平面直角坐标系小结
- 格式:doc
- 大小:23.00 KB
- 文档页数:5
《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
平面直角坐标系小结与复习教学设计沽源县平定堡镇寄宿制学校孙翠花教学设计思路:首先引导学生回顾在本章中学习的主要内容,再通过小组间的合作交流理顺知识的脉络和相互交的联系,最后由教师利用课件概括和归纳,对框图中的知识及相互间的联系进行必要的讲解和说明,通过练习来巩固这些知识点.教学目标:知识与技能:复习本章的知识要点,说出知识之间的关系.巩固所学的知识,并能用这些知识解决一些问题.通过对典型问题的分析,对本章所学的内容有进一步的认识.通过交流进行回顾与反思.进一步发展有条理地思考和表达能力.过程和方法:通过对图形变换与坐标变换的各种关系的梳理学会总结与反思,学习收集信息整理资料方法。
情感态度与价值观:进一步体会知识间的联系,通过本章知识回顾,感受平面直角坐标系这一数学模型源于现实又是解决现实问题的重要工具。
重点本章所有重点内容,难点对这些知识的综合运用。
教学方法:小组讨论法以小组为单位,在总结讨论基础上,让学生掌握本章内容。
课时:1课时教具:多媒体教学过程设计:(一)知识网络框架图(二)专题训练:专题一平面直角坐标系与点的坐标【例1】已知点A(-3+a,2a+9)在第二象限,且到x轴的距离为5,则点a的值是.学生回答总结方法1.一、三象限内点的横、纵坐标同号;2.二、四象限内点的横、纵坐标异号;3.平面内点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它横坐标的绝对值;应用1:(1)已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为.(2)已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是.归纳:平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.专题二坐标与平移【例2】如图把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为.分析:观察一个图形进行了怎样的平移,关键是抓住对应点进行怎样的平移.A(-3,-2) 横坐标加3纵坐标加2 A′(0,0)应用2:将点P(-3,y)向下平移3个单位,再向左平移2个单位得到点Q(x,-1),则xy=专题三平移作图及求坐标系中的几何图形面积例(1)写出三角形ABC的各个顶点的坐标A(0,2) B(4,3) C(3,0)(2)试求出三角形ABC的面积;(3)将三角形先向左平移5个单位长度,再向下平移4个单位长度,画出平移后的图形.归纳拓展:在坐标系中求图形的面积应从两方面去把握:(一)通常用割或补的方法将要求图形转让化为一些特殊的图形,去间接计算面积.应用3: 已知直角三角形ABC 的直角边BC =AC ,且B (3,2),C (3,-2),求点A 的坐标及△ABC 的面积.总结方法:需要将已知点的坐标转化为线段的长度,以满足求面积的需要..(四)小结: (五)巩固练习:(1).点P (x ,y )在第四象限,且|x |=3,|y |=2,则P 点的坐标 .(2)点P (a-1,a 2-9)在x 轴负半轴上,则P 点的坐标是 .(3)点A (2,3)到x 轴的距离为 ;点B (-4,0)到y 轴的距离为点C 到x 轴的距离1,到y 轴的距离为3,且在第三象限,则C 点坐标是 .(4)直角坐标系中,在y 轴上有一点P ,且OP =5,则P 的坐标为 . 平面直角坐标系 概念及有关知识坐标方法的应用有序数对(a ,b )坐标系画法(坐标、x轴和y 轴、象限) 平面上的点 点的坐标 表示地理位置(选、建、标、写)表示平移(横坐标右移加,左移减;纵坐标上移加下移减)(5)已知A(1,4),B(-4,0),C(2,0),则△ABC的面积是.(六)课堂感悟反思:本节课的学习,让你感受最深的是什么(七)布置作业:1.必做题: 教材P84第1、2、3 题2. 选做题: 教材P85第6、7 题。
平面直角坐标系知识点、题型总结1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点P 的坐标,都和惟一的一对有序实数对( a, b )一一对应;其中, a 为横坐标,b为纵坐标坐标;3、 x 轴上的点,纵坐标等于0 ;y轴上的点,横坐标等于0;Y坐标轴上的点不属于任何象限;b P(a,b)4、四个象限的点的坐标具有如下特征:1象限横坐标 x纵坐标 y-3-2 -10 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:( 1 )点 P(x, y)所在的象限横、纵坐标 x 、y的取值的正负性;(2 )点 P(x, y)所在的数轴横、纵坐标 x 、y中必有一数为零;y5、在平面直角坐标系中,已知点P ( a,b),则ab P(a, b)( 1)点 P 到x轴的距离为b;(2 )点 P 到y轴的距离为 a ;(3)点 P 到原点 O 的距离为 PO =a2 b 2b6、平行直线上的点的坐标特征:O a xa) 在与x轴平行的直线上,所有点的纵坐标相等;Y A B点 A 、B 的纵坐标都等于m ;mXb)在与 y 轴平行的直线上,所有点的横坐标相等;YC点 C、 D 的横坐标都等于n ;nD X7 、 对称点的坐标特征:a)点 P ( m, n) 关于x 轴的对称点为1 (,n ) , 即横坐标不变,纵坐标互为相反数;P mb)点 P (m,n) 关于 y 轴的对称点为 P 2 ( m, n) , 即纵坐标不变,横坐标互为相反数;c)点 P ( m, n) 关于原点的对称点为 P 3 ( m n, ) ,即横、纵坐标都互为相反数;yPyynPP 2nnPOmXmmmXOmXOnP 1 n关于 x 轴对称关于 y 轴对称P 3关于原点对称8 、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m, n )在第一、三象限的角平分线上,则 m n ,即横、纵坐标相等;b)若点 P ( m, n )在第二、四象限的角平分线上,则 mn ,即横、纵坐标互为相反数;yynPPnXm OXOm在第一、三象限的角平分线上 在第二、四象限的角平分线上9、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:? 建立坐标系,选择一个适当的参照点为原点,确定 x 轴、 y 轴的正方向;? 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;?在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
