当前位置:文档之家› 第十一章电气设备选择及短路电流限制(1)

第十一章电气设备选择及短路电流限制(1)

第十一章电气设备选择及短路电流限制(1)
第十一章电气设备选择及短路电流限制(1)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 第十一章电气设备选择及短路电流限制(1) 第十一章电气设备选择及短路电流限制教学目的及要求 1. 掌握短路电流电动力效应和短路电流的热效应 2. 掌握电气设备的一般选择条件 1. 了解成套配电装置特点。

本章重点 1.配电装置的分类和要求; 2. 屋内外配电的特点、类型和布置要求。

本章难点 1. 配电装置的分类和要求 2. 屋内外配电的特点、类型和布置要求教学内容第一节短路电流的效应一、短路电流电动力效应 1. 电动力: 载流导体在相邻载流导体产生的磁场中所受的电磁力。

2. 电动力的危害: 引起载流导体变形、绝缘子损坏,甚至于会造成新的短路故障。

3. 两平行导体间最大的电动力: 电动力的方向:

同吸;反斥。

4. 两相短路时平行导体间的最大电动力

5. 三相短路时平行导体之间的最大电动力边缘相 U 相与中间相 V 相导体所承受的最大电动力、分别为:

发生三相短路后,母线为三相水平布置时中间相导体所承受的电动力最大。

6. 短路电流电动力效验电力系统中同一地点发生不同种类的短路时,导体所承受三相短路时的最大电动721102=aLi

1 / 15

ifKF( )2( )2k72102=aLiF( )3U( )3k721061. 1=aLiF( )3V( )3k721073. 1=aLiF15. 1/) 2 () 3 (=FF力比两相短路时的最大电动力大 15%。

因此,在校验导体的最大电动力时,按三相短路的最严重情况考虑。

二、短路电流的热效应 1. 电气设备发热的原因电气设备在工作中,由于自身的有功功率损耗,引起电气设备的发热。

包括电阻损耗、介质损耗 2. 导体发热种类长期发热:

正常工作电流在较长时间内所引起的发热。

短路时发热:

短路电流在极短的时间内所引起的发热。

3. 电气设备温度升高的影响设备的绝缘:

温度愈高绝缘的老化速度愈快。

接触电阻值:

增大,功率损耗加大,温度再升高,恶性循环。

机械强度:

显著降低,影响电器的安全运行。

4. 载流导体和电器发热的允许温度为了限制电气设备因发热而产生不利影响,保证电气设备的正确使用,国家规定了载流导体和电器长期发热和短路时发热的允许温度。

5. 导体温度的变化特点 k AB 段:

工作电流所产生的热量引起导体温度的变化; BC 段:

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 短路时导体温度变化; C 点后的虚线:

短路电流被切除之后,导体温度会逐渐地降至周围环境温度。

6. 短路时最高发热温度计算 CBAO01t1t2t3t计算导体短路时的最高温度的步骤:

(1) 根据运行温度从曲线中查出之值; iiAQ(2) 将与之值代入公式,计算出:

k (3) 根据,从曲线中查出之值。

k A7. 短路电流的热效应计算工程中短路电流的热效应通常采用近似数值积分法计算。

周期分量热效应:

非周期分量热效应:

第二节电气设备的一般选择条件电气设备选择是发电厂和变电所设计的主要内容之一,在选择时应根据实际工作特点,按照有关设计规范的规定,在保证供配电安全可靠的前提下,力争做到技术先进,经济合理。

为了保障高压电气设备的可靠运行,高压电气设备选择与校验的一般条件有:

(1)按正常工作条件包括电压、电流、频率、开断电流等选择;(2)按短路条件包括动稳定、热稳定校验;(3)按环境工作条件如温度、湿度、海拔等选择。

一、额定电压和最高工作电压高压电气设备所在电网的运行

3 / 15

电压因调压或负荷的变化,常高于电网的额定电iA2kk0tQI dt=iKKAQSA+=21k ()2t2t2/21012dddpIIItQ++ =2ITQap =压,故所选电气设备允许最高工作电压 Ualm 不得低于所接电网的最高运行电压。

一般电气设备允许的最高工作电压可达 1. 1~1. 15 UN ,而实际电网的最高运行电压 Usm 一般不超过 1. 1 UNs ,因此在选择电气设备时,一般可按照电气设备的额定电压 UN 不低于装置地点电网额定电压UNs 的条件选择,即UN UNs 二、额定电流电气设备的额定电流Ⅰ N 是指在额定环境温度下,电气设备的长期允许通过电流。

Ⅰ N 应不小于该回路在各种合理运行方式下的最大持续工作电流Ⅰ max,即Ⅰ N Ⅰ max 。

(1)由于发电机、调相机和变压器在电压降低 5%时,出力保持不变,故其相应回路的Ⅰ max 为发电机、调相机或变压器的额定电流的 1. 5 倍;(2)若变压器有过负荷运行可能时,Ⅰ max 应按过负荷确定(1. 3~2 倍变压器额定电流);(3)母联断路器回路一般可取母线上最大一台发电机或变压器的Ⅰ max ;(4)出线回路的Ⅰ max 除考虑正常负荷电流(包括线路损耗)外,还应考虑事故时由其它回路转移过来的负荷。

短路条件校验短路热稳定校验短路电流通过电气设备时,电气设备各部件温度(或发热效应) 应不超过允许值。

满足热稳定的条件为

---------------------------------------------------------------最新资料推荐------------------------------------------------------

kzttItI式中Ⅰ t 厂家给的电气设备在时间 t 秒内的热稳定电

流。

Ⅰ 短路稳态电流值。

t与Ⅰ t 相对应的时间。

tdz短路电流热效应等值计算时间。

三、短路条件校验 1. 电动力稳定校验电动力稳定是电气设

备承受短路电流机械效应的能力,也称动稳定。

满足动稳定的条件为或 esi 式中ich、Ⅰ ch短路冲击电流幅值及其有效值;22chichesII ies 、Ⅰ es电气设备允许通过的动稳定电流的幅值及其有效值。

