1960 C.1916 D.1956 2. 人工智能应用研究的两个最重要最广泛领域为:B A.专家系统、自动规划 B. 专家系统、机器学习 C. 机器学习、智能控制 D. 机器学习、自然语言理解 3. 下列不是知识表示法的是 A 。 A:计算机表示法B:“与/或”图表示法 C:状态空间表示法D:产生式规则表示法 4. 下列关于不确定性知识描述错误的是 C 。 A:不确定性知识是不可以精确表示的 B:专家知识通常属于不确定性知识 C:不确定性知识是经过处理过的知识 D:不确定性知识的事实与结论的关系不是简单的“是”或“不是”。 5. 下图是一个迷宫,S0是入口,S g是出口,把入口作为初始节点,出口作为目标节点,通道作为分支,画出从入口S0出发,寻找出口Sg的状态树。根据深度优先搜索方法搜索的路径是 C 。 A:s0-s4-s5-s6-s9-sg B:s0-s4-s1-s2-s3-s6-s9-sg C:s0-s4-s1-s2-s3-s5-s6-s8-s9-sg D:s0-s4-s7-s5-s6-s9-sg 二填空题(每空2分,共20分) 1.目前人工智能的主要学派有三家:符号主义、进化主义和连接主义。 2. 问题的状态空间包含三种说明的集合,初始状态集合S 、操作符集合F以及目标

状态集合G 。 3、启发式搜索中,利用一些线索来帮助足迹选择搜索方向,这些线索称为启发式(Heuristic)信息。 4、计算智能是人工智能研究的新内容,涉及神经计算、模糊计算和进化计算等。 5、不确定性推理主要有两种不确定性,即关于结论的不确定性和关于证据的不确 定性。 三名称解释(每词4分,共20分) 人工智能专家系统遗传算法机器学习数据挖掘 答:(1)人工智能 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等 (2)专家系统 专家系统是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题.简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统 (3)遗传算法 遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的操作,模拟事物内部多样性和对环境变化的高度适应性,其特点是操作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向 (4)机器学习 机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎 (5)数据挖掘 数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的

人工智能导论试卷一答案 (上海交大)

一、选择题答案1、b 2、A 3、A 二、填空题答案 1、在修正的A算法中,fm的含义是到当前为止,扩展的节点中,f的最大值 2、对任意节点n,设m是n的子节点,当h满足条件h(n)-h(m) ≤ C(n, m), h(t) = 0时,称h是单调的。 三、问答题答案 第1题 答:当问题有解时,A*算法总是找到问题的最优解结束。如果h函数定义的不合理,则当扩展一个节点时,不一定就找到了从初始节点到该节点的最优路径,对于这样的节点,就有可能被多次扩展。特别是如果这样的节点处于问题的最优解路径上时,则一定会被多次扩展。解决的方法一是对h函数的定义给出限制,使得h满足单调性。对于满足单调性条件的h,则一定不会出现重复扩展节点问题。二是对A*算法加以改进,使用修正的A*算法进行搜索,则可以减少重复扩展节点问题。 第2题 答:回溯搜索策略与深度有限搜索策略最大的不同是深度有限搜索策略属于图搜索,而回溯搜索则不是图搜索。在回溯搜索中,只保留了从初始节点到当前节点的搜索路径。而深度优先搜索,则保留了所有的已经搜索过的路径。 第3题 答:化子句集如下:

归结树如下: 修改证明树:

得到问题的解答:R(h(f(g(c, a)))) 第4题 第5题 答:搜索图如图所示,其中括号内标出的是节点的f值,圆圈内的数字是扩展的次序。F(16) 得到的解路径为:S-B-F-J-T 第6题 答:如下的知识可以帮助求解该问题: (1)序列中,偶数在偶数位置,奇数在奇数位置; (2)第五个数为5。 综合数据库:

用一个1到9的序列表示:N = {x},其中x为1到9的数字之一。规则集: r1: IF len(N)=4 THEN {x}∪{5} r2: IF len(N)为偶数and n=In(1, 3, 7, 9) THEN {x}∪{n} r3: IF len(N)为奇数and n=In(2, 4, 6, 8) THEN {x}∪{n} 其中len(N)为求序列的长度,In(a, b, c, d)为取a、b、c、d之一。初始状态:{} 结束条件:得到的序列N前i个数组成的整数能被i整除。

