第7章_频域图像增强处理
- 格式:ppt
- 大小:3.58 MB
- 文档页数:49
《 MATLAB 实践》课程设计题目:图像增强——频域增强法指导教师:王秋云姓名学号刘利刚200981010118二○○六年 6 月29 日目录1、设计目的 (2)2、题目分析 (2)3、总体设计 (3)4、具体设计 (4)4.1图像的读取和保存 (4)4.1.1利用“读入图像”按钮实现图片的读取 (4)4.1.2图像保存 (6)4.2 程序的还原与撤销 (7)4.3 图像的截取 (7)4.4 加入各种噪声,并通过几种滤波算法实现去噪。
(8)4.4.1 加入噪声 (8)4.5 滤除噪声 (11)4.6.1图像翻转 (15)4.6.2 图像旋转 (16)5、结果分析 (17)6、心得体会 (18)参考书目 (19)摘要:图像增强是指按特定的需要突出一幅图像中的某些信息,同时消弱或去除某些不需要的信息。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强的方法分为空域法和频域法两类,空域法主要是对图像中的各个像素点进行操作;而频域法是在图像的某个变换域内,对图像进行操作,修改变换后的系数,例如傅立叶变换,DCT变换等的系数,然后再进行反变换得到处理后的图像。
关键字:高斯噪声,巴特沃斯滤波,理想低通滤波,梯形低通滤波1、设计目的综合运用MATLAB工具箱实现图像处理的GUI程序设计,利用MATLAB图像处理工具箱,实现图像增强—频域增强。
2、题目分析利用matlab的GUI程序设计一个简单实用的图像处理程序,该程序应具备图像处理的常用功能,以满足用户的使用。
现设计程序有以下基本功能:1)图像的读取和保存。
2)设计图形用户界面,让用户能够对图像进行任意角度的翻转。
3)设计图形用户界面,让用户能够用鼠标截取图像感兴趣区域,并显示和保存该选择区域。
4)设计图形用户界面,让用户能够对图像添加任意参数的各种噪声,如椒盐噪声、高斯噪声、乘性噪声等。
5)设计图形用户界面,让用户能够对图像实现中值滤波、线性滤波、自适应滤波等操作。
频域图像增强一、前言1.1背景和实际意义人类传递信息的主要媒介是语言和图像。
俗话说:百闻不如一见;图像信息是十分重要的信息传递媒体和方式。
在实际应用中,由于很多场景条件的影响,图像的视觉效果很差,使图像的信息无法被正常读取和识别。
例如,在采集图像过程中由于光照环境或物体表面反光等原因造成图像光照不均,或是图像采集系统在采集过程中由于机械设备的缘故无法避免的加入采集噪声,或是图像显示设备的局限性造成图像显示层次感降低或颜色减少等等。
因此研究快速且有效地图像增强算法成为推动图像分析和图像理解领域发展的关键内容之一。
图像增强从处理的作用域出发可分为空间域和频域两大类。
其中,频域增强是将原空间的图像以某种形式转换到其他空间,然后利用该转换空间的特有性质进行图像处理,最后在转换回到原空间,得到处理后的图像,是一种间接增强的算法。
法国数学家傅里叶最大的贡献就是傅里叶级数和变换,它被广泛地应用为基础工具学习,最初人们只在热扩散领域内使用;20世纪50年代随着数字计算的出现和快速傅里叶变换的出现在信号领域产生了巨大变革。
这两个核心技术允许对人类本身的特殊信号和工业的重要信号(从医学监视器和扫描仪到现代电子通信),进行实际处理和有意义的解释】1【。
1.2已有的研究成果数字图像处理发展的历史不长,但已经足够引起人们的重视,图像处理技术始于20世纪60年代,由于当时图像存储成本高,设备造价高,因而应用面较窄。
1964年美国加州理工学院首次对徘徊者7号太空飞船发回的月球照片进行了处理得到了清晰的照片,这标志着图像处理技术开始得到实际应用。
70年代,出现了CT和卫星遥感图像,这对图像处理的发展起到了很好的促进作用。
80年代,微机已经能够承担起图像处理的任务,VLSI的出现更使得处理速度大大提高,极大地促进了图像处理系统的普及和应用。
90年代是图像处理技术实用化时期,图像处理的信息量大,对处理速度的要求极高。
图像增强作为图像处理的重要组成部分,促进了图像增强方法研究的不断深入。
5. 图像的频域增强及傅里叶变换傅立叶变换在图像处理中有非常非常的作用。
因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。
印象中,傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;傅立叶变换傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。
