《运筹学》_考试_试卷样卷及答案
- 格式:doc
- 大小:118.50 KB
- 文档页数:6
《运筹学》试题样卷(一)
一、判断题(共计10分,每小题1分,对的打√,错的打X )
1. 无孤立点的图一定是连通图。
2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。
3. 如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。
5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0
>j σ对应的变量
都可以被选作换入变量。
6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。
7. 度为0的点称为悬挂点。
8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。
二、建立下面问题的线性规划模型(8分)
某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。三种作物每年需要的人工及收入情况如下表所示:
试决定该农场的经营方案,使年净收入为最大。
三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为
(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)
(3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分)
3212max x x x Z +-=
s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0
五、求解下面运输问题。 (18分)
某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小?
六、灵敏度分析(共8分)
线性规划max z = 10x 1 + 6x 2 + 4x 3
s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0
的最优单纯形表如下:
(1)C 1在何范围内变化,最优计划不变?(4分) (2)b 1在什么范围内变化,最优基不变?(4分)
七、试建立一个动态规划模型。(共8分)
某工厂购进100台机器,准备生产 p1 , p2 两种产品。若生产产品 p1 ,每台机器每年可收入45万元,损坏率为65%;若生产产品 p2 ,每台机器 每年可收入35万元,损坏率为35%;估计三年后将有新 的机器出现,旧的机器将全部淘汰。试问每年应如何安排生产,使在三年内收入最多?
八、求解对策问题。(共10分)
某种子商店希望订购一批种子。据已往经验,种子的销售量可能为500,1000,1500或2000公斤。假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。 要求:
(1)建立损益矩阵;(3分)
(2)用悲观法决定该商店应订购的种子数。(2分)
(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。(5分)
运筹学样卷(一)答案
一、 判断题。共计10分,每小题1分
二、建线性规划模型。共计8分(酌情扣分)
解:用321,,x x x 分别表示大豆、玉米、麦子的种植公顷数;54,x x 分别表示奶牛和鸡的饲养数;76,x x 分别表示秋冬季和春夏季的劳动力(人日)数,则有
7654321252020900460041003000max x x x x x x x Z ++++++=
⎪⎪
⎪
⎪⎩⎪
⎪⎪
⎪
⎨⎧=≥≤≤≤+++++≤+++++≤+≤+++)7,,2,1(0)(1500)(200)(40003.0504017550)(35006.010*******)(150003400)(1005.154754321654321544
321 j x x x x x x x x x x x x x x x x x x x x x j 鸡舍限制牛栏限制劳动力限制劳动力限制资金限制土地限制
三、对偶问题。共计8分
解:(1)原线性规划问题:3211026max
x x x z +-=
⎪⎩⎪
⎨⎧
≥≤+-≤+0
,103522132122x x x x x x x ;……4分
(2)原问题的对偶规划问题为:
21105min y y w +=
⎪⎪⎩⎪⎪⎨
⎧
≥≥+-≥-≥0
,1022632121212y y y y y y y ; ……3分
(3)对偶规划问题的最优解为:
)2,4(=*Y T 。……1分
四、单纯形表求解线性规划。共计16分 解:引入松弛变量x 4、 x 5、 x 6,标准化得,
3212max x x x Z +-=
s. t. 3 x 1 + x 2 + x 3+ x 4
= 60
x 1- x 2 +2 x 3 + x 5 = 10 x 1+ x 2- x 3 + x 6 = 0
x 1, x 2 , x 3, x 4、 x 5、 x 6,≥0……………3分
建初始单纯形表,进行迭代运算: ……………………… …9分