整理人工智能简答题

一.简答题 1.在什么情况下需要采用不确定推理或非单调推理? 答:一般推理方法在许多情况下,往往无法解决面临的现实问题,因而需要应用不确定性推理等高级知识推理方法,包括非单调推理、时序推理和不确定性推理等。 例如,当一个人打开电灯的开关而发现灯泡未亮时,就会根据以往的经验而觉得“停电了”。但当他打开另外一只灯的开关发现灯亮时,就否定了先前“停电了”的结论,想到也许是开关或者灯具出问题了。这个改变原先推导结论的过程其实就是一个非单调推理。即,随着信息与知识的增加,并没有在肯定原来的结论基础上,增加了更多并立的知识与结论, 而是否定了原先结论并有了新的看法。以下情况需要采用不确定推理:所需知识不完备,不精确所需知识描述模糊,多种原因导致同一结论,问题的背景知识不足,解题方案不唯一。不确定性推理,是指其推理过程中,由于各种偶然性误差、干扰以及证据的不确定性等因素,导致所获得的结果或结论本身具有未置可否的不确定性。 一般来说,出现不精确推理的原因和特征可能有: ①证据不足或称为证据的不确定性;②规则的不确定性;③研究方法的不确定性。 由于以上“三性”的存在,决定了推理的最后结果具有不确定但却近乎合理的特性,人们把这种性质的推理及其理论和方法总称为不确定推理 2.产生式系统有哪几种推理方式?各自特点为何? 答:(1)正向推理(正向链接推理):从一组表示事实的谓词或命题出发,使用一组产生式规则,用以证明该谓词公式或命题是否成立。 (2)逆向推理(后向链接推理):从表示目标的谓词或命题出发,使用一组产生式规则证明事实谓词或命题成立,即首先提出一批假设目标,然后逐一验证这些假设。(其基本原理是从表示目标的谓词或命题出发,使用一组规则证明事实谓词或命题成立,即提出一批假设(目标),然后逐一验证这些假设。 (3)双向推理:又称为正反向混合推理,它综合了正向推理和逆向推理的长处,克服了两者的短处。双向推理的推理策略是同时从目标向事实推理和从事实向目标推理,并在推理过程中的某个步骤,实现事实与目标的匹配。 3.算法A*直到一个目标节点被选择扩展才会终止。然而,到达目标节点的一条路经可能在那个节点被选择扩展前早就找到了。一旦目标节点被发现,为什么不终止搜索呢?用一个例子说明你的答案。 4.结合你的研究方向,论述哪些人工智能技术可以得到应用?解决什么问题? 答:人工智能目前总结出了对实现人工智能系统来说具有普遍意义的核心课题:知识的模型化和表示方法,启发式搜索理论,各种推理方法,人工智能系统结构和语言。主要研究和应用领域:机器学习,知识表示和推理,智能搜索,模糊逻辑,人工神经网络,遗传算法,自然语言理解,博弈论,知识发现和数据挖掘等。 5.在选择知识表示的方法时,应该考虑哪些因素? 答:表示能力:能够将问题求解所需的知识正确有效地表达出来,可理解性:所表达的知

