平面直角坐标系小结
- 格式:doc
- 大小:23.00 KB
- 文档页数:5
第六章平面直角坐标系复习
【教学过程】
一、熟悉知识体系
(设计说明:通过引领学生回忆本章的知识要点,形成知识框架,让学生对本章知识有一个整体的把握,同时了解各知识之间的内在联系。)
二、知识要点回顾
(一)基础知识
(设计说明:以问题为载体引导学生回忆全章的有关知识,使学生掌握的知识更加深刻、系统.)
1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).
注意:(1)a与b要用逗号分开,以示它们是两个独立有序的数,又要用括号“包装”起来,表示它们是一个整体;(2)若a≠b则(a,b)与(b,a)表示两个不同的有序数对;(3)在直角坐标系中,有序数对(a,b)表示点的坐标,a,b依次表示横坐标、纵坐标.
2.平面直角坐标系的意义:在平面内,两条具有公共原点、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,向______方向为正方向,竖直的数轴叫做______或_______,向______方向为正方向,横轴与纵轴的交点叫做平面直角坐 2
标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限;
注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.
3.各象限内点的坐标符号特点:在平面直角坐标系中,第一象限的横坐标与纵坐标都是正数,简单记作(+,+),那么第二象限的坐标特征是______,第三象限是______,第四象限是______;
4.特殊点的坐标
(1)坐标轴上点的坐标特点: 横轴(x轴)上点的坐标特征是(x,0),即纵坐标都是0;纵轴(y轴)上的点的坐标特征是______,即______;
(2)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同.
(3)对称点的坐标:点p(a,b)关于x轴对称的点为_________,点p(a,b)关于y轴对称的点为__________.
5.点到两轴的距离的意义: 点p(x,y)到x轴的距离为_______,到y轴的距离为______.
6. 用坐标表示地理位置的一般过程:①选原点,②规定x,y轴的正方向,
③确定单位长度,④在坐标系中描点,并写出各点的坐标和各地点的名称。
7.点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化, 可以简单地理解为: 左、右平移纵坐标不变,横坐标变,变化规律是左减右加,上下平移横坐标不变,纵坐标变,变化规律是上加下减。例如: 当p(x ,y)向右平移a个单位长度,再向上平移b个单位长度后坐标为p′(x+a ,y+b).
(教学说明:在教学过程中,借助前面的知识框架,以提问的方式引导学生回顾以上知识点,有些知识点要借助图形帮助学生回忆,如特殊点的坐标,点到两轴的距离的意义等.由于学生有的知识遗忘了,有的知识不能很好的用数学语言表达,教师应有充分的耐心听学生说完,并注意及时规范学生的不准确的表述。通过以上复习,使学生把全章知识串起来,使全章知识系统化、条理化、全面化.)
3
(二)、基本应用(例题精讲)
(设计说明:巩固学生对所学知识的进一步理解和应用,提高学生应用数学知识解决问题的能力.)
例1 写出如图1中A,B,C,D各点的坐标.
分析:平面直角坐标系中点的的坐标是由横坐标和纵坐标组成的一个有序数对,横坐标要写在前面。横坐标的确定方法是过点作横轴的垂线,垂足在横轴上所对应的数就是该点的横坐标;再过点作纵轴的垂线,垂足在纵轴上所对应的数就是该点的纵坐标。
因为A在横轴上对应的数是2,在纵轴上对应的数3,所以点A的坐标是(2,3),其它三点的坐标类似可以确定,分别是B(3,2),C(-2,1),D(-1,-2)。
例2 一群小孩子在操场上手拉手地围成一圈,组成了一个优美的图案.小明站在旁边发现他们当中八个人恰好站在拐角处的A、B……、H点,而且建立某个坐标系后可测得这八个点的坐标分别是A(0,4),B(-1,1),C(-4,0),D(-1,-1),E(0,-4),F (1,-1),G(4,0),H(1,1).你知道这群孩子围成的图案是什么吗?请把它画出来.
4
分析:要知道由A、B……、H点围成的图案,只须在坐标系中描出这些点的位置,然后用折线把它们连结出来就可以知道其图形是如图2的图案。
例3 指出下列各点所在的象限或坐标轴:
A(-2,3),B(1,-2),C(-1,-2),D(3,2),E(-3,0),F(0,1).
分析:在第一、二、三、四象限内,点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-);在x轴正半轴上、负半轴,在y轴正半轴、负半轴上的点的坐标符号分别是(+,0)、(-,0)、(0,+)、(0,-),反之也成立.
因为点A的符号是(-,+),故点A在第二象限;因为点B的符号是(+,-),故点B 在第四象限;因为点C的符号是(-,-),故点C在第三象限;因为点D的符号是(+,+),故点D在第一象限;因为点E的纵坐标为0,所以点E在x轴上;因为点F的横坐标为0,所以点F在纵轴上.
例4 在平面直角坐标系中,到x轴的距离等于2,到y轴的距离等于3的点的坐标是
________________________;
分析:到x轴的距离等于2的点的纵坐标有+2和-2,到y轴的距离等于3的点的横坐标有+3和-3,因此,满足条件的点的坐标有(3,2)、(3,-2)、(-3,2)、(-3,-2)。
例5 平面直角坐标系中,△ABC各顶点的坐标是A(6,8),B(-2,0),C(-5,-3),△DEF各顶点的坐标是D(0,3),E(8,11),F(-3,0),请仔细观察这两个三角形各顶点的坐标关系,判断△DEF是不是由△ABC平移得到的?如果是,是怎么样平移的?如果不是,请说明为什么?
分析:分别观察△ABC各顶点坐标与△DEF各顶点坐标,寻找相同的变化关系。对于点A 和D、B和E、C和F来说,把点A向左平移6个单位长度,再向下平移5个单位长度,可以得到点D,但把点B、C进行同样的平移不能得到点E、F。此时注意不要仅凭这一点就否定两个三角形不能相互平移而得到。考虑点A和点E的关系,可以发现,把△ABC向右平移2个单位长度,再向上平移3个单位长度后,对应三个顶点的坐标分别是(8,11),(0,3),(-3,0),恰好是△DEF三个顶点的坐标,因此,把△ABC向右平移2个单位长度,再向上平移3个单位长度后,可得把△DEF。
例6 如图3所示的象棋盘上,若“帅”位于点(1,
-2)上,“相”位于点(3,-2)上,则“炮”位于点()
A.(-1,1);B.(-1,2);
C.(-2,1);D.(-2,2).
分析:要确定“炮”的位置,关键在于建立合适的
直角坐标系,而所谓合适的坐标系就是指坐标原点、
坐标轴的选择与建立要满足“帅” 和“相”所处位置的
坐标,比如说原点显然不可能是“帅”的位置.从“帅”
的坐标(1,-2)可知“帅”在第四象限,距离横轴2个单位,距离纵轴1个单位,这样,我