平面直角坐标系教学反思4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标系教学反思4篇平面直角坐标系教学反思1《平面直角坐标系》这节课属概念性教学,且与生活联系较大,因此在教学上比较容易,为更好地体现“以学为主、当堂达标”的教学思路,所以我的这节课是学生在结合预习学案提前预习基础知识的基础上的一节展示课。
平面直角坐标系小结与复习教学设计教学设计思路首先引导学生回顾在本章中学习的主要内容,再通过小组间的合作与交流,理顺知识的脉络和相互间的联系,最后由教师进行概括和归纳,对框图中的知识以及相互间的联系进行必要的讲解和说明。
通过练习来巩固这些知识点。
(课前布置学生写一篇关于直角坐标系的小论文)。
教学目标知识与技能复习本章学过的知识要点,说出各知识点之间的关系,巩固所学的知识,并能用这些知识解决一些问题。
通过对典型问题的分析,对本章所学的内容有进一步的认识。
学会通过交流进行回顾与反思。
进一步发展有条理地思考和表达的能力。
过程与方法通过对图形变换与坐标变化的各种关系的系统整理,学会总结与反思,学习搜集信息、整理资料的方法。
情感态度价值观进一步体会知识点之间的联系;通过对本章知识结构的回顾,进一步感受平面直角坐标系这一数学模型源于现实,又是解决现实问题的重要工具。
教学重点和难点重点是本章的所有重点内容。
难点是对这些知识点的综合运用。
教学方法小组讨论法以小组为单位,在总结讨论的基础上,使学生掌握本章的内容。
课时安排1课时教具学具准备多媒体教学过程设计一、知识结构二、总结与反思1.确定平面上物体位置的方法有多种,建立平面直角坐标系是常用的方法之一.平面直角坐标系是数形结合的重要桥梁,也是我们运用数学知识解决实际问题的重要工具.2.在平面内建立直角坐标系后,平面上的点就和它的坐标(有序实数对)建立了一一对应关系:每个点都有惟一的一个有序实数对(坐标)与它对应,每个有序实数对(坐标)都有惟一的一点与它对应.3.图形变换与坐标变化的关系,可以由图形上点的位置变化与其坐标变化的关系而得到.具体可从下面两方面把握:(1)在直角坐标系中,设点P的坐标是(x0,y0).①如果点P1与点P关于x轴对称,那么点P的坐标是(x0,-y0).②如果点P2与点P关于y轴对称,那么点P2的坐标是(-x0,y0).③如果点Q1的坐标是(x0+m,y0)(m>0),那么点Q1可由点P向右平移m个单位长度得到;如果点Q2的坐标是(x0-m,y0)(m>0),那么点Q2可由点P向左平移m个单位长度得到.④如果点R1的坐标是(x0,y0+n)(n>0),那么点R1可由点P向上平移n个单位长度得到;如果点R2的坐标是(x0,y0-n)(n>0),那么点R2可由点P向下平移n个单位长度得到.(2)在直角坐标系中,设点P的坐标是(x0,y0).①如果点Q的坐标是(mx0,y0)(m>0),那么点Q到y轴的距离等于点P到y轴距离的m 倍,且点Q与点P在与x轴平行的同一条直线上.②如果点P的坐标是(x0,ny0)(n>0),那么点R到x轴的距离等于点P到x轴距离的n 倍,且点R与点P在与y轴平行的同一条直线上.三、注意事项1.同一个点,在不同的直角坐标系中,其坐标一般也不相同.所以,我们说一个点的坐标,都是就某一个确定的坐标系来说的.2.对一个图形建立不同的坐标系,其顶点的坐标也不相同.要根据图形的特点建立恰当的坐标系,以使所求的点的坐标尽可能简洁.四、练习1.在直角坐标系中,标出下列各点的坐标:(1)点A在第二象限,它到y轴和x2.(2)点B在第三象限,它到y轴和x轴的距离分别为3和53.(3)点C在x轴上,位于原点的左侧,到原点的距离为4.(4)点D在y2.点A(3,5)关于x轴的对称点是B(3,m),m=________.(答案:-5)3.小亮在某市动物园的门票上看到这个动物园的平面示意图(如图).请你借助刻度尺、量角器解决如下问题.(1)填空:①百鸟园在大门的北偏东______度的方向上,到大门的图上距离约为______cm.②大象馆在大门的北偏东______度的方向上,到大门的图上距离约为______cm.③狮子馆在大门的南偏东______度的方向上,到大门的图上距离约为_____cm.(2)建立适当的直角坐标系,用坐标分别表示猴山、大象馆、狮子馆、百鸟园在图中的位置。
X平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0; 坐标轴上的点 不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1 )点P ( x, y )所在的象限 —►横、纵坐标X 、y 的取值的正负性;(2 )点P ( X, y )所在的数轴 —*■横、纵坐标X 、y 中必有一数为零;5、 在平面直角坐标系中,已知点p (a,b ),则(1) 点P 到X 轴的距离为b ;( 2 )点P 到y 轴的距离为(3) 点P 到原点o 的距离为PO = .a 2 b 26、 平行直线上的点的坐标特征:a )在与x 轴平行的直线上,所有点的纵坐标相等;b )在与y 轴平行的直线上,所有点的横坐标相等;d bJ_____ P(a,b) 1____________ 1-3 -2 -1 0 -1-2 -31a X点A 、B 的纵坐标都等于m ;象限 横坐标X 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限负 负 第四象限正负b YC点C、D的横坐标都等于n ;,nD 'XX7、对称点的坐标特征:8、两条坐标轴夹角平分线上的点的坐标的特征:a)若点P ( m,n )在第一、三象限的角平分线上,则 b)若点P ( m,n )在第二、四象限的角平分线上,贝Um基本练习:练习 仁在平面直角坐标系中,已知点 P ( m 5,m2 )在x 轴上,贝U P 点坐标为 _________2练习2 :在平面直角坐标系中,点P ( m 2, 4 ) 一定在 _____________ 象限;2练习3 :已知点P ( a 1, a 9)在x 轴的负半轴上,则 P 点坐标为___________________ ;练习4 :已知X 轴上一点A (3 , 0) , y 轴上一点B ( 0 , b ),且AB=5,则b 的值为 ______________ ; 练习5 :点M (2 , - 3)关于x 轴的对称点N 的坐标为 _______________ ;关于y 轴的对称点P的坐标为 ________ ;关于原点的对称点 Q 的坐标为 ___________ 。