人工智能考试题.doc

名词解释: 1,、什么是人工智能?人工智能的研究有哪些学派?他们的观点是什么? 一:主要研究如何用计算机模仿和实现人类的智能。 国际上人工智能研究作为一门科学的前沿和交叉学科,但像许多新兴学科一样,人工智能至今尚无统一的定义。 有多种定义:⑴智能机器。能够在各类环境中自主的或交互的执行各种拟人任务的机器。 ⑵是计算机科学中涉及研究、设计和应用智能机器的一个分支。它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。 ⑶从人工智能所实现的功能来定义: ·人工智能(能力)是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动 ⑷从“研究如何在机器上实现人类智能”角度讲,人工智能被定义为是一门研究如何构造智能机器(智能计算机)或智能系统,使它能模拟、延伸、扩展人类智能的学科。通俗地说,人工智能就是研究如何使机器具有能听、会说、能看、会写、能思维、会学习、能适应环境变化、能解决各种面临的实际问题等功能的学科。 ⑸人工智能是研究如何让计算机做现阶段人类才能做得更好的事情”。 ⑹人工智能是计算机科学的分支,它用符号的、非算法的方法进行问题求解”。 ?二:符号主义(主流学派):又称:逻辑主义、心理学派或计算机学派 原理:物理符号系统(即符号操作系统)假设和有限合理性原理起源:源于数理逻辑,学派代表:纽厄尔、西蒙和尼尔逊等 认为人的认知基元是符号,认知过程即符号操作过程; 认为人是一个物理符号系统,计算机也是一个物理符号系统,因此,能用计算机来模拟人的智能行为; 认为知识是信息的一种形式,是构成智能的基础。人工智能的核心问题是知识表示、知识推理和知识运用。 连结主义:又称:仿生学派或生理学派。原理:神经网络及神经网络间的连 接机制与学习算法。起源:源于仿生学,特别是人脑模型的研究 学派代表:卡洛克、皮茨、Hopfield、鲁梅尔哈特等 认为思维基元是神经元,而不是符号处理过程; 认为人脑不同于电脑,并提出连结主义的大脑工作模式,用于取代符号操作的电脑工作模式 行为主义:又称:进化主义或控制论学派。原理:控制论及感知—动作型控制系统。起源:源于控制论

西安科技大学人工智能题库9(含答案)

人工智能试卷9 一、选择题:(13小题,共13分) 1.人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是(C)。 A. 明斯基 B. 扎德 C. 图灵 D. 冯.诺依曼 2.下列哪个不是人工智能的研究领域(D) A.机器证明 B.模式识别 C. 人工生命 D. 编译原理 3.神经网络研究属于下列(B)学派 A. 符号主义 B. 连接主义 C. 行为主义 D. 都不是 4.已知初始问题的描述,通过一系列变换把此问题最终变为一个子问题集合;这些子问题的解可以直接得到,从而解决了初始问题。这是知识表示法叫(B) A. 状态空间法 B. 问题归约法 C. 谓词逻辑法 D. 语义网络法 5.在公式中?y?xp(x,y)),存在量词是在全称量词的辖域内,我们允许所存在的x可能依赖于y值。令这种依赖关系明显地由函数所定义,它把每个y值映射到存在的那个x。这种函数叫做(B) A. 依赖函数 B. Skolem函数 C. 决定函数 D. 多元函数 6.子句~P∨Q和P经过消解以后,得到(B) A. P B. Q C. ~P D. P∨Q 7,8.A∧(A∨B)?A 称为(C),~(A∧B)?~A∨~B称为(D) 二、结合律 B.分配律 C.吸收律 D.摩根律 9,10.如果问题存在最优解,则下面几种搜索算法中,(A)必然可以得到该最优解,(D)可以认为在这几种算法中是“智能程度相对比较高”的算法。 A. 广度优先搜索 B. 深度优先搜索 C. 有界深度优先搜索 D. 启发式搜索

