中考数学专题复习(三) 网格作图题
- 格式:doc
- 大小:344.50 KB
- 文档页数:3
《网格作图题》复习专题教学设计一、教材分析网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换。
这类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作。
本节课,知识点较多,但应该抓住关键点,分清变换类型,用变换的性质来解决实际问题,以训练为主。
2.考标要求:(1)应用平移、旋转、轴对称、中心对称等几种图形变换的性质解决数学问题。
(2)培养学生几何空间思维能力。
二、教学目标:(1).知识与技能:回忆所学的平移、旋转、轴对称、中心对称等几种图形变换的基础知识,理解掌握运用基础知识解决相关问题,提高解决问题的能力。
(2).数学思考:建立几何空间思维能力。
(3).过程与方法:学生自查遗忘的知识点,通过讨论、交流,教师答疑、解惑、指导,经历例题、习题的解答,提高技能,(4).情感态度:经历对所学的平移、旋转、轴对称、中心对称等几种图形变换的基础知识的复习,用所学知识解决相关问题,提高解决问题的能力。
三、教学重、难点:教学重点:对面积的计算。
教学难点:教学准备:多媒体课件、导学案、四、教学过程教学内容与教师活动学生活动设计意图一、知识梳理加强理解(1)中考题型(2)考点1.对称图形的计算和运用;2.平移图形的计算和运用;3.旋转图形的计算和运用;4.在网格中求面积;(3)准备知识1.对称作图的方法:轴对称(或中心对称)图形的作法:先找出原图形的各顶点,作出它们关于对称轴的对称点,然后根据原图连接各对称点。
2.平移作图的方法:(1)确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离,平移各个关键点,得到关键点的对应点;(4)按原图形依次连接各关键点的对应点,即的平移后的图形。
3.旋转作图的方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出原图的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角旋转,得到个关键点的对应点;(4)按按原图形依次连接各关键点的对应点,即的旋转后的图形。
2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。
授课设计教师学生科目数学上课时间课次 1授课内容中考中的格点图形问题授课重难点解题方法授课设计:近来几年来,有关格点问题已成为中考的亮点,这类问题题型多样,形式爽朗,主要观察同学们的直觉推理能力和问题研究能力.格点问题操作性强、兴趣性浓,表现了新课标的“在‘玩’中学,在学中思,在思中得”的崭新理念.下面就中考中的几类格点问题归纳以下,望能对学习有所帮助.一、格点中的对称问题例 1 (绍兴市)如图 1,在网格中有两个全等的图形 (阴影部分 ),用这两个图形拼成轴对称图形,试分别在图(1) 、(2) 中画出两种不同样的拼法.图1图2二、格点中的画图问题例 2 (黑龙江鸡西市)如图3,在网格中有一个四边形图案.(1)请你画出此图案绕点 O 顺时针方向旋转 900, 1800,2700的图案,你会获取一个美丽的图案,千万不要将阴影地址涂错;图 3图4(2)若网格中每个小正方形的边长为l ,旋转后点 A 的对应点依次为 A1、 A2、A3,求四边形 AA1A2A3的面积;(3)这个美丽图案可以说明一个出名结论的正确性,请写出这个结论.三、格点中的坐标问题例3 (苏州市)如图 5.围棋盘的左下角表现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的地址可记为(C,4),白棋②的地址可记为( E, 3) 则白棋⑨的地址应记为___.图 5四、格点中的相似问题例 4 (福州市罗源平潭)如图成的相似三角形有()A . 4 对B . 3 对C. 2 对6,在 7×12 的正方形网格中有一只可爱的小狐狸,算算看画面中由实线组DD .1 对A C F析解:本题是一道以网格为背景的结论研究性问题, B E J H在正方形网格中画了一只可爱的小狐狸,增强了题目G I R L的兴趣性.由网格的特色结合勾股定理,可以获取三角图6形三边的长,从而利用“三边对应成比率,两三角形相似”的判断来求解..五、格点中的位似问题例5 (广东省)如图 7,图中的小方格都是边长为 1 的正方形,△ ABC 与△ A′B′C′是关于点 O 为位似中心的位似图形,它们的极点都在小正方形的极点上.(1)画出位似中心点 O;(2)求出△ ABC 与△ A/B/C/的位似比;( 3)以点 O 为位似中心,再画一个△A1B1C1,使它与△ ABC的位似比等于.C/ C/C1B/ C B/ CA/BA/B1 BA A1 A O 图 7 图 8六、格点中的面积问题例 6 (浙江湖州市)一青蛙在如图8×8 的正方形(每个小正方形的边长为 1)网格的格点(小正方形的极点)上跳跃,青蛙每次所跳的最远距离为 5 ,青蛙从点A开始连续跳六次正好跳回到点 A,则所组成的封闭图形的面积的最大值是_______.图 9析解:本题以青蛙这一幽默且有益的动物为背景设计题目,增加了题目的兴趣性.解题时涉及无理数、勾股定理的应用、图形面积的计算等知识.只要正确画出图形,再运用割补法即可求得面积为 12.