平面直角坐标系教学反思〔精选6篇〕平面直角坐标系教学反思〔精选6篇〕平面直角坐标系教学反思1《平面直角坐标系》这节课在教学上比拟容易,课程中的概念性知识比拟的多,比拟容易安排,所以合理安排好各个知识点以及衔接,就成为上好课的关键。
本课灵敏运用了多种教学方法,既有老师的讲解,又有讨论,在老师指导下的自学,组织游戏活动等。
调动了学生学习的积极性,充分发挥了学生的主体作用。
通过游戏活动让学生再次感知点和数的对应关系,然后上升到理性,从而打破了难点,效果应该很好,表达了素质教育要求。
课堂拓展了学生学习空间,给学生充分发表意见的自由度。
本课设计了小结,不仅归纳了知识点,还注重了数学思想方法在课堂中的浸透。
拓宽了学生的知识面,培养了学生的发散思维才能和创新才能。
并向学生展示了人类认识世界是由特殊到一般、具象到抽象、一维到多维等认识规律,使学生站在一个新的高度来认识所学内容,培养了学生探求、归纳、总结等认识客观世界的认知方法。
本课采用了创设情境——提出问题——解决问题——应用拓展的教学过程。
这样的学程使学生不仅获得了书本上的知识,而且展示了知识形成过程及对知识理解、以及各个知识间的互相联络,帮助学生形成了知识体系,完善了认知构造,拓展知识应用。
这样教学不仅使学生理解了学习内容,而且使学生掌握了学习的方法,更好地利用所学知识解决问题。
在整个教学教程中,我始终结合教材内容,由课题引入到问题解决至始至终向学生浸透数学应用意识,培养了学生应用数学的才能,提醒了数学于生活,又高于生活,数学与人们日常生活息息相关得了书本上的知识,而且展示了知识形成过程及对知识理解、以及各个知识间的互相联络,帮助学生形成了知识体系,完善了认知构造,拓展知识应用。
这样教学不仅使学生理解了学习内容,而且使学生掌握了学习的方法,更好地利用所学知识解决问题。
这节课唯一缺乏的可能就是教学内容太简单了,之前备课时怕内容多学生无法完全掌握,为了保险起见,还是少安排一些内容让学生可以掌握得更好,但是我错了,学生对这节课的反响很好,使得上课的进度比我预设的要快,至于最后还有一些剩余的时间。
人教版七年级下册第七章平面直角坐标系提高训练七下平面直角坐标系有关提高训练(含答案)解决平面直角坐标系有关综合题,第一,需要仔细审题,剖析、发掘题目的隐含条件,翻译并转变为显性条件;第二,要擅长将复杂问题分解为基本问题,逐一击破;第三,要善于联想和转变,将以上获得的显性条件进行适合的组合,进一步获得新的结论,特别要注意的是,适合地使用剖析综合法及方程和函数的思想、转变思想、数形联合思想、分类与整合思想等数学思想方法,能更有效地解决问题。
1、在平面直角坐标系中,0A=7,OC=18,现将点 C向上平移7 个单位长度再向左平移 4 个单位长度,获得对应点B。
(1)求点 B的坐标(2)若点 P从点 C 以 2 个单位长度秒的速度沿 C0方向挪动,同时点 Q从点 0 以 1 个单位长度秒的速度沿 0A 方向挪动,设挪动的时间为 t 秒(0<t<7) ,四边形 0PBA与△ 0QB的面积分别记为 S四边形 OPBA 与 S OQB ,能否存在时间t, 使S四边形OPBA2S OQB ,若存在,求出 t 的范围,若不存在,试说明原因。
(3)在 (2) 的条件下,S四边形OPBQ的值能否不变,若不变,求出其值,若变化,求出其范围2、如图,在平面直角坐标新中,AB//CD//x轴,BC//DE//y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P 从点 A 出发,沿 A B C 路线运动到点 C 停止;动点Q 从点O 出发,沿O E D C 路线运动到点C停止;若P、Q两点同时出发,且点P的运动速度为1cm/s,点 Q的运动速度为 2cm/s.(1)、直接写出 B、C、 D 三个点的坐标;(2) 、当 P、 Q两点出发11s时,试求PQC的面积;2(3) 、设两点运动的时间为t s,用t的式子表示运动过程中OPQ的面积 S .3、如图 ,在平面直角坐标系中,A(a,0)为 x 轴正半轴上一点,B(0,b)为 y 轴正半轴上一点,且a、 b 知足a b2 a b830(1)求S△ AOB(2)点 P(m,n)为直线 L 上一动点,知足m-2n+2=0.①若 P 点正幸亏AB 上,求此时P 点坐标;②若 S PAB S A0B ,试求m的取值范围.L4、如图,已知点 A m 3, m 1 在x轴上,将点 A右移5个单位,: 上移3个单位获得点B;(1) ,则 m=;B 点坐标() ;(2) 连结 AB 交 y 轴于点 C,点 D 是 X 轴上一点,DAB 的面积为 9,求 D 点坐标;AC(3)求AB5、如图,在平面直角坐标系中,A4, 6 , B 1, 2 , 线段 AB交y轴于点 P.(1) ,点 A 到 x 轴的距离是;点B到x轴的距离是;p点坐标是;(2),延伸 AB 交 x 轴于点 M,求点 M 的坐标;(3),在座标轴上能否存在一点T,使ABT的面积等于6?若存在,求T点坐标;若不存在,说明原因。
人教版七年级下册数学单元同步练习卷:第七章平面直角坐标系一、填空1.如,在平面直角坐系中: A(1 , 1) ,B( - 1, 1) , C( - 1,- 2) , D(1,- 2) ,把一条 2 018 个位度且没有性的 ( 的粗忽视不 ) 的一端固定在点 A ,并按A→B→C→D→A→⋯的律在四形ABCD的上,另一端所在地点的点的坐是(1,- 1).2.平面直角坐系内有一点P(x , y) ,若点 P 在横上,y= 0;若点 P 在上,x =0;若点 P 坐原点,x= 0 且 y= 0.3.如是某学校的表示,若合楼在点( -2,- 1) ,食堂在点 (1 ,2) ,教课楼在点( -4,1) .4.如,小在小明的北偏 60°方向的 500 m,小明在小的南偏西 60°方向的 500m. ( 用方向和距离描绘小明相于小的地点)5. 将点 A(1 ,1) 先向左平移 2 个位度,再向下平移 3 个位度获得点B,点 B的坐是 ( -1,- 2) .6.如,点P 在平面直角坐系中按中箭所示的方向运,第 1 次从原点运到点(1 ,1) ,第 2 次接着运到点(2 ,0) ,第 3 次接着运到点 (3 ,2) ,⋯,按的运律, 2 019 次运后,点 P 的坐 (2__019 , 2) .二、7.用 7 和 8 成一个有序数,能够写成( D )A.(7 ,8)B. (8,7)C.7,8 或 8,7D. (7 ,8) 或 (8 ,7) 8.如,一个方正沿着箭所指的方向前, A 的地点三列四行,表示(3 , 4) ,那么C的地点是(D)A.(4 ,5)B. (5,4)C.(4 ,2)D.(4 ,3) 9.平面直角坐系中,点(1 ,- 2) 在 ( D )A.第一象限B.第二象限C.第三象限D.第四象限10.如是某游城的平面表示,用(8 ,2) 表示进口的地点,用(6 ,- 1) 表示球幕影的地点,那么坐原点表示的地点是( D )A.