11.产生式系统的推理不包括(D) A. 正向推理 B. 逆向推理 C. 双向推理 D. 简单推理 12.下列哪部分不是专家系统的组成部分(A) A. 用户 B. 综合数据库 C. 推理机 D. 知识库 13. 要想让机器具有智能,必须让机器具有知识。因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫(B)。 A. 专家系统 B. 机器学习 C. 神经网络 D. 模式识别! 二、填空题:(12小题,共30分) 1. 人工智能三大学派是符号主义、联结主义、行为主义。 2. 化成子句形式为:。 3.从已知事实出发,通过规则库求得结论的产生式系统的推理方式是正向推理 4.AI的英文缩写是Artifical Inteligence 5.在谓词公式中,紧接于量词之后被量词作用的谓词公式称为该量词的辖域,而在一个量词的辖域中与该量词的指导变元相同的变元称为约束变元,其他变元称为自由变元 6、假言推理(A→B)∧A? B ,假言三段论(A→B)∧(B→C)?A→C 7、几种常用的归结策略:删除策略、支持集策略、线形归结策略、输入归结策略、单元归结策略 8、在诸如走迷宫、下棋、八数码游戏等游戏中,常用到的一种人工智能的核心技术称为图搜索技术,解这类问题时,常把在迷宫的位置、棋的布局、八数码所排成的形势用图来表 ,这种图称为状态空间图(或状态图) 9.在启发式搜索当中,通常用启发函数来表示启发性信息。 10.在二人博弈问题中,最常用的一种分析技术是极大极小分析法,这种方法的思想是先生成一棵博弈树,然后再计算其倒推值。但它的效率较低,因此人们在此基础上,又提出了α-β剪枝技术 11.某产生式系统中的一条规则:A(x)→B(x),则前件是A(x),后件是B(x) 12.在框架和语义网络两种知识表示方法中,框架适合于表示结构性强的知识,而语义网络则适合表示一些复杂的关系和联系的知识。面向对象不仅仅是一种知识表示方法,也是一种流行的软件设计和开发技术。 三、简答题:(3小题,共27分) 1.将下列自然语言转化为谓词表示形式: (1) 所有的人都是要呼吸的。 (2) 每个学生都要参加考试。

《人工智能导论》试卷

一、填空: 1.人工智能的研究途径有(1)、(2)和行为模拟。 2.任意列举人工智能的四个应用性领域(3)、(4)、(5)、(6)。 3.人工智能的基本技术包括(7)、(8)、(9)归纳技术、联想技术。 4.谓词逻辑是一种表达能力很强的形式语言,其真值的特点和命题逻辑的区别是 (10)。 5.谓词逻辑中,重言式(tautlogy)的值是(11)。 6.设P是谓词公式,对于P的任何论域,存在P为真的情况,则称P为(12)。 7.在著名的医疗专家系统MYCIN中规定,若证据A的可信度CF(A)=0,则意味 着13 ,CF(A)=-1,则意味着(14),CF(A)=1,则意味着(15)。 8.谓词公式G是不可满足的,当且仅当对所有的解释(16)。 9.谓词公式与其子句集的关系是(17)。 10.利用归结原理证明定理时,若得到的归结式为(18),则结论成立。 11.若C1=┐P∨Q,C2=P∨┐Q,则C1和C2的归结式R(C1,C2)= (19)。 12.若C1=P(x) ∨Q(x),C2=┐P(a) ∨R(y),则C1和C2的归结式R(C1,C2)= (20)。 13.有谓词公式G,置换δ,则G·ε= (21),δ·ε= (22)。 14.有子句集S={P(x),P(y)},其MGU= (23)。 15.在归结原理中,几种常见的归结策略并且具有完备性的是(24),(25),(26)。 16.状态图启发式搜索算法的特点是(27)。 17.广度优先搜索算法中,OPEN表的数据结构实际是一个(28),深度优先搜索算 法中,OPEN表的数据结构实际是一个(29)。 18.产生式系统有三部分组成(30),(31)和推理机。其中推理可分为(32)和 (33)。 19.专家系统的结构包含人机界面、(34),(35),(36),(37)和解 释模块。