七、格点中等腰三角形问题例 7 (重庆市)以下列图,A、 B 是 4×5 网络中的格点,网格中的每个小正方形的边长为晰标出使以A、B、C 为极点的三角形是等腰三角形的所有格点 C 的地址.1,请在图中清A AB B图10 图11析解:依照网格的特色及等腰三角形的有关知识易得,AB 只能为一腰,且AB= 13 ,由勾股定理即可知点C1、 C2、 C3吻合要求(如图11).八、格点中的拼图问题例 8 (北京市)请阅读以下资料:问题:现有 5 个边长为画出切割线并在正方形网格图1 的正方形,排列形式如图①,请把它们切割后拼接成一个新的正方形.(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.要求:小东同学的做法是:设新正方形的边长为x(x> 0).依题意,割补前后图形的面积相等,有x2=5 ,解得x= 5 .由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长.于是,画出如图②所示的分割线,拼出如图③ 所示的新正方形.图①图②图③图④图⑤图12请你参照小东同学的做法,解决以下问题:现有 10 个边长为 1 的正方形,排列形式如图④,请把它们切割后拼接成一个新的正方形.要求:在图④中画出切割线,并在图⑤的正方形网格图 (图中每个小正方形的边长均为 1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写解析过程.析解:本题是一道综合型网格作图试题,涉及到无理数、勾股定理等知识,主要观察同学们的计算能力、着手操作能力.类比小东的作法,可设新正方形的边长为x(x>0),便有 x2=10 ,解得 x=10 .由此可知,新正方形得边长等于两个小正方形组成得矩形对角线得长.于是,画出如图②所示的切割线,拼出如图③所示的新正方形.图 13图14温州历年中考中的格点问题19.( 2009?温州) ( 本题 8 分 ) 在所给的 9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个极点以及对角线交点都在方格的极点上.(1) 在图甲中画一个平行四边形,使它的周长是整数; (2) 在图乙中画一个平行四边形,使它的周长不是整数. ( 注:图甲、图乙在答题纸上 )19、( 2011?温州)(本题8 分)七巧板是我们祖先的一项优异创立,用它可以拼出多种图形,请你用七巧板中标号为○1 ○2 ○3的三块板(如图1)经过平移、旋转拼成图形。
中考题型训练——网格作图1.(07.云南)(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1C1; (2)作出△A1B1C1绕点B1顺时针方向旋转90°后的△A2B1C2;(3)求△A2B1C2的周长;(第1题) (第2题)2.(06.云南)(7分)在如图的方格纸中,每个小正方形的边长都是1,△ABC与△A1B1C1构成的图形是中心对称图形. (1)画出此中心对称图形的对称中心O; (2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B 2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)3.(05.云南)(7分)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(3)将补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,再向上平移一格,画出这个直角梯形(不要求写作法)(第3题) (第4题) 4.(07.安徽)△ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1 、B1的坐标分别为和 .(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形.5.(07.江苏)如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB,BC为边的菱形ABCD;(2)填空:菱形ABCD的面积等于.(第5题)(第6题)6.(07.福州)如图的方格纸中,每个小正方形的边长都为1个单位的正方形,在建立平面直角坐标系后, △ABC的顶点均在格点上,点C的坐标为(4,-1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.7.(07.哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.(第7题) (第8题)8.(07.辽宁)如图, 在平面直角坐标系中,图错误!与图错误!关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形\o\ac(○,2)向下平移4个单位,画出平移后的图形错误!,并判断图形错误!与图形错误!的位置关系.(直接写出结果)9.(07.安徽)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的表达式.(第9题) (第10题)10.(07.长沙)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.11.(07.海南)在如图的方格纸中,△ABC的顶点坐标分别为A(-2,5)、B(-4,1)和C(-1,3).