太空秋千B.梦幻C.海底世界D.激光11.在平面直角坐系中,将点 P(3,- 2) 向下平移 4 个位度,获得点 P 的坐 ( B ) A.( -1,- 2)B. (3,- 6)C.(7 ,- 2)D.(3 ,- 2)12.点 N(- 1, 3) 能够看作由点M(- 1,- 1)( A )A.向上平移 4 个位度所获得的B.向左平移4个位度所获得的C.向下平移 4 个位度所获得的D.向右平移4个位度所获得的13. 如,在平面直角坐系中,有若干个横坐分整数的点,其序 (1 ,0) ,(2 ,0) , (2 ,1) ,(1 ,1) ,(1 ,2) ,(2 ,2) ,⋯,依据个律,第 2 018 个点的坐 ( C ) A. (45 , 9)B. (45 , 11)C. (45 , 7)D. (46 , 0)14.王宁在班里的座位号为(2 ,3) ,那么该同学所坐的地点是( D )A.第 2 排第 3 列B.第 3 排第 2 列C.第5排第 5列D.不好确立15.在平面直角坐标系中,点(0 ,- 10) 在 ( D )A. x轴的正半轴上B. x 轴的负半轴上C. y轴的正半轴上D. y轴的负半轴上三、解答题16.五子连珠棋和象棋、围棋同样,深受广大棋友的喜欢,其规则是:在15×15的正方形棋盘中,由黑方先行,轮番弈子,在任一方向上连成五子者为胜.如图是两个五子棋喜好者甲和乙的棋战图 ( 甲执黑子先行,乙执白子后走 ) ,察看棋盘思虑:若 A 点的地点记作 (8 ,4) ,甲一定在哪个地点上落子,才不会让乙在短时间内获胜?为何?解:甲一定在 (1 ,7) 或 (5 ,3) 处落子.由于若甲不第一截断以上两处之一,而让乙在(1 ,7)或(5 , 3) 处落子,则无论截断哪处,乙总有一处落子可连成五子,乙必胜无疑.17.在以下图的平面直角坐标系中,描出以下各点,并将各点用线段挨次连结起来.(0,- 4) ,(3 ,- 5),(6 ,0) ,(0 ,- 1),( -6,0) ,( -3,- 5) ,(0 ,- 4).解:如图.18.如图, A(- 1, 0) ,C(1 , 4) ,点 B 在 x 轴上,且AB= 3.(1)求点 B的坐标;(2)求三角形 ABC的面积;(3) 在 y 轴上能否存在点P,使以 A, B, P 三点为极点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明原因.解: (1) 当点 B 在点 A 的右侧时,点 B 的坐标为 (2 , 0) ;当点 B 在点 A 的左侧时,点 B 的坐标为 ( - 4, 0) .因此点 B 的坐标为 (2,0) 或( -4, 0) .1(2)三角形 ABC的面积为×3×4= 6. 2(3)设点 P到 x 轴的距离为 h,则1202×3h= 10,解得 h=3 .20①当点 P 在 y 轴正半轴时,点 P 的坐标为 (0, 3);②当点 P 在 y 轴负半轴时,点20P 的坐标为 (0 ,- ) .3综上所述,点 P 的坐标为 (0 ,20) 或(0 ,-20) .3 319.如图是某动物园平面表示图的一部分 ( 图中小正方形的边长代表 100 米 ) ,请问:(1) 在大门东南方向有哪些景点?(2) 从大门向东走 300 米,再向北走 200 米,抵达哪个景点?(3) 以大门为坐标原点,向东方向为x 轴正方向,向北方向为y 轴正方向成立平面直角坐标系,写出蛇山、水族馆及大象馆的坐标.解: (1) 猴山,大象馆.(2) 蛇山.(3)如图,蛇山的坐标为 (300,200),水族馆的坐标为 (500,0),大象馆的坐标为 (300,-300) . 20. 如图,点 A , B 的坐标分别为 (1 , 0) , (0 , 2) ,若将线段 AB 平移到 A 1B 1,点 A 1, B 1的坐 标分别为 (2 , a) , (b , 3) ,试求 a 2- 2b 的值.解:∵ A(1, 0) , A 1(2 ,a) , B(0 , 2) , B 1(b , 3) ,∴平移方法为向右平移1 个单位长度,向上平移 1 个单位长度.∴ a = 0+ 1= 1, b = 0+ 1= 1.2 2∴a- 2b = 1 -2×1= 1-2=- 1.21.如图,三角形ABC的三个极点的坐标分别是A(4, 0) , B( -2, 0) , C(2,4) ,求三角形ABC的面积.人教版七年级下册数学第七章平面直角坐标系单元达标练习题一、选择题 (每题只有一个正确答案)1.假如7 年2 班记作,那么表示()A.7年 4 班B.4年7班C.4年8班D.8年4 班2.在以下所给出的坐标中,在第二象限的是()A. (2, 3)3.在平面直角坐标系中,点B(. 2, -3)M (-1,3),先向右平移C(. -2, -3)2 个单位,再向下平移D(. -2,3)4 个单位,获得的点的坐标为()A. (-3, -1)4.如图,已知点B(. -3, 7)C(. 1, -1)A,B 的坐标分别为(4, 0)、( 0,3),将线段 AB 平移到D(.1, 7)CD,若点 C 的坐标为( 6, 3),则点 D 的坐标为()A. (2, 6)B(. 2, 5)C(. 6, 2)D(.3, 6)5.以下图为某战斗潜藏仇敌防守工亭坐标地图的碎片,一号暗堡的坐标为(4, 2),四号暗堡的坐标为(-2, 4),由原有情报得悉:敌军指挥部的坐标为(0, 0),你以为敌军指挥部的地点大体()A. A处B. B处C. C处D. D处6.在平面直角坐标系xOy 中,线段 AB 的两个端点坐标分别为A(﹣ 1,﹣ 1),B( 1,2),平移线段 AB,获得线段A′B,′已知 A′的坐标为( 3,﹣ 1),则点 B′的坐标为()A. (4, 2)B(. 5, 2)C(. 6, 2)D(.5, 3)7.察看以下数对:( 1,1) , ( 1,2) , ( 2,1) , ( 1,3) , ( 2,2) , (3,1) , ( 1,4) , ( 2,3) ,(3,2) , ( 4,1) , ( 1,5) , ( 2,4) ...那么第 32 个数对是()A. (4, 4)B(. 4, 5)C(. 4, 6)D(.5, 4)8.若点 P( x,y)的坐标知足xy= 0( x≠y),则点 P 必在()A. 原点上B. x 轴上C. y 轴上D. x 轴上或 y 轴上(除原点)9.若点 P 是第二象限内的点,且点P到x轴的距离是 4 ,到 y 轴的距离是3,则点 P 的坐标是()A. (- 4,3)B.( 4,- 3)C.(- 3,4)D. (3,- 4)10.P 点横坐标是 -3,且到 x 轴的距离为5,则 P 点的坐标是 ( )A.( -3,5)或( -3,-5)B.( 5,-3)或( -5,-3)C.( -3,5)D. ( -3,-5)11.