人工智能考试题目

名词解释: 1状态空间法 状态空间法是一种基于解答空间的问题表示和求解方法,它是以状态和操作符为基础的。在利用状态空间图表示时,从某个初始状态开始,每次加一个操作符,递增地建立起操作符的试验序列,直到达到目标状态为止。由于状态空间法需要扩展过多的节点,容易出现“组合爆炸”,因而只适用于表示比较简单的问题。 2问题归约法 问题归约法从目标(要解决的问题)出发,逆向推理,通过一系列变换把初始问题变换为子问题集合和子子问题集合,直至最后归约为一个平凡的本原问题集合。这些本原问题的解可以直接得到从而解决了初始问题,用与或图来有效地说明问题归约法的求解途径。 3有序搜索 应用某个算法(例如等代价法)选择OPEN表上具有最小f值的节点作为下一个要扩展的节点, 这种搜索方法叫做有序搜索或最佳优先搜索, 其算法就叫做有序搜索算法或最佳优先算法. 实质:选择OPEN表上具有最小f值的节点(即最有希望的节点)作为下一个要扩展的节点。 4可解节点 可解节点:与或图中一个可解节点的一般定义可以归纳如下: 1、终叶节点是可解节点(因为它们与本原问题相关连)。 2、如果某个非终叶节点含有或后继节点,那么只有当其后继节点至少有一个是可解的时,此非终叶节点才是可解的。 3、如果某个非终叶节点含有与后继节点,那么只要当其后继节点全部为可解时,此非终叶节点才是可解的。 5不可解节点 不可解节点的一般定义 没有后裔的非终叶节点为不可解节点。 如果某个非终叶节点含有或后继节点,那么只有当其全部后裔为不可解时,此非终叶节点才是不可解的。 如果某个非终叶节点含有与后继节点,那么只要当其后裔至少有一个为不可解时,此非终叶节点才是不可解的。 6规则正向演绎系统 正向规则演绎系统是从事实到目标进行操作的,即从状况条件到动作进行推理的,也就是从if到then的方向进行推理的。 7规则逆向演绎系统 逆向规则演绎系统是从then向if进行推理,即从目标或动作向事实或状况条件进行的推理。 8等代价搜索 是宽度优先搜索的一种推广,不是沿着等长度路径断层进行扩展,而是沿着等代价路径断层进行扩展,寻找从起始状态至目标状态的具有最小代价的路径问题。搜索树中每条连接弧线上的有关代价,表示时间、距离等花费。

2020人工智能与健康题库及答案

精选考试类文档,如果需要,请下载,希望能帮助到你们! 2020人工智能与健康题库及答案

姓名成绩 温馨提示:同学们,经过培训学习,你一定积累了很多知识,现在请认真、仔细地完成这张试题吧。加油! 一、判断题(每题2分)。 1.信息时代的三大定律有摩尔定律、吉尔德定律、麦特卡尔夫定律。 正确 2.在没有大数据的条件下,人才的发现与选拔都很难做到“全信息”,大数据能够帮助人们解决这个问题。 正确 3.大数据会带来机器智能,提升计算机的智能程度,但它是永远不会超过人类的智能。 错误 4.医疗健康数据的应用主要有药物研究、门诊诊断、病人行为及其相关数据与管理医疗社保基金。 正确 5.在未来,人工智能将会代替人类的工作、身份。 错误 6.人工智能在医疗领域还存在一些问题。 正确 7.对于在医疗领域的AI,我国应提出加大推动创新人工智能应用评估和保障机制、

加大政策扶持力度等建议。 正确 8.从国家内部来看,人工智能通过优化自动化的方式能够提升社会运行效率。正确 9.我们要围绕推动我国人工智能健康快速发展的现实要求,妥善应对人工智能可能带来的挑战,形成适应人工智能发展的制度安排,构建开放包容的国际化环境,夯实人工智能发展的经济基础。 错误 10.由于工业发展的需要,目前国内智能机器人行业的研发只集中于工业服务和智能助手两个方面。 错误 11.中国人口老龄化问题面临各种各样的挑战。 正确 12.从老龄研究的角度,智慧养老能够解决根本性的问题。 错误 13.马斯洛的需求层次理论认为,人类需要的最低层次是安全需求。 错误 14.点对点的养老服务模式通过互联网、物联网技术,来使服务需求得到实现,无论身处何处,打破了地域限制,不需要得知服务提供者是谁。 正确 15.点对点的养老服务模式是指需要什么样的服务,就直接去找这样的服务。 正确