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A、B、C的对称点A2、B2、C2的坐标;(3)试判断:△A1B1C1与△A2B2C2是否关于y轴对称(只需写出判断结果)(第11题) (第12题)12.(07.青海)如图所示,图错误!和图错误!中的每个小正方形的边长都为1个单位长度.(1)将图错误!中的格点△ABC(顶点都在网格线交点的三角形叫格点三角形)向在平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图错误!中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.13.(07.广西)如图,在正方形网格中,△ABC的三个顶点A、B、C均在格点上,将△ABC向右平移5格,得到△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得到△A2B2C2.(1)请在网格中画出△A1B1C1和△A2B2C2(不要求写画法)(2)画出△A1B1C1和△A2B2C2后,填空:∠C1B1C2= 度,∠A2=度.(第13题)14.(06.成都)如图,在平面直角坐标系中,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.(第14题)15.(06.广东)如图,图中的小正方形是边长为1的正方形,△ABC与是关于O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比为1.5;。
专题复习(三)网格作图题1.拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.解:(1)如图,四边形AB1C1D1为所作.(2)如图,四边形AB2C2D2为所作.2.二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).3.模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).4.拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.解:(1)如图所示,△A1B1C1,即为所求.(2)如图所示,△A2B2C2,即为所求.(3)如图所示,△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.6.级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2360=4+2π.7.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示.(2)如图所示.(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).8.模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.。
中考数学专题复习格点作图题学校:___________姓名:___________班级:___________考生__________评卷人得分一、解答题1.图①,图①,图①都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图①中已画出线段AB,在图①中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图①中,以格点为顶点,AB为一边画一个正方形;(3)在图①中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.2.图①、图①、图①都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图①中,以AB为边画一个平行四边形,且另外两个顶点在格点上.3.图①、图①均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON 的端点均在格点上.在图①、图①给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.4.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是什么对称图形;(3)求所画图形的周长(结果保留π).5.图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A B C D E F、、、、、均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个ABM∆,使其面积为6.(2)在图②中以线段CD为边画一个CDN∆,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且090EFG∠=.6.图①,图①均为44⨯的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图①中已画出线段CD ,其中A B C D 、、、均为格点,按下列要求画图:①在图①中,以AB 为对角线画一个菱形AEBF ,且,E F 为格点;①在图①中,以CD 为对角线画一个对边不相等的四边形CGDH ,且,G H 为格点,090CGD CHD ∠=∠=.7.