下列几种情况可不校验热稳定或动稳定:

(1)用熔断器保护的电器,热稳定由熔断时间保证。

(2)采用限流熔断器保护的设备,可不校验动稳定。

(3)装设在电压互感器回路中的裸导体和电气设备可不校

验动、热稳定。

2. 短路电流计算条件为使所选电气设备具有足够的可靠性、

经济性和合理性,并在一定时期内适应电力系统发展的需要,作校

验用的短路电流应按下列条件确定。

(1)容量和接线按本工程设计最终容量计算,并考虑电力

系统远景发展规划;其接线应采用可能发生最大短路电流的正常接线

方式,但不考虑在切换过程中可能短时并列的接线方式(如切换厂用

5 / 15

变压器时的并列) 。

(2)短路种类一般按三相短路验算,若其它种类短路较三相短路严重时,则应按最严重的情况验算。

(3)计算短路点选择通过电器的短路电流为最大的那些点为短路计算点。

第三节硬母线和电力电缆的选择一、母线的选择与校验母线选择的项目一般包括:

① 母线材料、类型和布置方式; ② 导体截面; ③ 热稳定; ④ 动稳定等项进行选择和校验;⑤ 对于 110kV 以上母线要进行电晕的校验;⑥ 对重要回路的母线还要进行共振频率的校验。

1. 母线的材料配电装置的母线常用导体材料有铜、铝和钢。

铜的电阻率低,机械强度大,抗腐蚀性能好,是首选的母线材料。

但是铜在工业和国防上的用途广泛,还因储量不多,价格较贵,所以一般情况下,尽可能以铝代铜,只有在大电流装置及有腐蚀性气体的屋外配电装置中,才考虑用铜作为母线材料。

2. 常用硬母线类型常用的硬母线截面有矩形、槽形和管形。

矩形母线常用于 35kV 及以下、电流在 4000A 及以下的配电装置中。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 单条矩形截面积最大不超过 1250mm2。

当工作电流超过最大截面单条母线允许电流时,可用小于 4 的几条矩形母线并列使用。

槽形母线机械强度好,载流量较大,集肤效应系数也较小,一般用于4000~8000A 的配电装置中。

管形母线集肤效应系数小,机械强度高,管内还可通风和通水冷却,因此,可用于 8000A 以上的大电流母线。

另外,由于圆形表面光滑,电晕放电电压高,因此可用于110kV 及以上配电装置。

3. 母线的布置方式图 7-11 为矩形母线的布置方式示意图。

当三相母线水平布置时,图 7-7(a) 与图7-7(b) 相比,前者散热较好,载流量大,但机械强度较低,而后者情况正好相反。

图 7-7(c) 的布置方式兼顾了前二者的优点,但使配电装置的高度增加,所以母线的布置应根据具体情况而定。

4. 母线截面选择除配电装置的汇流母线及较短导体(20m 以下) 按最大长期工作电流选择截面外,其余导体的截面一般按经济密度选择。

(1) 按最大长期工作电流选择母线长期发热的允许电流Ⅰ al ,应不小于所在回路的最大长期工作电流Ⅰmax,即KⅠ alⅠ max (7-31)式中Ⅰ al相对于母线允许温度和标准环境条件下导体长期允许电流; K

7 / 15

综合修正系数,与环境温度和导体连接方式等有关,其中温度修正

系数参考式(7-3)。

(2) 按经济电流密度选择按经济电流密度选择母线截面可

使年综合费用最低,年综合费用包括电流通过导体所产生的年电能

损耗费、导体投资和折旧费、利息等。

从降低电能损耗角度看,母线截面越大越好,而从降低投资、

折旧费和利息的角度,则希望截面越小越好。

综合这些因素,使年综合费用最小时所对应的母线截面称为母

线的经济截面,对应的电流密度称为经济电流密度。

表 7-7 为我国目前仍然沿用的经济电流密度值。

5. 母线热稳定校验按正常电流及经济电流密度选出母线截面

后,还应按热稳定校验。

按热稳定要求的导体最小截面为

(7-33) tC式中Ⅰ 短路电流稳态值(A) Ks集肤效应

系数,对于矩形母线截面在 100mm2 以下, Ks=1。

tdz热稳定计算时间, s。

C热稳定系数。

各种形状的母线通常都安装在支持绝缘子上,当冲击电流通过

母线时,电动力将使母线产生弯曲应力,因此必须校验母线的动

稳定性。

安装在同一平面内的三相母线,其中间相受力最大,即

(7-34) (Na

---------------------------------------------------------------最新资料推荐------------------------------------------------------

式中 Kf母线形状系数,当母线相间距离远大于母线截面周长时,Kf =1。

其他情况可由有关手册查得。

l母线跨距, (m) ; a母线相间距, (m) 。

母线通常每隔一定距离由绝缘瓷瓶自由支撑着。

因此当母线受电动力作用时,可sdzKIS=min)liKFchf27max10732. 1=以将母线看成一个多跨距载荷均匀分布的梁,当跨距段在两段以上时,其最大弯曲力矩为(7-35) 10 若只有两段跨距时,则 (7-36) 10 式中 Fmax 一个跨距长度母线所受的电动力(N)。

母线材料在弯曲时最大相间计算应力为(7-37) 式中 W母线对垂直于作用力方向轴的截面系数,又称抗弯矩(m3),其值与母线截面形状及布置方式有关,对常遇到的几种情况的计算式列于图 7-12 中。