若点 P( a﹣ 2, a)在第二象限,则 a 的取值范围是()A. 0< a< 2B. ﹣ 2< a< 0C. a> 2D. a< 012.在如图的方格纸上,若用(-1, 1)表示 A 点,(0, 3)表示 B 点,那么 C 点的地点可表示为()A. (1, 2)B(. 2, 3)C(. 3, 2)D(.2, 1)二、填空题13.点 P(m-1 ,m+3)在平面直角坐系的y 上,P 点坐 ________.14.假如点 P 在第二象限内,点 P 到的距离是4,到的距离是 3,那么点 P 的坐________.15.如,把“ QQ”笑放在直角坐系中,已知左眼 A 的坐是,嘴唇C点的坐、,此“QQ”笑右眼 B 的坐 ________.16.如,在平面直角坐系中,从点P1( 1, 0),P2( 1, 1), P3(1 , 1), P4( 1,1), P5( 2, 1), P6( 2, 2),⋯挨次展下去,P2018的坐 ________.17.三角形 ABC 的三个点A( 1,2),B(- 1,- 2),C(- 2,3),将其平移到点A′(- 1,-2),使 A 与 A′重合, B、 C 两点的坐分 ________, ________.18.如 ,在直角坐系中,右的蝴蝶是由左的蝴蝶去此后获得的 ,左案中左右翅尖的坐分是 (- 4,2)、 (- `2, 2),右案中左翅尖的坐是 (3, 4),右案中右翅尖的坐是 ________.19.以下,五亭的地点是________,虹的地点是________,下棋亭的地点是________,碑亭的地点是 ________.20.以下图,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是________21.已知线段MN平行于x 轴,且MN的长度为 5 ,若M 的坐标为(2, -2),那么点N 的坐标是 ________;22.在平面直角坐标系中,假如一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点 P(,)在第四象限,则m 的值为 ________;三、解答题23.以以下图所示,从2 街 4 巷到 4 街 2 巷,走最短的路线,共有几种走法?24.以以下图所示, A 的地点为( 2,6) ,小明从 A 出发 ,经( 2,5)→( 3,5)→(4,5)→( 4,4)→(5,4)→( 6,4) ,小刚也从 A 出发 ,经( 3,6)→( 4,6)→( 4,7)→( 5,7)→( 6,7) ,则此时两人相距几个格 ?25.王林同学利用暑期观光了幸福村果树栽种基地如图,他出发沿的路线进行了参观,请你按他观光的次序写出他路上经过的地方,并用线段挨次连结他经过的地址.26.如图,已知火车站的坐标为,文化宫的坐标为.(1)请你依据题目条件,画出平面直角坐标系;(2)写出体育场、市场、商场、医院的坐标.27.如图,这是某市部分简图,为了确立各建筑物的地点请达成以下步骤.(1)请你以火车站为原点成立平面直角坐标系;(2)写出市场的坐标是 ________;商场的坐标为 ________;(3)请将体育场为A、旅馆为 C 和火车站为 B 看作三点用线段连起来,得△ABC,而后将此三角形向下平移 4 个单位长度,画出平移后的△A1 B1C1,并求出其面积.参照答案一、选择题DDCA BBBD C A AA二、填空题13. (0,4)14.(﹣ 3, 4)15.16. (-505,-505)17.(- 3,- 6);(- 4,- 1)18. (5,4)19.(0, 0);(- 2, 0);(- 3,- 1);(- 2,- 2)20.( -1, 2)21.(7, -2)或( -3, -2)22.0三、解答题23.解:有 6 种走法分别为:①( 2,4)→( 3,4)→(4,4)→( 4,3)→( 4,2);②( 2,4)→( 3,4)→(3,3)→( 4,3)→( 4,2);③( 2,4)→( 3,4)→(3,3)→( 3,2)→( 4,2);④( 2,4)→( 2,3)→(3,3)→( 4,3)→( 4,2);⑤( 2,4)→( 2,3)→(3,3)→( 3,2)→( 4,2);⑥( 2,4)→( 2,3)→(2,2)→( 3,2)→( 4,2)24.解:以以下图所示,可知小明与小刚相距 3 个格 .25.解:由各点的坐标可知他路上经过的地方:葡萄园杏林桃林梅林山楂林枣林梨园苹果园.以下图:26.(1)解:以下图(2)解:体育场、市场、商场、医院.27.(1)解:以下图:(2)( 4, 3);( 2,﹣ 3)(3)解:以下图:△A1B1 C1的面积 =3×6﹣×2×2﹣×4×3﹣×6×1=7.人教版七年级数学下册第七章平面直角坐标系单元综合测试题含详尽答案一、(本大题共10 小题,每题 3 分,共 30 分 . 在每题所给出的四个选项中,只有一项为哪一项符合题意的 .把所选项前的字母代号填在题后的括号内. 相信你必定会选对!)1.在仪仗行列中,共有八列,每列8 人,若战士甲站在第二列以前方数第 3 个,能够表示为(2, 3),则战士乙站在第七列倒数第 3 个,应表示为()A.(7, 6)B.(6, 7)C.(7,3)D.(3,7)2.若点P 的坐标是(2,1),则点P 在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图 ,以下各点在暗影地区内的是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)4. 点 E( a,b)到x 轴的距离是4,到y 轴距离是3,则有()A. a=3, b=4B. a=±3,b=± 4C. a=4, b=3D. a=± 4,b=± 35.已知线段AB=3,且AB∥x轴,若A(-2,4),则将线段向下平移 4 个单位长度后,点 B 的对应点的坐标为(D)A.(1,0)B.(0,1)C.(-5,1)D.(1,0)或 (-5,0)6.如图 3,将三角形向右平移 2 个单位长度,再向上平移 3 个单位长度,则平移后三个的坐标是()A.( 2, 2)(3, 4)( 1, 7)C.(一 2, 2)(3, 4)( 1,7)B.(一 2, 2)( 4,3)( 1, 7)D.(2,一 2)( 3, 3)( 1,7)7.点A(-4,3)和点B(-8,3),则A,B 相距 ()A.4 个单位长度8.在座标系中,已知B.12 个单位长度C.10 个单位长度A( 2, 0), B( - 3,- 4), C( 0,0),则△D.8 个单位长度ABC的面积为()A.4 B. 6 C.8D.39.如图 1 所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下边哪条线路最短()A.