如图①、图①、图①都是33⨯的正方形网格,每个小正方形的顶点称为格点.A ,B ,C 均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB 重合的线段MN ,使MN 与AB 关于某条直线对称,且M ,N 为格点.(2)在图①中,画一条不与AC 重合的线段PQ ,使PQ 与AC 关于某条直线对称,且P ,Q 为格点.(3)在图①中,画一个DEF ∆,使DEF ∆与ABC ∆关于某条直线对称,且D ,E ,F 为格点.8.图①、图①、图①均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC.要求:(1)在图①中画一个钝角三角形,在图①中画一个直角三角形,在图①中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.9.图①、图①、图①均是44⨯的正方形网格,每个小正方形的边长均为1.每个小正方形的顶点称为格点,点A、B、C均为格点,只用无刻度的直尺,分别在给定的网格中找一格点M,按下列要求作图:(1)在图①中,连结MA、MB,使MA MB=.(2)在图①中,连结MA、MB、MC,使MA MB MC==.(3)在图①中,连结MA、MC,使2AMC ABC∠=∠.10.图①、图2均是44的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以点A,B,C为顶点画一个等腰三角形;(2)在图①中,以点A,B,D,E为顶点画一个面积为3的平行四边形.参考答案:1.(1)作图见解析;(2)作图见解析;(3)作图见解析.【解析】【详解】试题分析:(1)根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.试题解析:(1)如图①,符合条件的C点有5个:;(2)如图①,正方形ABCD即为满足条件的图形:;(3)如图①,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.2.(1)见解析;(2)见解析.【解析】【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【详解】(1)如图①、①所示,①ABC和①ABD即为所求;(2)如图①所示,①ABCD即为所求.【点睛】本题考查了等腰三角形的判定、等边三角形的性质、平行四边形的判定,正确分析网格特点是解题的关键.3.作图见解析.【解析】【详解】【分析】结合网格特点以及轴对称图形的定义进行作图,然后用全等四边形的定义判断即可得符合题意的图形.【详解】如图所示:【点睛】本题考查了作图﹣轴对称变换,以及全等形的判定,熟练掌握各自的性质是解本题的关键.4.(1)点D→D1→D2→D经过的路径如图所示见解析;(2)轴对称;(3)周长为8π.【解析】【分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可.【详解】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,(3)周长=4×904180π⨯⨯=8π.故答案为(1)点D→D1→D2→D经过的路径如图所示见解析;(2)轴对称;(3)8π.【点睛】本题考查作图——旋转变换、轴对称图形等知识,解题的关键是理解题意,正确画出图形. 5.(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)直接利用三角形的面积的计算方法得出符合题意的图形;(2)直接利用三角形面积求法得出答案;(3)根据矩形函数三角形的面积的求法进而得出答案.【详解】解:(1)如图①所示,ABM∆即为所求;(2)如图①所示,CDN∆即为所求;(3)如图①所示,四边形EFGH即为所求;【点睛】考核知识点:作三角形和四边形.利用三角形面积公式求解是关键.6.(1)见解析;(2)见解析.【解析】【分析】(1)根据菱形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图,菱形AEBF即为所求.(2)如图,四边形CGDH即为所求.【点睛】本题考查作图-应用与设计,菱形的判定和性质,直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(1)图见解析;(2)图见解析;(3)图见解析.【解析】【分析】⨯的正方形网格的对称轴,根据对称性即可在图①中,描出点AB的对(1)先画出一条33称点MN,它们一定在格点上,再连接MN即可.(2)同(1)方法可解;(3)同(1)方法可解;【详解】⨯的正方形网格的对称轴l,描出点AB关于直线l的对称点MN,连解:(1)如图①,33接MN即为所求;(2)如图①,同理(1)可得,PQ即为所求;(3)如图①,同理(1)可得,DEF∆即为所求.【点睛】本题考查了作图-轴对称变换,解决本题的关键是找到图形对称轴的位置.8.见详解(答案不唯一)【解析】【分析】因为点C在格点上,故可将直尺的一角与线段AB点A重合,直尺边长所在直线经过33⨯正方形网格左上角第一个格点,继而以点A为旋转中心,逆时针旋转直尺,当直尺边长所在直线与正方形格点相交时,确定点C的可能位置,顺次连接A、B、C三点,按照题目要求排除不符合条件的C点,作图完毕后可根据三角形面积公式判断其面积是否相等.