连续情况下要求原始信号在一个周期内满足绝对可积条件。
离散情况下,傅里叶变换一定存在。
冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。
棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。
傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。
当我们考虑光时,讨论它的光谱或频率谱。
同样,傅立叶变换使我们能通过频率成分来分析一个函数。
傅立叶变换有很多优良的性质。
比如线性,对称性(可以用在计算信号的傅里叶变换里面);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以,可以使整个频谱搬移w。
这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。
(图像处理里面这个是个重点)信号在频率域的表现在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。
数字图像处理(频域增强)数字图像处理图像频域增强⽅法的研究姓名:班级:学号:⽬录⼀.频域增强的原理⼆.频域增强的定义及步骤三.⾼通滤波四. MATLAB程序实现五.程序代码六.⼩结⼀.频域图像的原理在进⾏图像处理的过程中,获取原始图像后,⾸先需要对图像进⾏预处理,因为在获取图像的过程中,往往会发⽣图像失真,使所得图像与原图像有某种程度上的差别。
在许多情况下,⼈们难以确切了解引起图像降质的具体物理过程及其数学模型,但却能估计出使图像降质的⼀些可能原因,针对这些原因采取简单易⾏的⽅法,改善图像质量。
图像增强⼀般不能增加原图像信息,只能针对⼀些成像条件,把弱信号突出出来,使⼀些信息更容易分辨。
图像增强的⽅法分为频域法和空域法,空域法主要是对图像中的各像素点进⾏操作;⽽频域法是在图像的某个变换域内,修改变换后的系数,例如傅⽴叶变换、DCT 变换等的系数,对图像进⾏操作,然后再进⾏反变换得到处理后的图像。
MATLAB矩阵实验室(Matrix Laboratory)的简称,具有⽅便的数据可视化功能,可⽤于科学计算和⼯程绘图。
它不仅在⼀般数据可视化软件都具有的功能⽅⾯更加完善,⽽且对于⼀些其他软件所没有的功能(例如图形的光照处理、⾊度处理以及四维数据的表现等),MATLAB同样表现了出⾊的处理能⼒。
它具有功能丰富的⼯具箱,不但能够进⾏信号处理、语⾳处理、数值运算,⽽且能够完成各种图像处理功能。
本⽂利⽤MATLAB⼯具来研究图像频域增强技术。
图像增强是为了获得更好质量的图像,通过各种⽅法对图像进⾏处理,例如图像边缘检测、分割以及特征提取等技术。
图像增强的⽅法有频域处理法与空域处理法,本⽂主要研究了频域处理⽅法中的滤波技术。
从低通滤波、⾼通滤波、同态滤波三个⽅⾯⽐较了图像增强的效果。
⽂章⾸先分析了它们的原理,然后通过MATLAB软件分别⽤这三种⽅法对图像进⾏处理,处理后使图像的对⽐度得到了明显的改善,增强了图像的视觉效果。
空域和频域图像处理增强实验目的:1.熟悉Matlab处理图像的基本原理,并熟练地运用进行一些基本的图像操作;2.能够用Matlab来进行亮度变换,直方图处理以及一些简单的空间滤波;实验内容:去噪,灰度变换,直方图处理,空域和频域平滑锐化,同态滤波;结果分析:1.直方图处理:⑴显示原图直方图以及原图:代码:>> imread('hui.jpg');>> imshow(f);>> imhist(f);原图以及原图直方图为:⑵直方图均衡化:代码:>> f=imread('test2.jpg');>> n=imnoise(f);>> imwrite(n,'n.tif');>> [thr,sorh,keepapp] = ddencmp('den','wv',im2double(n));>> r=wdencmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp);>> r=wdencmp('gbl',im2double(n),'sym2',2,thr,sorh,keepapp);>> imwrite(r,'r.tif');>> imshow(f);现在的图片以及直方图为:结论:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过这种方法,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。