要想保证母线不致弯曲变形而遭到破坏,必须使母线的计算应力不超过母线的允许应力,即母线的动稳定性校验条件为(7-38)式中 al 一母线材料的允许应力,对硬铝母线 al =69MPa; 对硬铜母线 al =137MPa。

如果在校验时,,则必须采取措施减小母线的计算应力,具体措施有:

9 / 15

将母线由竖放改为平放;放大母线截面,但会使投资增加;限制短路电流值能使大大减小,但须增设电抗器;增大相间距离 a;减小母线跨距 l 的尺寸,此时可以根据母线材料最大允许应力来确定绝缘瓷瓶之间最大允许跨距,即(7-38) max10F 式中 F1单位长度母线上所受的电动力(N/m)当矩形母线水平放置时,为避免导体因自重而过分弯曲,所选取的跨距一般不超过 1. 5~2m。

考虑到绝缘子支座及引下线安装方便,常选取绝缘子跨距等于配电装置间隔的宽度。

二、电缆的选择与校验电缆的基本结构包括导电芯、绝缘层、铅包(或铝包)和保护层几个部分。

供配电系统中常用的电力电缆,按其缆芯材料分为铜芯和铝芯两大类。

按其采用的绝缘介质分油浸纸绝缘和塑料绝缘两大类。

maxlFM =maxlFM =alcaWMca=alca1Wlal= 电缆制造成本高,投资大,但是具有运行可靠、不易受外界影响、不需架设电杆、不占地面、不碍观瞻等优点。

电力电缆是根据其结构类型、电压等级和经济电流密度来选择,并须校验以其最大长期工作电流、正常运行情况下的电压损失以及短路时的热稳定进行。

短路时的动稳定可以不必校验。

1. 按结构类型选择电缆根据电缆的用途、电缆敷设的

---------------------------------------------------------------最新资料推荐------------------------------------------------------

方法和场所,选择电缆的芯数、芯线的材料、绝缘的种类、保护

层的结构以及电缆的其它特征,最后确定电缆的型号。

常用的电力电缆有油浸纸绝缘电缆、塑料绝缘电缆和橡胶电缆

等。

随着电缆工业的发展,塑料电缆发展很快,其中交联聚乙烯

电缆,由于有优良的电气性能和机械性能,在中、低压系统中应

用十分广泛。

2. 按额定电压选择可按照电缆的额定电压 UN 不低于

敷设地点电网额定电压UNs 的条件选择,即UNUNs (7-40) 3. 电缆截面的选择一般根据最大长期工作电流选

择,但是对有些回路,如发电机、变压器回路,其年最大负荷利

用小时数超过 5000h,且长度超过 20m 时,应按经济电流密度来

选择。

(1)按最大长期工作电流选择电缆长期发热的允许电流

Ⅰ al ,应不小于所在回路的最大长期工作电流Ⅰmax,即K Ⅰ al

Ⅰ max (7-41)式中Ⅰ al

相对于电缆允许温度和标准环境条件下导体长期允许电流;

K综合修正系数。

(2)按经济电流密度选择经济电流密度选择电缆截面

时:

(7-41) 按经济电流密度选

11 / 15

出的电缆,必须按最大长期工作电流校验。

按经济电流密度选出的电缆,还应决定经济合理的电缆根数,截面 S150mm2 时,其经济根数为一根。

当截面大于 150 mm2 时,其经济根数可按 S/150 决定。

例如计算出 Sec 为 200mm2,选择两根截面为 120 mm2 的电缆为宜。

ececJISmax= 为了不损伤电缆的绝缘和保护层,电缆弯曲的曲率半径不应小于一定值。

为此,一般避免采用芯线截面大于 185 mm2 的电缆。

4. 热稳定校验电缆截面热稳定的校验方法与母线热稳定校验方法相同。

满足热稳定要求的最小截面可按下式求得(7-42) C式中 C与电缆材料及允许发热有关的系数,如表 7-8 所示。

验算电缆热稳定的短路点按下列情况确定: (1)单根无中间接头电缆,选电缆末端短路; 长度小于 200m 的电缆,可选电缆首端短路。

(2)有中间接头的电缆,短路点选择在第一个中间接头处。

(3)无中间接头的并列连接电缆,短路点选在并列点后。

第四节支柱绝缘子和穿墙套管的选择一、绝缘子简介绝缘子俗称为绝缘瓷瓶, 它广泛地应用在发电厂和变电所的配电装置、变压器、各种电器以及输电线之中。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用来支持和固定裸载流导体,并使裸导体与地绝缘, 或者用于使装置和电气设备中处在不同电位的载流导体间相互绝缘。

因此,要求绝缘子必须具有足够的电气绝缘强度、机械强度、耐热性和防潮性等等。

绝缘子按安装地点, 可分为户内(屋内) 式和户外(屋外) 式两种。

按结构用途可分为支持绝缘子和套管绝缘子。

二、支柱绝缘子支柱绝缘子又分为户内式和户外式两种。

户内式支柱绝缘子广泛应用在3~110kV 各种电压等级的电网中。

1. 户内式支柱绝缘子户内式支柱绝缘子可分为外胶装式、内胶装式及联合胶装式等三种 ke tIS=min

2. 户外式支柱绝缘子户外支柱绝缘子有针式和实心棒式两种。

图 7-6 所示为户外支柱绝缘子结构图。

主要由绝缘瓷体 2、 4, 铸铁帽 5 和具有法兰盘的装脚 1 组成三、套管绝缘子套管绝缘子简称为套管。

套管绝缘子按其安装地点可分户内式和户外式两种。

1.户内式套管绝缘子依其载流导体的特征可分为三种型式:

采用矩形截面的载流体、采用圆形截面的载流导体和母线型。

前两种套管载流导体与其绝缘部分制做成一个整体,母线型套管本身不带载流导体,使用时将原载流母线装于该套管矩形窗口内。

13 / 15

图 7-7 为 CME-10 型母线式套管绝缘子结构,由瓷壳 1、法兰盘 2、金属帽 3等部分组成。

金属帽 3 上有矩形窗口 4, 窗口为穿过母线的地方, 矩形窗口的尺寸决定于穿过套管母线的尺寸和数目。

套管的额定电流由穿过母线的额定电流确定。

2.户外式套管绝缘子用于将配电装置中的户内载流导体与户外载流导体之间的连接处,其两端的绝缘按户内外两种要求设计,图 7-8 中右端为户内部分,表面结构平滑,无伞裙,为户内式套管绝缘子结构;左端为户外部分,瓷体表面有伞裙,为户外式套管绝缘子结构。

四、支柱绝缘子及穿墙套管的选择支柱绝缘子和穿墙套管的选择和校验项目见下表:

支柱绝缘子及穿墙套管的动稳定性应满足式(7-27)的要求: FalFca (7-27)式中 Fal 支柱绝缘子或穿墙套管的允许荷重。

Fca 加于支柱绝缘子或穿墙套管上的最大计算力。

Fal 可按生产厂家给出的破坏荷重 Fdb 的 60%考虑,即Fal=0. 6 Fdb (N) Fca 即最严重短路情况下作用于支柱绝缘子或穿墙套管上的最大电动力,由于母线电动力是作用在母线截面中心线上,而支持绝缘子的抗弯破坏荷重是按作用在绝缘子帽上给出的,如图 7-9 所示,二者力臂不等,短路时作用于绝缘子帽上的最大计算力为:

---------------------------------------------------------------最新资料推荐------------------------------------------------------ Fca=Fmax (N) (7-28) 式中 Fmax 最严重短路作用于母线上的最大电动力。

H1 支柱绝缘子高度(mm) 。

H 从绝缘子底部至母线水平中心线高(mm)。

b 母线支持片的厚度,一般竖放矩形母线 b=18mm;平放矩形母线b=12mm。

计算 Fmax 的说明如下:

布置在同一平面内的三相母线(如图 7-10) ,在发生短路时,支持绝缘子所受的力为式中 a母线间距(m) Lca计算跨距(m)。

对母线中间的支持绝缘子, Lca 取相邻跨距之和的一半。

对母线端头的支持绝缘子, Lca 取相邻跨距的一半,对穿墙套管,则取套管长度与相邻跨距之和的一半。

72max10732. 1=aLiFcach

15 / 15

短路电流计算方法

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(Ω) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值

短路电流限制技术的原理

短路电流限制的原理 电力系统中的短路故障是不可避免的,除了故障点附近的损坏。例如,由于强烈的电弧的影响,流经故障回路的短路电流会对架空线、电缆、变压器和开关设备等设备施加较高的电动力和热应力。系统中的断路器还必须能够(选择性地)遮断和隔离故障点。 然而随着全球对电力能源需求不断增长,用户需要更大容量的变压器或者新增的发电接入现有系统,以满足负荷的增长,同时越来越多的系统进行互联,这就会导致客户电力系统短路电流水平升高,导致电力系统在短路电流承受能力方面接近甚至超过其极限。因此,短路电流限制成为行业所面临的挑战,这个挑战主要的难度在于:(一)如何在确保系统可靠性、供电连续性的前提下,有效地限制短路电流 (二)在有效限制短路电流的前提下如何尽可能提高系统效能减低损耗 (三)如何尽可能降低工程投资造价 图1a)显示一个简化的等效电路,用于讨论与电力系统中短路电流限制相关的问题。与故障之前流动的负荷电流无关。短路电流在故障0秒后从0kA开始以一定的上升速率迅速增大,具体取决于电路参数(电源电压U0和电源阻抗ZS以及故障初始相位角,当短路电流未被限制时,波形如图1b)中波形为i1,也就是系统预期的短路电流。如果其短路电流水平处于CB的遮断能力之内,则该短路电流将在t3处由CB遮断。

图1:短路电流限制 a)短路故障等效电路图 b)短路电流典型波形图 由于 是包括故障部分在内的电路中电阻的总和L是电路中全部电感所以限制短路电流的最简单方法是使用适当高值的阻抗ZS,即:(一)实时的在系统内增加网络阻抗,如电网分层分区、母线分段、提升电压等级等电网拓扑结构级手段,此解决方案是最为常用的解决办法,该方法的弊端是降低了系统的可靠性、增大了复杂性,降低了系统的效能,例如:母线分段。 (二)采用限流电抗器或者高阻抗变压器等,以限制短路电流的上升。该解决方案的缺点在于,它显然会在正常运行期间影响系统,降低系统的效能,而且在高负载电流下会导致相当大的电压降。 (三)采用狭义上的故障电流限制器,在正常的情况下,阻抗非

题目短路电流及其计算

题目:短路电流及其计算 讲授内容提要:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 教学目的:掌握三相短路、两相短路及单相短路电流的计算,会根据短路条件进行设备校验。 教学重点:欧姆法和标幺值法计算短路电流的方法,掌握短路热稳定和动稳定校验的方法。 教学难点:欧姆法和标幺值法计算短路电流的方法 采用教具和教学手段:多媒体及板书 授课时间:年月日授课地点:新教学楼教室 注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第三章 短路电流及其计算 本次课主要内容:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 第三节 无限大容量电力系统中短路电流的计算 计算过程:绘出计算电路图、元件编号、绘等效电路、计算阻抗和总阻抗、计算短路电流和短路容量。 一、欧姆法进行三相短路计算 22 ) 3(3∑ ∑ += X R U I C K 计算高压短路时电阻较小,一般可忽略。 、电力系统的阻抗计算 OC C S S U X 2= 、电力变压器的阻抗计算 2)(N C K T S U P R ?≈ N C K T S U U X 2 100%? ≈ 、电力线路的阻抗计算 l R R WL 0= l X X WL 0= 、阻抗换算 2'' )(C C U U R R = 2'' )(C C U U X X = 三、标幺制法三相短路电流计算 、基准值 基准容量 MVA S d 100= (可以任意选取) 基准电压 c d U U = (通常取短路计算电压) 基准电流 C d d d d U S U S I 33==