【详解】经计算可得下图中:图①面积为12;图①面积为1;图①面积为32,面积不等符合题目要求(2),且符合题目要求(1)以及要求(3).故本题答案如下:【点睛】本题考查三角形的分类及其作图,难度较低,按照题目要求作图即可.9.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)由勾股定理可求得AM=BM=5,即可得点M的位置;(2)由勾股定理可求得AB=BC=10,AC=25,即可得22220AB BC AC+==,再由勾股定理的逆定理可判定①ABC为等腰直角三角形,点M即为斜边AC的中点,由此可得点M的位置;(3)作出AB、AC的垂直平分线,交点即为M,M即为①ABC外接圆的圆心,连接AM,CM,根据圆周角定理可得2AMC ABC∠=∠,由此即可确定点M的位置.【详解】(1)如图①所示,点M即为所求.(2)如图①所示,点M即为所求.(3)如图①所示,点M即为所求.【点睛】本题考查了基本作图,解决第(3)题时,确定①ABC外接圆的圆心是解决问题的关键.10.(1)见解析;(2)见解析【解析】【分析】(1)根据等腰三角形的定义画出图形即可:如以B为顶点,AC为底边,即可做出等腰三角形;(2)作底为1,高为3的平行四边形即可.【详解】解:(1)如图①中,此时以B为顶点,AC为底边,该ABC即为所求(答案不唯一).(2)如图①中,此时底1AE=,高3h=,因此四边形ABDE即为所求.【点睛】本题考查了等腰三角形的性质和平行四边形的性质,解题的关键掌握等腰三角形和平行四边形的基本性质.。
全国181套中考数学试题分类汇编33⽹格问题33⽹格问题⼀、选择题1.(浙江⾈⼭、嘉兴3分)如图,点A、B、C、D、O都在⽅格纸的格点上,若△COD是由△AOB 绕点O按逆时针⽅向旋转⽽得,则旋转的⾓度为(A)30°(B)45°(C)90°(D)135°【答案】C。
【考点】旋转的性质,勾股定理的逆定理。
【分析】△COD是由△AOB绕点O按逆时针⽅向旋转⽽得,由图可知,∠AOC为旋转⾓,可利⽤△AOC的三边关系解答:设⼩⽅格的边长为1,从图知,=AC=4。
从⽽OA,OC,AC满⾜OC2+OA2=AC2,∴△A OC是直⾓三⾓形,∴∠AOC=90°。
故选C。
2.(浙江⾦华、丽⽔3分)如图,在平⾯直⾓坐标系中,过格点A,B,C作⼀圆弧,点B与下列格点的连线中,能够与该圆弧相切的是A、点(0,3)B、点(2,3)C、点(5,1)D、点(6,1)【答案】 C。
【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理。
【分析】如图,根据垂径定理的性质得出圆⼼所在位置O(2,0),再根据切线的性质得出∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1)。
故选C。
3.(⼴西贺州3分)如图,在⽅格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格,B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针⽅向90o旋转,再右平移6格D.把△ABC绕着点A逆时针⽅向90o旋转,再右平移6格【答案】D。
【考点】平移和旋转变换。
【分析】根据平移和旋转变换的特点,直接得出结果。
故选D。
4.(⼴西南宁3分)在边长为1的⼩正⽅形组成的⽹格中,有如图所⽰的A 、B 两点,在格点中任意放置点C ,恰好能使△A BC 的⾯积为1的概率为A .3 25 B .4 25 C . 1 5 D . 625【答案】D 。
初三数学专题复习【基础训练】1.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则tan∠BED 等于.2.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD 长,得△DEF(B、C的对应点分别为E、F),则BE长为.3.如图,在4×4的网格纸中,△ABC的三个顶点都在格点上.现要在这张网格纸中找出一格点作为旋转中心,绕着这个中心旋转后的三角形的顶点也在格点上,若旋转前后的两个三角形构成中心对称图形,那么满足条件的旋转中心有个.4.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(画出图形)(3)△A2B2C2的面积是平方单位.【典型例题】例1.(1)如图所示的网格是正方形网格,则∠BAC﹣∠DAE=°(点A,B,C,D,E是网格线交点).(2)10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为.例2.如图是4×4的正方形网格,每个小正方形的边长均为1且顶点称为格点,点A,B均在格点上.在网格中建立平面直角坐标系,且A(﹣1,1),B(1,2).如果点C也在此4×4的正方形网格的格点上,且△ABC是等腰三角形,那么当△ABC的面积最大时,点C的坐标为.例3.如图,每个小正方形的边长都是1的方格纸中,有线段AB和线段CD,点A、B、C、D的端点都在小正方形的顶点上.(1)在方格纸中画出一个以线段AB为一边的菱形ABEF,所画的菱形的各顶点必须在小正方形的顶点上,并且其面积为20.