( 1, 3)→ (1, 2)→( 1, 1)→(1, 0)→( 2, 0)→(3, 0)→( 4, 0)B.(1, 3)→( 0, 3)→( 2, 3)→( 0, 0)→( 1, 0)→( 2,0)→(4, 0)C.( 1, 3)→( 1,4)→( 2, 4)→(3, 4)→( 4, 4)→( 4,3)→( 4, 2)→( 4,0)D.以上都不对10.如图将三角形ABC的纵坐标乘以2,原三角形 ABC 坐标分别为A(- 2,0),B( 2,0),C( 0, 2)得新三角形A′ B′以下C′图像中正确的选项是()A B C D二、仔细填一填:(本大题共有 6 小题,每题 4 分,共 24 分.请把结果直接填在题中的横线上.只需你理解观点,认真运算,踊跃思虑,相信你必定会填对的!)11.已知点 P 在第二象限 ,且横坐标与纵坐标的和为1,试写出一个切合条件的点P..12.某一本书在印刷上有错别字,在第 20页第 4 行从左数第 11 个字上 ,假如用数序表示可记为(20,4,11), 你是电脑打字员 ,你以为 (100,20,4) 的意义是第.13.某雷达探测目标获得的结果以下图,若记图中目标 A 的地点为 (3,30 ),°目标 B 的地点为(2,180 ),°目标 C 的地点为 (4,240 ),°则图中目标 D 的地点可记为.14.,AB=3,AB x,A(1,2),B是.P 15.如图 ,三角形A'B'C'是三角形ABC 经过某种变换后获得的图形,假如三角形ABC中有一点的坐标为(a,2),那么变换后它的对应点Q 的坐标为.16.在平面直角坐系中,点 P(x,y)某种后获得点P'(-y+1,x+2),我把点P'(-y+1,x+2)叫做点 P(x,y)的点 .已知点 P1的点P2,点 P2的点P3,点 P3的点P4 ,依次获得 P1,P2,P3 ,P4, ⋯,P n⋯,若点 P1的坐 (2,0),点 P2 017的坐.三、真答一答:(本大共 5 小,共46 分.只需你真思虑, 仔运算, 必定会解答正确的 !)17.(6 分)如所示,是一个格8 8 的球桌,小明用 A 球撞 B 球,到 C 反,再撞桌 D ,适合的平面直角坐系,并用坐表示各点的地点.18.(10 分)以点 A 心的可表示⊙ A。
怀文中学2013—2014学年度第一学期教学设计初二数学第五章平面直角坐标系小结与思考(2)主备:樊新玲审校:周娟日期:2013年11月28日教学目标:1.熟练掌握平面直角坐标系、各象限坐标特点、坐标轴上点的特征、四个象限角平分线上点的特征。
2.进一步明确点到坐标轴的距离、点平移坐标规律、点关于两个坐标轴对称坐标特点、关于坐标原点对称的点的特征等.教学重点:用所学的坐标知识解决实际问题。
教学难点:用所学的坐标知识解决实际问题。
教学内容:一、自主探究1、位置的变化:现实生活中怎样确定位置?举例说明电影院例找座位需要确定_________________;在地图上确定某个城市需_______________;2、平面直角坐标系:(1)概念:________________________________构成平面直角坐标系,简称______________。
(2)平面直角坐标系中的点和______________是一一对应的.(3)点P(x,y)在第一象限内,则x ,y 。
点P(x,y)在第二象限内,则x ,y 。
点P(x,y)在第三象限内,则x ,y 。
点P(x,y)在第四象限内,则x ,y 。
例1:(1)在平面直角坐标系中,点(-1,m2+1)一定在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限(2)已知a>0,那么点P(-a2-1,a+3)在第_______象限。
例2:若点P(a,b)在第四象限,则点M(b-a,a-b)在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限例3:已知点P(2a-8,2-a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是_______。
例4:如图,棋子“卒”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为 ( )A.(3,2) B.(3,1) C.(2,2) D.(-2,2)例5:(1)已知点P在第四象限,它的横坐标与纵坐标的和为2,写出一个满足上述条件的点P的坐标:_____。
坐标表示轴对称数学知识点归纳坐标表示轴对称数学知识点归纳大家要熟知三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____.点(x, y)关于y轴对称的点的坐标为___(-x, y)___.知识点总结:上面的内容要求大家掌握三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
< <平面直角坐标系>>小结一、知识梳理1.平面直角坐标系的初步知识在平面内画两条互相垂直的数轴,就组成平面直角坐标系,水平的数轴叫做x轴或横轴 (正方向向右),铅直的数轴叫做y轴或纵轴(正方向向上),两轴交点O是原点.这个平面叫做坐标平面.x轴和y把坐标平面分成四个象限(每个象限都不包括坐标轴上的点),要注意象限的编号顺序及各象限内点的坐标的符号:由坐标平面内一点向x轴作垂线,垂足在x轴上的坐标叫做这个点的横坐标,由这个点向y轴作垂线,垂足在y轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后).一个点的坐标是一对有序实数,对于坐标平面内任意一点,都有唯一一对有序实数和它对应,对于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.2.坐标系内点的坐标的特征3.对称点:关于x轴对称的两点,横坐标__;纵坐标__关于y轴对称的两点,横坐标__;纵坐标__关于原点对称的两点,横坐标__;纵坐标__简单记:横的横不变(相等),纵的纵不变(相等),关于原点都要变(互为相反数)。
二、常见题型1、已知点P在第二象限,它的纵坐标与横坐标之和为1,点P的坐标是__(写出符合条件的一个点即可)。
2、如果点P(a,b)在第二象限内,那么点P(ab,a-b)在()A、第一象限B、第二象限C、第三象限D、第四象限3、点P(-2,1)关于原点对称点的坐标是()A、(-2,1)B、(-2,-1)C、(2,1)D、(2,-1)4、如果代数式xy>0,那么直角坐标系中点A(a,b)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限5、在平面直角坐标系内,A、B、C三点为顶点华平行四边形,则第四个顶点不可能在()A、第一象限B、第二象限C、第三象限D、第四象限6、如图,如果所在位置的坐标为(-1,-2),所在位置的坐标为(2,-2),那么所在位置的坐标为8、已知,矩形OABC在平面直角坐标系中的位置如图所示,点B 坐标为(3,-2)11、如图,在直角坐标系中,第一次将OAB 11OA B ,第二次将11OA B 变成22OA B ,第三次将22OA B 变成33OA B ,已知123(1,3),(2,3),(4,3),(8,3)A A A A ,123(2,0),(4,0),(8,0),(16,0)B B B B 。