基准电抗 d C d d d S U I U X 2 3= = 、元件标幺值: 电力系统电抗标幺值: OC d d C OC C d S S S S S U S U X X X ===*//22 电力变压器电抗标幺值: N d K d C N C K d T T S S U S U S U U X X X ?=?==*100%/100%2 2 电力线路电抗标幺值: 22/C d O d C O d WL WL U S l X S U l X X X X ?===* 、短路电流标幺值及短路电流计算 *)* 3()3(2) 3()3(1 3/3/∑ * ∑ ∑∑* = =====X I I I I X X S U U S X U I I I d d K K d C C d C d K K 、三相短路容量 ** ) 3()3(33∑ ∑== =X S X U I U I S d c d C K K 四、两相短路电流的计算 ∑ =Z U I C K 2) 2( 866.02/3/) 3()2(==K K I I 五、单相短路电流的计算 ∑ ∑∑++=321)1(3Z Z Z U I K ? 工程计算 0 )1(-= ??Z U I K 第四节 短路电流的效应和稳定度校验 一、短路电流的电动效应和动稳定度 动稳定度校验 一般电器: )3(max ) 3(max sh sh I I i i ≥≥

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

短路电流及其计算

短路电流及其计算 第一节短路电流概述 本节将了解短路的原因及危害,掌握短路的种类,并知道短路电流计算的基本方法。 一、短路的概念 短路时至三相电力供电系统中,相与相或相与地的导体之间非正常连接。 在电力系统设计和运行中,不仅要考虑正常工作状态,而且还必须考虑到发生事故障碍时所照成的不正常工作状态。实际运行表明,在三相供电系统中,破坏供电系统正常运新的故障最为常见而且危害最大的就是各种短路。当发生短路时,电源电压被短接,短路回路阻抗很小,于是在回路中流通很大的短路电流。 对中性点不接地的系统又相遇相之间的短路;对于中性点接地的系统又相遇相之间的短路,一项于几项与大地相连接以及三相四线制系统中相与零项的连接等,其中两相接地的短路实际上是两相短路。常见的短路形式如图3—1所示 2.短路的基本种类 在三相供电系统中,短路的类型主要有: (1)三相电路 三相短路是指供电系统中,三相在同一点发生短接。用“d(3)”表示,如图3-1a所示。(2)两相电路 两相短路是指三相供电系统中,任意两项在同一地点发生短接。用“d(2)”表示,如图3-1b 所示。 (3)单相电路 单相短路是指在中性点直接接地的电力系统中,任一项与地发生短接。用“d(1)”表示,如图3-1c所示。 (4)两相接地电路 两相接地的短路是指在中性点直接接地的电力系统中,不同的两项同时接地所形成的两相短路,用“d(1-1)”表示,如图3-1d所示。 按短路电流的对称性来说,发生三相短路时,三项阻抗相等,系统中的各处电压和电流仍保持对称,属于对称性短路,其他形式的短路三相阻抗都不相等,三相电压和电流不对称,均为不对称短路。

短路电流的危害及限制措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.短路电流的危害及限制措 施正式版

短路电流的危害及限制措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路

时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。 短路电流的危害 短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热

短路电流计算的基本步骤和注意事项教学内容

短路电流计算的基本步骤和注意事项

短路电流计算方法的基本步骤和注意事项 一.概述 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件. 二.一般计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多. 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗. 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻. 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流. 三、短路电流计算步骤 1.确定计算条件,画计算电路图

1)计算条件:系统运行方式,短路地点、短路类型和短路后采取的措施。 2运行方式:系统中投入的发电、输电、变电、用电设备的多少以及它们之 间的连接情况。 3)根据计算目的确定系统运行方式,画相应的计算电路图。 4)选电气设备:选择正常运行方式画计算图; 5)短路点取使被选择设备通过的短路电流最大的点。 6)继电保护整定:比较不同运行方式,取最严重的。 2.画等值电路,计算参数; 分别画各段路点对应的等值电路。 标号与计算图中的应一致。 3.网络化简,分别求出短路点至各等值电源点之间的总电抗。 ⑴. 星—角变换公式 角—星变换公式 23131231121X X X X X X n ++?=n n n n n X X X X X X 3212112?++= 23131232122X X X X X X n ++?= n n n n n X X X X X X 1323223?++= 23131231323X X X X X X n ++?=n n n n n X X X X X X 2131331?++= ⑵.等值电源归算 (1) 同类型且至短路点的电气距离大致相等的电源可归并; (2) 至短路点距离较远的同类型或不同类型的电源可归并; 直接连于短路点上的同类型发电机可归并; 四、注意事项

3短路电流及其计算课后习题解析(精选、)