人工智能导论在线作业

人工智能导论在线作业集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

答:决策树是一种数据挖掘分类算法、是直观运用概率分析的一种图解法、是一个预测模型。 基本方法: 决策树一般由方块结点、圆形结点、方案枝、概率枝等组成,方块结点称为决策结点,由结点引出若干条细支,每条细支代表一个方案,称为方案枝;圆形结点称为状态结点,由状态结点引出若干条细支,表示不同的自然状态,称为概率枝。每条概率枝代表一种自然状态。在每条细枝上标明客观状态的内容和其出现概率。在概率枝的最末稍标明该方案在该自然状态下所达到的结果(收益值或损失值)。这样树形图由左向右,由简到繁展开,组成一个树状网络图。 步骤: a.绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。 b.按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计算是从右到左沿着决策树的反方向进行计算的。 c.对比各方案的期望值的大小,进行剪枝优选。在舍去备选方案枝上,用“=”记号隔断。 2、什么是知识它有哪些特性列举至少六种知识表示方法 答:经过国内外学者的共同努力,目前已经有许多知识表示方法得到了深入的研究,目前使用较多的知识表示方法主要有:谓词逻辑表示法,产生式表示法、框架表示法、语义网络表示法、表示法、基于本体的知识表示法等。本文将介绍这些知识表示方法的特征和优缺点,进行一些分析和比较。 (1)词逻辑表示法。谓词逻辑表示法是指各种基于(ormalogic)知识表示方式,用逻辑公式描述对象、性质、状况和关系,例如“在轨道上”可以描述成:(npaceshiporbit)它是领域中使用最早和最广泛的知识表示方法之一。其根本目的在于把数学中的逻辑论证符号化,能够采用数学演绎的方式,证明一个新语句是从哪些已知正确的语句推导出来的,那么也就能够断定这个新语句也是正确的。 在这种方法中,识库可以看成一组逻辑公式的集合,识库的修改是增加或删除逻辑公式。使用逻辑法表示知识,将以描述的知识通过引入谓词、函数来加以形式描述,得有关的逻辑公式,而以机器内部代码表示。在逻辑法表示下可采用归结法或其它方法进行准确的推理。

人工智能

2016年3月谷歌的阿尔法狗(AlphaGo)大战世界围棋冠军李世石,引发了全球范围内对于人工智能的讨论。探讨人工智能,就要回答什么是智能的问题,综合各类定义,智能是一种知识与思维的合成,是人类认识世界和改造世界过程中的一种分析问题与解决问题的综合能力。对于人工智能,美国麻省理工学院的温斯顿教授提出“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作”。 各国政府高度重视人工智能相关产业的发展。自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入,其中美国政府主要通过投资的方式引导人工智能产业的发展,2013年美国政府将22亿美元的国家预算投入到了先进制造业,投入方向之一便是“国家机器人计划”。 在技术方向上,美国主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。 现阶段的技术突破的重点一是云机器人技术,二是人脑仿生计算技术。美国、日本、巴西等国家均将云机器人作为机器人技术的未来研究方向之一。伴随着宽带网络设施的普及,云计算、大数据等技术的不断发展,未来机器人技术成本的进一步降低和机器人量产化目标实现,机器人通过网络获得数据或者进行处理将成为可能。目前国外相关研究的方向包括:建立开放系统机器人架构(包括通用的硬件与软件平台)、网络互联机器人系统平台、机器人网络平台的算法和图像处理系统开发、云机器人相关网络基础设施的研究等。 高科技企业普遍将人工智能视为下一代产业革命和互联网革命的技术引爆点进行投资,加快产业化进程。 谷歌在2013年完成了8 家机器人相关企业的收购,在机器学习方面也大肆搜罗企业和人才,收购了DeepMind和计算机视觉领军企业Andrew Zisserman,又聘请DARPA原负责人 Regina Dugan负责颠覆性创新项目的研究,苹果2014 年在自动化上的资本支出预算高达110 亿美元。苹果手机中采用的Siri智能助理脱胎于美国先进研究项目局(DARPA)投资 1.5亿美元,历时5年的CALO ( Cognitive Assistant that Learns and Organizes)项目,是美国首个得到大规模产业化应用的人工智能项目。韩国和日本的各家公司也纷纷把机器人技术移植到制造业新领域并尝试进入服务业。

人工智能复习题汇总(附答案)

