运筹学 单纯形法的迭代原理讲解

  • 格式:doc
  • 大小:10.88 KB
  • 文档页数:2

下载文档原格式

  / 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学单纯形法的迭代原理讲解

单纯形法是一种用于解决线性规划问题的常用方法,其基本思想是通过迭代的方式逐步接近最优解。下面是单纯形法的迭代原理的讲解:

1. 初始解的选择:首先需要选择一个初始解,通常选择的方法是构造一个基可行解,即使所有的约束条件都满足的解。

2. 判断最优性:在每一次迭代中,需要判断当前解是否为最优解。首先,计算当前解对应的目标函数值。然后,检查是否存在非基变量的系数大于等于0(对于最小化问题)或者小于等于0(对于最大化问题),如果存在这样的非基变量,则当前解不是最优解;如果不存在这样的非基变量,则当前解是最优解。

3. 生成新解:如果当前解不是最优解,则需要生成新的解。首先,选择一个非基变量,使得目标函数的值可以通过增加(对于最小化问题)或减少(对于最大化问题)该变量的值来改善。然后,需要计算这个非基变量能够增加或减少的最大量,称为变量的进步长度。最后,通过调整基变量的值来生成新的解。

4. 更新目标函数和约束条件:在生成新解之后,需要更新目标函数和约束条件,以便于下一次迭代。具体操作包括计算新解对应的目标函数值,计算新解对应的约束条件的值,调整目标函数和约束条件的系数。

5. 重复迭代:根据判断最优性的结果,进行下一次迭代。如果当前解是最优解,

则算法结束;否则,继续进行下一次迭代。

通过不断重复这一迭代过程,直到找到最优解或者确定问题无解为止。单纯形法的迭代过程一般会在有限次数内结束,并且能够得到最优解。