习题和思考题 3-1.什么叫短路?短路的类型有哪些?造成短路故障的原因有哪些?短路有哪些危害?短路电流计算的目的是什么? 答:所谓短路,就是指供电系统中不等电位的导体在电气上被短接,如相与相之间、相与地之间的短接等。其特征就是短接前后两点的电位差会发生显著的变化。 在三相供电系统中可能发生的主要短路类型有三相短路、两相短路、两相接地短路及单相接地短路。三相短路称为对称短路,其余均称为不对称短路。在供电系统实际运行中,发生单相接地短路的几率最大,发生三相对称短路的几率最小,但通常三相短路的短路电流最大,危害也最严重,所以短路电流计算的重点是三相短路电流计算。 供电系统发生短路的原因有: (1)电力系统中电气设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备长期运行绝缘自然老化、设备缺陷、设计安装有误、操作过电压以及绝缘受到机械损伤等。 (2)运行人员不遵守操作规程发生的误操作。如带负荷拉、合隔离开关(内部仅有简单的灭弧装置或不含灭弧装置),检修后忘拆除地线合闸等; (3)自然灾害。如雷电过电压击穿设备绝缘,大风、冰雪、地震造成线路倒杆以及鸟兽跨越在裸导体上引起短路等。 发生短路故障时,由于短路回路中的阻抗大大减小,短路电流与正常工作电流相比增加很大(通常是正常工作电流的十几倍到几十倍)。同时,系统电压降低,离短路点越近电压降低越大,三相短路时,短路点的电压可能降低到零。因此,短路将会造成严重危害。 (1)短路产生很大的热量,造成导体温度升高,将绝缘损坏; (2)短路产生巨大的电动力,使电气设备受到变形或机械损坏; (3)短路使系统电压严重降低,电器设备正常工作受到破坏,例如,异步电动机的转矩与外施电压的平方成正比,当电压降低时,其转矩降低使转速减慢,造成电动机过热而烧坏; (4)短路造成停电,给国民经济带来损失,给人民生活带来不便; (5)严重的短路影响电力系统运行稳定性,使并列的同步发电机失步,造成系统解列,甚至崩溃; (6)单相对地短路时,电流产生较强的不平衡磁场,对附近通信线路和弱电设备产生严重电磁干扰,影响其正常工作。 计算短路电流的目的是: (1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

短路电流的危害及限制措施

短路电流的危害及限制 措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

短路电流的危害及限制措施电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。 短路电流的危害 短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。短路也同时引起系统电压大幅度降低,特别

是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。网络电压的降低,使供电设备的正常工作受到损坏,也可能导致工厂的产品报废或设备损坏,如电动机过热受损等。电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。 短路电流的限制措施 为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。为此,可采用快速动作的继电保护和断路器,以及发电机装设自动调节励磁装置等。此外,还应考虑采用限制短路电流的措施,如合理选择电气主接线的形式或运行方式,以增大系统阻抗,减少短路电流值;加装限电流电抗器;采用分裂低压绕阻变压器等。主要措施如下: 一是做好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。

短路电流大小的限制方法

限制短路电流的方法 2008-06-14 20:18 目前在电力系统中,用得较多的限制短路电流的方法有以下几种:选择发电厂和电网的接线方式;采用分裂绕组变压器和分段电抗器;采用线路电抗器;采用微机保护及综合自动化装置等。 1 选择发电厂和电网的接线方式 通过选择发电厂和电网的电气主接线,可以达到限制短路电流的目的。 在发电厂内,可对部分机组采用长度为40km及以上的专用线路,并将这种发电机—变压器—线路单元连接到距其最近的枢纽变电所的母线上,这样可避免发电厂母线上容量过份集中,从而达到降低发电厂母线处短路电流的目的。 为了限制大电流接地系统的单相接地短路电流,可采用部分变压器中性点不接地的运行方式,还可采用星形—星形接线的同容量普通变压器来代替系统枢纽点的联络自耦变压器。 在降压变电所内,为了限制中压和低压配电装置中的短路电流,可采用变压器低压侧分列运行方式;在输电线路中,也可采用分列运行的方式。在这两种情况下,由于阻抗大,可以达到限制短路电流的目的,不过为了提高供电可靠性,应该加装备用电源自动投入装置。 对环形供电网,可将电网解列运行。电网解列可分为经常解列和事故自动解列两种。电网经常解列是将机组和线路分配在不同的母线系统或母线分段上,并将母线联络断路器或母线分段断路器断开运行,这样可显著减小短路电流。电网事故自动解列,是指在正常情况下发电厂的母线联络断路器或分段断路器闭合运行,当发生短路时由自动装置将母线(或分段) 断路器断开,从而达到限制短路电流的目的。 2 采用分裂绕组变压器和分段电抗器 在大容量发电厂中为限制短路电流可采用低压侧带分裂绕组的变压器,在水电厂扩大单元机组上也可采用分裂绕组变压器。为了限制6~10 kV配电装置中的短路电流,可以在母线上装设分段电抗器。分段电抗器只能限制发电机回路、变压器回路、母线上发生短路时的短路电流,当在配电网络中发生短路时则主要由线路电抗器来限制短路电流。 3 采用线路电抗器 线路电抗器主要用于发电厂向电缆电网供电的6~10kV配电装置中,其作用是限制短路电流,使电缆网络在短路情况下免于过热,减少所需要的开断容量。 4 采用微机保护及综合自动化装置 从短路电流分析可知,发生短路故障后约0.01s时间出现最大短路冲击电流,采用微机保护仅需0.005s就能断开故障回路,使导体和设备避免承受最大短路电流的冲击,从而达到限制短路电流的目的。