平面直角坐标系一、说教材(一)教学内容与地位《平面直角坐标系》是人教版九年义务教育七年级数学下册第七章第一节内容,它是在学习了数轴和有序数对后安排的一次概念性教学。
《数学课程标准》7~9年级的学段内容标准中对平面直角坐标系的要求是:(1)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
(2)在实际问题中,能建立适当的直角坐标系,描述物体的位置。
平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体体现。
这一节课主要是让学生认识平面直角坐标系,了解点与坐标的对应关系。
因此,本节课的学习是今后学习一次函数、二次函数的一个基础,它在整个初中数学教材体系中有着举足轻重的作用。
(二)教学三维目标《数学课程标准》中明确指出,要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生在获得对数学知识的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
遵循这一理念,结合课程标准中对该部分的要求与本节课在这一章节中的作用,结合学生实际我制订了以下教学目标:1.知识与能力目标:使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。
2.过程与方法目标:通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生自主获取知识的能力。
3.情感态度价值观目标:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。
(三)教学重难点教学重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置。
教学难点:知道点的坐标描点,认识点与坐标的对应。
平面直角坐标系小结与复习教法建议
为使学生在学习本章后不仅了解图形与坐标的一些结论,而且能切实体会直角坐标系是数形结合的桥梁,是解决实际问题的重要工具,在“回顾与反思”中应力求避免简单的用投影片“串讲”等方式了解知识结构,还应力求避免用简单的表格罗列图形变换与坐标变化的各种关系(更不能叫学生死记硬背这些关系)。
为此建议:
1.在本课时前布置学生写一篇关于直角坐标系的小论文(作文),题目可以从下面的参考选题中自选:《直角坐标系的诞生及应用》《数形结合的桥梁——直角坐标系》《直角坐标系中的图形变换》,也可以自由命题由感而发。
这样做有利于落实以下几点:
(1)学生会主动回顾本章的知识结构,搞清来龙去脉。
(2)会想方设法把各种问题(如确定位置的方法、坐标系的选择、各种变换的情况)一搞清。
(3)会自觉推敲数学语言的内涵,加深对概念的理解。
2.以适当的方式(如小型展览、全班交流会等)进行交流。
这种注重过程的回顾与反思,虽费时间,但对于直角坐标系这一新的数学模型的理解会有切实的作用,比看一遍投影片更有吸引力。
并且,这样的学习与反思过程对后面学习函数及其图像以至将来学习解析几何都会有很大的帮助。
第六章平面直角坐标系复习【教学过程】一、熟悉知识体系(设计说明:通过引领学生回忆本章的知识要点,形成知识框架,让学生对本章知识有一个整体的把握,同时了解各知识之间的内在联系。
)二、知识要点回顾(一)基础知识(设计说明:以问题为载体引导学生回忆全章的有关知识,使学生掌握的知识更加深刻、系统.)1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).注意:(1)a与b要用逗号分开,以示它们是两个独立有序的数,又要用括号“包装”起来,表示它们是一个整体;(2)若a≠b则(a,b)与(b,a)表示两个不同的有序数对;(3)在直角坐标系中,有序数对(a,b)表示点的坐标,a,b依次表示横坐标、纵坐标.2.平面直角坐标系的意义:在平面内,两条具有公共原点、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,向______方向为正方向,竖直的数轴叫做______或_______,向______方向为正方向,横轴与纵轴的交点叫做平面直角坐 2标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限;注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.各象限内点的坐标符号特点:在平面直角坐标系中,第一象限的横坐标与纵坐标都是正数,简单记作(+,+),那么第二象限的坐标特征是______,第三象限是______,第四象限是______;4.特殊点的坐标(1)坐标轴上点的坐标特点: 横轴(x轴)上点的坐标特征是(x,0),即纵坐标都是0;纵轴(y轴)上的点的坐标特征是______,即______;(2)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同.(3)对称点的坐标:点p(a,b)关于x轴对称的点为_________,点p(a,b)关于y轴对称的点为__________.5.点到两轴的距离的意义: 点p(x,y)到x轴的距离为_______,到y轴的距离为______.6. 用坐标表示地理位置的一般过程:①选原点,②规定x,y轴的正方向,③确定单位长度,④在坐标系中描点,并写出各点的坐标和各地点的名称。
7.点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化, 可以简单地理解为: 左、右平移纵坐标不变,横坐标变,变化规律是左减右加,上下平移横坐标不变,纵坐标变,变化规律是上加下减。
例如: 当p(x ,y)向右平移a个单位长度,再向上平移b个单位长度后坐标为p′(x+a ,y+b).(教学说明:在教学过程中,借助前面的知识框架,以提问的方式引导学生回顾以上知识点,有些知识点要借助图形帮助学生回忆,如特殊点的坐标,点到两轴的距离的意义等.由于学生有的知识遗忘了,有的知识不能很好的用数学语言表达,教师应有充分的耐心听学生说完,并注意及时规范学生的不准确的表述。