(2)在方格纸中以CD为腰画出等腰三角形CDK,点K在小正方形的顶点上,且∠KCD=45°.(3)在(1)、(2)的条件下,连接EK,请直接写出线段EK的长.例4.定义:如果一个直角三角形的两条直角边的比为1:2,那么这个三角形叫做“半正切三角形”.(1)如图①,正方形网格中,已知格点A,B,在格点C,D,E,F中,与A,B能构成“半正切三角形”的是点;(2)如图②,△ABC(BC<AC)为“半正切三角形”,点M在斜边AB上,点D在边AC上,将射线MD绕点M逆时针旋转90°,所得射线交边BC于点E,连接DE.小彤发现:若M为斜边AB的中点,则△DEM一定为“半正切三角形”.请判断“小彤发现”是否正确?并说明理由;【巩固练习】1.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为.2.如图,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC′B′,使点B′落在射线AC上,则cos∠B′CB的值为.3.如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAC+∠ACD=°.4.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=,BC=.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.5.已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN 的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).6.在如图9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,无需画图,直接写出P、Q两点的坐标.7.如图是由边长相等的小正方形组成的网格,点A、B均在格点上.(1)在网格中,用无刻度的直尺画等腰直角三角形ACB.使∠ACB=90;(2)在(1)的条件下,点D在AC上(点D可以不在格点上).在网格中,用无刻度的直尺画出∠CBD,使tan∠CBD=.8.按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.9.如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B 作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B 重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm1 1.52 2.53 3.54y/cm0 3.7 3.8 3.3 2.5(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为cm.10.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是________(4)△ABC在整个平移过程中线段AB 扫过的面积为________(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有______个。
中考数学之尺规作图真题汇编一、网格纸作图【2019·武汉】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.【2019·无锡】按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【2020·安徽】如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网M N在网格线上,格线的交点)为端点的线段AB,线段,()1画出线段AB关于线段MN所在直线对称的线段11A B(点A B分别为,A B的对应点);11()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可; (2)根据旋转的定义作图可得线段B 1A 2.【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A 即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.【2021·荆州】如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED 与AD 的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD 为边画正方形ABCD ,再以线段DE 为斜边画等腰直角三角形DEF ,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.【分析】(1)根据正方形,等腰直角三角形的定义画出图形即可.(2)画出边长为的正方形即可.【解答】解:(1)如图,正方形ABCD,△DEF即为所求.(2)如图,正方形BKFG即为所求.二、角平分线【2021·铜仁】.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6【分析】利用基本作图得到AF平分∠BAC,过F点作FH⊥AB于H,如图,根据角平分线的性质得到FH=FC,再根据勾股定理计算出AC=6,设CF=x,则FH=x,然后利用面积法得到×10•x+×6•x=×6×8,解得x=3,最后利用勾股定理计算AF的长.