2016年电气专业培训复习题

电气专业培训复习题 一、填空题(每题2分,共24分) 1.电力系统中性点运行方式有三种,分别是中性点直接接地运行方式、中性点不接地(绝缘)运行方式、中性点经消弧线圈接地运行方式。 2. 电弧是气体游离导电现象,形成过程是介质向等离子体态的转化过程。 3.母线是汇集和分配电流的裸导体,类型有_软_母线和硬母线之分。 4.高压断路器是高压电器中最主要的部分,在空载、正常负荷和短路状态下都应可靠动作。 5.隔离开关的作用主要有隔离电源、倒闸操作和投、切小电流电路。 6.触电是指人体的不同部位受到电压的作用,在人体内产生电流,造成的伤害甚至危及生命安全。 7.电流互感器正常运行时二次侧不允许开路。电压互感器正常运行时二次侧不允许短路 8. 限制短路电流的一般采用的电气设备有继电保护、断路器 9. 考虑发热对电气设备的影响,我国规定电气设备正常工作允许的最高温度为。 10. 电弧是一种游离的气体放电现象。 11. 熔断器是最简单的保护电器,它用来保护电气设备免受过载和短路电流的损害。 12. 真空断路器是以“真空”作为灭弧和绝缘介质的断路器。 13. 隔离开关的用途:隔离电源、倒闸操作和投、切小电流电路。 14. 断路器的种类很多,按灭弧介质可分为油断路器、真空断路器、 SF6断路器、磁吹断路器。 15. 电力工业中常以电压、频率和波形来衡量一个系统的供电电能质量,电能质量要求供电电压的波形为正玄波。 16.电力系统的中性点是指三相系统作星形连接的发电机和变压器的中性点。常见的三种中性点运行方式是:中性点不接地、中性点经消弧线圈接地、_中性点直接接地。 17.电流互感器一次绕组串联接于一次电路中,二次侧不允许开路运行。 18. 信号系统中,红灯亮表示断路器在合闸位置,绿灯亮表示分闸位置。

短路电流计算方法

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作? 为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1?假设系统有无限大的容量?用户处短路后,系统母线电压能维持不变?即计算阻抗比系统阻抗要大得多。 具体规定:对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。 2. 在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1. 主要参数 Sd三相短路容量(MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA)简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA)简称冲击电流峰值校核动稳定 x电抗(Q) 其中系统短路容量Sd和计算点电抗x是关键.

限制短路电流的方法

限制短路电流的方法 1.选择适当的主接线形式和运行方式 (1)对具有大容量机组的发电厂中采用单元接线; (2)在降压变电所中,可采用变压器低压侧分列运行方式,即所谓母线硬分段接线; (3)对具有双回路电路,在负荷允许条件下可按单回路运行; (4)对环形供电网络,可在环网中穿越功率最小处开环运行。 2.加装限流电抗器 (1)加装普通电抗器 1)出线端加装出线电抗器用来限制电缆馈线支路短路电流。它只能在电抗器后面临近点短路时才有限制短路电流的作用。通常在架空线路上不装设电抗器。 线路电抗器不仅限制短路电流,而且能在母线上能维持较高的剩余残压(大于65%UN)。通常线路电抗器的百分电流值为3%~6%。 2)母线电抗器装设在母线分段的地方,其目的是让发电机出口断路器、变压器低压侧断路器、母联断路器和分段断路器等都能按各回路额定电流来选择,不因短路电流过大而升级。 一般设计主接线时,为了限制发电机电压母线短路电流,应首先考虑在分段断路器回路或联络断路器回路中以及主变压器回路中安装电抗器,只有经过计算认为限制效果不够时,才考虑装设线路电抗器。一般当电厂和系统容量较大时,两种电抗器都需要安装。为了运行操作方便和减小母线各段之间电压差,母线分段不宜超过三段,母线电抗器的电抗百分值应取8%~12%。 (2)分裂电抗器 分裂电抗器在结构上与普通电抗器相似,只是线圈中心有一个抽头3,中间抽头一般用来连接电源、两个分支(又称两臂)和用来连接大致相等的两组负荷。 当分裂电抗器的电抗值与普通电抗器的电抗值相同时,两者在短路时的限流作用一样,但正常运行时电压损失只有普通电抗器的一半,而且比普通电抗器多供一倍的出线,减少了电抗器的数目。 运行中当两个分支负荷不等或者负荷变化过大时,将引起两臂电压偏差,造成电压波动,甚至可能出现过电压。所以一般分裂电抗器的电抗百分值取8%~12%。 分裂电抗器在主接线中,可以装设在电缆馈线上,每个臂可以接一回出线或几回出线。分裂电抗器串接在发电机回路中,不仅起着出线电抗器的作用,而且也起着母线电抗器的作用。 3.采用分裂低压绕组变压器 当发电机容量较大时,采用分裂低压绕组变压器组成扩大单元接线。分裂绕组变压器在正常工作和低压侧短路时其电抗值不相同,从而起到限制短路电流效果。 低压分裂绕组正常运行时的电抗值,只相当两分裂绕组短路电抗的1/4。当一

短路电流的危害及限制措施(通用版)

短路电流的危害及限制措施 (通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0106

短路电流的危害及限制措施(通用版) 电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短

路电流可高达数万安培。 短路电流的危害 短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。短路也同时引起系统电压大幅度降低,特别是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。网络电压的降低,使供电设备的正常工作受到损坏,也可能导致工厂的产品报废或设备损坏,如电动机过热受损等。电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。 短路电流的限制措施

110KV变电站负荷及短路电流计算及电气设备的选择及校验

第一章短路电流计算 1、短路计算的目的、规定与步骤 1.1短路电流计算的目的 在发电厂和变电站的电气设计中,短路电流计算是其中的一个重要环节。其计算的目的主要有以下几方面: 在选择电气主接线时,为了比较各种接线方案,或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算。 在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。例如:计算某一时刻的短路电流有效值,用以校验开关设备的开断能力和确定电抗器的电抗值;计算短路后较长时间短路电流有效值,用以校验设备的热稳定;计算短路电流冲击值,用以校验设备动稳定。 在设计屋外高压配电装置时,需按短路条件校验软导线的相间和相相对地的安全距离。 1.2短路计算的一般规定 (1)计算的基本情况 1)电力系统中所有电源均在额定负载下运行。 2)所有同步电机都具有自动调整励磁装置(包括强行励磁)。 3)短路发生在短路电流为最大值时的瞬间。 4)所有电源的电动势相位角相等。 5)应考虑对短路电流值有影响的所有元件,但不考虑短路点的电弧电阻。对异步电动机的作用,仅在确定短路电流冲击值和最大全电流有效值时才予以考虑。