一、选择题 1.被誉为“人工智能之父”的科学家是(C )。 A. 明斯基 B. 图灵 C. 麦卡锡 D. 冯.诺依曼 2. AI的英文缩写是( B ) A. Automatic Intelligence B. Artificial Intelligence C. Automatic Information D. Artificial Information 3. 下列那个不是子句的特点(D) A.子句间是没有合取词的(∧) B子句通过合取词连接句子(∧) C子句中可以有析取词(∨) D子句间是没有析取词的(∨) 4. 下列不是命题的是(C )。 A.我上人工智能课 B. 存在最大素数 C.请勿随地大小便 D. 这次考试我得了101分 5. 搜索分为盲目搜索和(A) A启发式搜索B模糊搜索 C精确搜索D大数据搜索 6. 从全称判断推导出特称判断或单称判断的过程,即由一般性知识推出适合于某一具体情况的结论的推理是(B) A. 归结推理 B. 演绎推理 C. 默认推理 D. 单调推理 7. 下面不属于人工智能研究基本内容的是(C )

A. 机器感知 B. 机器学习 C. 自动化 D. 机器思维 8.S={P∨Q∨R, ┑Q∨R, Q, ┑R}其中, P 是纯文字,因此可将子句(A)从S中删去 A. P∨Q∨R B. ┑Q∨R C. Q D.┑R 9. 下列不属于框架中设置的常见槽的是(B )。 A. ISA槽 B. if-then槽 C. AKO槽 D. Instance槽 10. 常见的语意网络有(D )。 A. A-Member-of联系 B. Composed–of联系 C. have 联系 D. 以上全是 1.在深度优先搜索策略中,open表是(B )的数据结构 A.先进先出 B.先进后出 C. 根据估价函数值重排 D.随机出 2.归纳推理是(B )的推理 A. 从一般到个别 B. 从个别到一般 C. 从个别到个别 D. 从一般到一般 3. 要想让机器具有智能,必须让机器具有知识。因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫(B )

大学人工智能期末考试题库

《人工智能与专家系统》试卷(1)参考答案与评分标准 问答题(每题5分,共50分) 1.人工智能是何时、何地、怎样诞生的?(5分) 答:人工智能于1956年夏季在美国达特茅斯(Dartmouth)大学诞生。(3分)1956年夏季,美国的一些从事数学、心理学、计算机科学、信息论和神经学研究的年轻学者,汇聚在Dartmouth大学,举办了一次长达两个月的学术讨论会,认真而热烈地讨论了用机器模拟人类智能的问题。在这次会议上,第一次使用了“人工智能”这一术语,以代表有关机器智能这一研究方向。这是人类历史上第一次人工智能研讨会,标志着人工智能学科的诞生,具有十分重要的意义。(2分) 2.行为主义是人工智能的主要学派之一,它的基本观点是什么?(5分) 答:行为主义,又称进化主义或控制论学派。这种观点认为智能取决于感知和行动(所以被称为行为主义),它不需要知识、不需要表示、不需要推理。其原理是控制论和感知——动作型控制系统。 3.什么是知识表示?在选择知识表示方法时,应该考虑哪几个因素?(5分)答:知识表示是研究用机器表示知识的可行性、有效性的般方法,是一种数据结构与控制结构的统一体,既考虑知识的存储又考虑知识的使用。知识表示实际上就是对人类知识的一种描述,以把人类知识表示成计算机能够处理的数据结构。对知识进行表示的过程就是把知识编码成某种数据结构的过程。(3分)在选择知识表示方法时,应该考虑以下几个因素:(1)能否充分表示相关的领域知识;(2)是否有利于对知识的利用;(3)是否便于知识的组织、维护和管理;(4)是否便于理解和实现。(2分) 4.框架表示法有什么特点?(5分) 答:框架表示法有如下特点:结构性、继承性、自然性。(5分) 5.何谓产生式系统?它由哪几部分组成?(5分) 答:把一组产生式放在一起,让它们相互配合,协同作用,一个产生式生成的结论可以供另一个产生式作为已知事实使用,以求得问题的解,这样的系统称为产生式系统。(2分) 产生式系统一般由三个基本部分组成:规则库、综合数据库和推理机。(3分) 6.产生式系统中,推理机的推理方式有哪几种?请分别解释说明。(5分)答:产生式系统推理机的推理方式有正向推理、反向推理和双向推理三种。 正向推理:正向推理是从己知事实出发,通过规则库求得结果。 反向推理:反向推理是从目标出发,反向使用规则,求证已知的事实。 双向推理:双向推理是既自顶向下又自底向上的推理。推理从两个方向进行, 直至在某个中间界面上两方向结果相符便成功结束;如两方衔接不上,则推理失败。