通过以上复习,使学生把全章知识串起来,使全章知识系统化、条理化、全面化.)3(二)、基本应用(例题精讲)(设计说明:巩固学生对所学知识的进一步理解和应用,提高学生应用数学知识解决问题的能力.)例1 写出如图1中A,B,C,D各点的坐标.分析:平面直角坐标系中点的的坐标是由横坐标和纵坐标组成的一个有序数对,横坐标要写在前面。
横坐标的确定方法是过点作横轴的垂线,垂足在横轴上所对应的数就是该点的横坐标;再过点作纵轴的垂线,垂足在纵轴上所对应的数就是该点的纵坐标。
因为A在横轴上对应的数是2,在纵轴上对应的数3,所以点A的坐标是(2,3),其它三点的坐标类似可以确定,分别是B(3,2),C(-2,1),D(-1,-2)。
例2 一群小孩子在操场上手拉手地围成一圈,组成了一个优美的图案.小明站在旁边发现他们当中八个人恰好站在拐角处的A、B……、H点,而且建立某个坐标系后可测得这八个点的坐标分别是A(0,4),B(-1,1),C(-4,0),D(-1,-1),E(0,-4),F (1,-1),G(4,0),H(1,1).你知道这群孩子围成的图案是什么吗?请把它画出来.4分析:要知道由A、B……、H点围成的图案,只须在坐标系中描出这些点的位置,然后用折线把它们连结出来就可以知道其图形是如图2的图案。
例3 指出下列各点所在的象限或坐标轴:A(-2,3),B(1,-2),C(-1,-2),D(3,2),E(-3,0),F(0,1).分析:在第一、二、三、四象限内,点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-);在x轴正半轴上、负半轴,在y轴正半轴、负半轴上的点的坐标符号分别是(+,0)、(-,0)、(0,+)、(0,-),反之也成立.因为点A的符号是(-,+),故点A在第二象限;因为点B的符号是(+,-),故点B 在第四象限;因为点C的符号是(-,-),故点C在第三象限;因为点D的符号是(+,+),故点D在第一象限;因为点E的纵坐标为0,所以点E在x轴上;因为点F的横坐标为0,所以点F在纵轴上.例4 在平面直角坐标系中,到x轴的距离等于2,到y轴的距离等于3的点的坐标是________________________;分析:到x轴的距离等于2的点的纵坐标有+2和-2,到y轴的距离等于3的点的横坐标有+3和-3,因此,满足条件的点的坐标有(3,2)、(3,-2)、(-3,2)、(-3,-2)。
例5 平面直角坐标系中,△ABC各顶点的坐标是A(6,8),B(-2,0),C(-5,-3),△DEF各顶点的坐标是D(0,3),E(8,11),F(-3,0),请仔细观察这两个三角形各顶点的坐标关系,判断△DEF是不是由△ABC平移得到的?如果是,是怎么样平移的?如果不是,请说明为什么?分析:分别观察△ABC各顶点坐标与△DEF各顶点坐标,寻找相同的变化关系。
对于点A 和D、B和E、C和F来说,把点A向左平移6个单位长度,再向下平移5个单位长度,可以得到点D,但把点B、C进行同样的平移不能得到点E、F。
此时注意不要仅凭这一点就否定两个三角形不能相互平移而得到。
考虑点A和点E的关系,可以发现,把△ABC向右平移2个单位长度,再向上平移3个单位长度后,对应三个顶点的坐标分别是(8,11),(0,3),(-3,0),恰好是△DEF三个顶点的坐标,因此,把△ABC向右平移2个单位长度,再向上平移3个单位长度后,可得把△DEF。
例6 如图3所示的象棋盘上,若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点()A.(-1,1);B.(-1,2);C.(-2,1);D.(-2,2).分析:要确定“炮”的位置,关键在于建立合适的直角坐标系,而所谓合适的坐标系就是指坐标原点、坐标轴的选择与建立要满足“帅” 和“相”所处位置的坐标,比如说原点显然不可能是“帅”的位置.从“帅”的坐标(1,-2)可知“帅”在第四象限,距离横轴2个单位,距离纵轴1个单位,这样,我们便可以建立起如图的坐标系,再根据如图的坐标系及“相”的坐标可知图中单位长度是每个小正方形的边长为一个单位长,因此可以顺利地确定出“炮”的位置是(-2,1),故选C(教学说明:例1、2是已知点写坐标,已知坐标描点的基本应用;例3、4考察了各象限内点的坐标符号特点和点到两轴的距离的意义,其中例4有一定的难度,涉及到分类的思想,需要考虑周到. 例5考察了点的坐标与图形平移的关系,但它需要逆向思维,因此也有一定的难度.例6是用坐标表示地理位置的基本应用,比较简单.对以上问题的处理可以先让学生独立思考,再小组交流,最后师生共同解决.)三、巩固训练,熟练技能:(设计说明:通过不同的基础练习,帮助学生进一步理解本章所学知识.)一、选择题1.下列各点中,在第一象限的点是( )A.(2,3) B.(2,-1) C.(-2,6) D.(-1,-5)2.若点p的坐标是(x,y),且xy>0,x+y<0,则点p在第()象限A.一B.二C.三D.四3.点A(1,2)先向右平移2个单位,然后再向下平移1个单位得到对应点A’,则点A’的坐标是( )A.(3.3)B.(-1.3) C.(-l,1) D.(3,1)6.4.如图4所示,在平面直角坐标系中,□ABCD的顶点A、B、D的坐标分别是(1,1),(3,3),(-4,1),则顶点C的坐标是()A.(-2,3)B.(-2,2)C.(-2,1)D.(-3,2)二、填空题5.p(3,-4)到x轴的距离是.到y轴的距离是.6.已知点p(a,-2)与点Q(-3,b)关于x轴对称,则a= ,b= .7. 点A(x,y)在第四象限,若,,则点A的坐标是.8.将点A (2,0)绕原点O按顺时针方向旋转900到点B,则点B的坐标是.9.已知AB∥x轴,且AB=3,若点A的坐标是(-1,2),则B点的坐标是.三、解答题10、如图5:三角形ABC三个顶点A、B、C的坐标分别为A (1,2)、B(4,3)、C(3,1).(1)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标;(2)求出三角形A1B1C1的面积。
7四、总结反思,情意发展(设计说明:围绕四个问题,师生共同总结本节课的学习收获。
)1、哪些本已遗忘的知识得到巩固?2、哪些知识有新的认识?3、本章主要蕴涵了哪种数学思想?4、结合你自己的复习情况,谈谈你还有什么疑问?(教学说明:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,同时促进学生形成良好的反思习惯.)五、课堂小结1.本节重点复习归纳了本章的基础知识,提高了学生各知识点的综合应用能力.2.主要用到的思想方法是数形结合思想和分类思想。
3.注意的问题:借助图形理解题意,这样直观形象,便于解决问题六、布置课后作业:课本59页复习题6的5、7、8、10题。