(2)接线方式 计算短路电流时所用的接线方式,应是可能发生最大短路电流的正常接线方式(即最大运行方式),不能用仅在切换过程中可能并列运行的接线方式。 1.3 计算步骤 (1)画等值网络图。 1)首先去掉系统中的所有分支、线路电容、各元件的电阻。 2)选取基准容量d S 和基准电压c U (一般取各级电压的1.05倍)。 3)将各元件的电抗换算为同一基准值的标幺值的标幺电抗。 4)绘制等值网络图,并将各元件电抗统一编号。 (2)选择计算短路点。 (3)化简等值网络:为计算不同短路点的短路值,需将等值网络分别化简为以短路点为中心的辐射形等值网络,并求出各电源与短路点之间的总电抗的标幺值*X ∑。 (4)求计算无限大容量系统三相短路电流周期分量有效值的标幺值(3)*k I 。 (5)计算三相短路电流周期分量有效值(3)k I 和三相短路容量(3)k S 。 2、参数计算及短路点的确定 基准值的选取:100d S MVA = 2.1变压器参数的计算 (1)主变压器参数计算 由表查明可知:12%U =10.5 13%U =18 23%U =6.5 MVA S N 75=

限制短路电流的方法

行业资料:________ 限制短路电流的方法 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共9 页

限制短路电流的方法 目前在电力系统中,用得较多的限制短路电流的方法有以下几种:选择发电厂和电网的接线方式;采用分裂绕组变压器和分段电抗器;采用线路电抗器;采用微机保护及综合自动化装置等。 1选择发电厂和电网的接线方式 通过选择发电厂和电网的电气主接线,可以达到限制短路电流的目的。 在发电厂内,可对部分机组采用长度为40km及以上的专用线路,并将这种发电机—变压器—线路单元连接到距其最近的枢纽变电所的 母线上,这样可避免发电厂母线上容量过份集中,从而达到降低发电厂母线处短路电流的目的。 为了限制大电流接地系统的单相接地短路电流,可采用部分变压器中性点不接地的运行方式,还可采用星形—星形接线的同容量普通变压器来代替系统枢纽点的联络自耦变压器。 在降压变电所内,为了限制中压和低压配电装置中的短路电流,可采用变压器低压侧分列运行方式;在输电线路中,也可采用分列运行的方式。在这两种情况下,由于阻抗大,可以达到限制短路电流的目的,不过为了提高供电可靠性,应该加装备用电源自动投入装置。 对环形供电网,可将电网解列运行。电网解列可分为经常解列和事故自动解列两种。电网经常解列是将机组和线路分配在不同的母线系统或母线分段上,并将母线联络断路器或母线分段断路器断开运行,这样可显著减小短路电流。电网事故自动解列,是指在正常情况下发电厂的母线联络断路器或分段断路器闭合运行,当发生短路时由自动装置将母 第 2 页共 9 页

电力系统短路电流的限制措施

电力系统短路电流的限制措施 电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。为此,可采用快速动作的继电保护和断路器,以及发电机装设自动调节励磁装置等。此外,还应考虑采用限制短路电流的措施,如合理选择电气主接线的形式或运行方式,以增大系统阻抗,减少短路电流值;加装限电流电

抗器;采用分裂低压绕阻变压器等。主要措施如下: 一是做好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。 二是正确选择继电保护的整定值和熔体的额定电流,采用速断保护装置,以便发生短路时,能快速切断短路电流,减少短路电流持续时间,减少短路所造成的损失。 三是在变电站安装避雷针,在变压器附近和线路上安装避雷器,减少雷击损害。 四是保证架空线路施工质量,加强线路维护,始终保持线路弧垂一致并符合规定。 五是带电安装和检修电气设备,注意力要集中,防止误接线,误操作,在带电部位距离较近的部位工作,要采取防止短路的措施。 六是加强管理,防止小动物进入配电室,爬上电气设备。 七是及时清除导电粉尘,防止导电粉尘进入电气设备。 八是在电缆埋设处设置标记,有人在附近挖掘施工,要派专人看护,并向施工人员说明电缆敷设位置,以防电缆被破坏引发短路。 九是电力系统的运行、维护人员应认真学习规程,严格遵守规章制度,正确操作电气设备,禁止带负荷拉刀闸、带电合接地刀闸。线路施工,维护人员工作完毕,应立即拆除接地线。要经常对线路、设备进行巡视检查,及时发现缺陷,迅速进行检修。

短路电流的危害及限制措施

短路电流的危害及限制措施 电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。 短路电流的危害 短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。短路也同时引起系统电压大幅度降低,特别是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。网络电压的降低,使供电设备的

正常工作受到损坏,也可能导致工厂的产品报废或设备损坏,如电动机过热受损等。电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。 短路电流的限制措施 为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。为此,可采用快速动作的继电保护和断路器,以及发电机装设自动调节励磁装置等。此外,还应考虑采用限制短路电流的措施,如合理选择电气主接线的形式或运行方式,以增大系统阻抗,减少短路电流值;加装限电流电抗器;采用分裂低压绕阻变压器等。主要措施如下:一是做好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。 二是正确选择继电保护的整定值和熔体的额定电流,采用速断保护装置,以便发生短路时,能快速切断短路电流,减少短路电流持续时间,减少短路所造成的损失。 三是在变电站安装避雷针,在变压器附近和线路上安装避雷器,

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

相关主题
文本预览
相关文档 最新文档