福州大学《人工智能导论》试卷

福州大学2014~2015学年第2学期考试A卷 课程名称人工智能导论考试日期2015-6-14 考生姓名学号专业或类别 题号一二三四总分累分人 签名题分100 得分 考生注意事项:1、本试卷共8 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 一、填空题(每空1分,共20分) 得分评卷人 1. 人工智能三大学派是、和。 2. 在知识表示方法中,与谓词逻辑表示为ISA(LIMING ,MAN)等效的语义网络形式 为。 3.状态空间表示法的两个基本概念是和。 4. 产生式系统由3个部分组成:一个总数据库、、。 5. ANN中文意义是。 6. 反向传播(back-propagation,BP)算法过程是从输出节点开始, ,所以称为“反向传播”。 7. 消解反演证明定理时,若当前归结式是,则定理得证。 8. 子句和P经过消解以后,得到。 9.基于规则的正向演绎系统,其规则形式为,其中前项要满足的条件是。 10. 语义网络下的推理是通过和实现的。 11. 被成为人工智能之父,曾提出一个机器智能的测试模型。 12. 谓词公式(?x)(?y)(?z)(P(x,y)∨Q(y,z)W(z))消去存在量词后,可以化为 。

13. 设E 1=P(a,v,f(g(y))),E 2 =P(z,f(a),f(u)),则E 1 和E 2 的mgu(最一般合一)为 。 14. 进化策略是在父矢量x i ,i=1,2,……p中,通过加入一个 变量以及预先选择x的标准偏差来产生子代矢量x。 二、选择题(每小题2分,共20分) 得分评卷人 1. 在图搜索中,选择最有希望的节点作为下一个要扩展的节点,这种搜索方法叫做( ) A. 宽度搜索 B. 深度搜索 C. 有序搜索 D. 广义搜索 2. 下列人工神经网络属于反馈网络的是() A. Hopfield网 B. BP网络 C. 多层感知器 D. LVQ网络 3. 使用一组槽来描述事件的发生序列,这种知识表示法叫做( ) A. 语义网络法 B. 过程表示法 C. 剧本表示法 D. 框架表示法 4. 产生式系统的推理不包括( ) A. 正向推理 B. 逆向推理 C. 双向推理 D. 简单推理 5. 启发式搜索是寻求问题()解的一种方法 A. 最优 B. 一般 C. 满意 D. 最坏 6. 语义网络表达知识时,有向弧AKO链、ISA链表达节点知识的() A. 无悖性 B. 可扩充性 C. 继承性 D. 完整性 7. 下面表达式对中()是能够合一的。 A. P(q(f(v)),g(u))和P(x,x) B. P(x,f(x))和P(y,y) C. P(y,y,B)和P(z,x,z) D. P(f(A),x),P(x,A) 8. 在遗传算法中,变量x的定义域为 [-2,5],要求其精度为10-6,现用二进制进行编码,

什么是人工智能计算机

什么是人工智能计算机 )查看。 什么是人工智能计算机 著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。” 而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。” 这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。 人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成

为一个独立的分支,无论在理论和实践上都已自成一个系统。 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。 人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。 从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。 人工智能的三道坎 首先是大数据。从某种意义上来说,人工智能在近一两年的走红,与大数据的发展和被重视程度不无关系。随着以智能手机为代表的科技产品开始深入到人们生活的方方面面,用户在线上的行为越来越多,由此形成了大量的用户数据。而人工智能正好可以利用这些数据,建立数学模型和完成用户画像,让程序来做一些过去只有人能够做的事情。 大数据这个门槛,导致了人工智能只能是巨头的游戏,跟创业

相关主题
文本预览
相关文档 最新文档