【解答】解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.三、垂直平分线【2019·泰州】如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.【2021·北部湾】如图,四边形ABCD中,AB//CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.【答案】(1)证明:∵AB//CD,∴∠ACD=∠CAB,在△ABC和△CDA中,{∠B=∠D∠CAB=∠ACD AC=CA,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:(3)解:由(1)知:△ABC≌△CDA,∵四边形ABCD的面积为20,∴S△ABC=S△CDA=10,∴12AB⋅CE=10,∵AB=5,∴CE=4.【2019·盐城】如图,AD是△ABC的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是形.(直接写出答案)【解答】解:(1)如图,直线EF即为所求.(2)∵AD平分∠ABC,∴∠BAD=∠CAD,∴∠BAD=∠CAD,∵∠AOE=∠AOF=90°,AO=AO,∴△AOE≌△AOF(ASA),∴AE=AF,∵EF垂直平分线段AD,∴EA=ED,F A=FD,∴EA=ED=DF=AF,∴四边形AEDF是菱形.故答案为菱形.四、全等或相似【2019·福建】如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.(2)证明(略)【答案】见解析【解析】【2021·贵港】尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB >AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.CBACBA【分析】(1)作线段BC的垂直平分线交AB于点D,连接CD即可.(2)作∠ADT=∠ACB,射线DT交AC于点E,点E即为所求.【解答】解:(1)如图,点D即为所求.(2)如图,点E即为所求.五、三角形四心(内心、外心、重心、垂心)【2019·陇南】已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB=√32+42=5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、其他类型【2021·山西】已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形.【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.。
关于网格图形问题我们知道,能够完全重合的两个图形,叫做全等形。
请你把下面4×4的正方形方格图形沿着虚线分割成两个全等的图形。
〖解〗:分割方法如下:〖反思〗:1、还有其它分割方法吗?2、从上面的分割方法中,你能发现分割的规律吗?题目:在△ABC中,AB=AC,CG⊥BA交BA的延长线与点G,一等腰三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一直角边与AC边在一条直线上,另一条直角边恰好经过点B,(1)、在图1中,请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想。
(图1)(2)、当三角尺沿AC方向平移到图2所示的位置时,一直角边仍与AC边在同一条直线上,另一条直角边交BC边于点D,过点D作DE⊥BA交BA于点E,此时,请你通过观察、测量DE、DF与CG 的长度,猜想并写出DE+DF与CG满足的数量关系,然后证明你的猜想。
(图2)(3)、当三角尺在(2)、的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)(图3)〖点评〗:本题以图形的平移为素材,要求学生发现并证明自己所得的结论,将合情推理与逻辑推理融为一体,突出对数学思考的考察。
本题选自《2008年安徽省初中毕业学业考试纲要》数学试题样卷,仅题目文字就超过300字,又出现动点和平移问题,实在可以称之为一个“庞然大物”,如果你是一位初中生,千万不要被它吓到。
仔细审题,你会发现实际考察平时学习的两个小问题:1、等腰三角形两腰上的高相等(应用三角形的全等或三角形的面积公式证明);2、等腰三角形底边上任意一点到两腰的距离和等于腰上的高(综合应用等腰三角形的性质、三角形的全等、矩形的判定和性质或三角形的面积公式证明)。
所以,在第一轮数学复习时,要注意概念复习和基础题的复习,不要脱离课本,注重数学思想和数学方法的复习。
对一些比较典型的题目,进行一题多思,一题多变,培养我们分析问题和解决问题的能力,以适应中考的需要。
2022年中考数学三轮复习:尺规作图一.选择题(共10小题)1.(2021•通山县模拟)如图,在直径为AB的半圆O中,C为半圆上一点,连接AC,BC,利用尺规在AB,AC上分别截取AD,AE,使AE=AD;分别以D,E为圆心、以大于DE 的长为半径作弧,两弧在∠BAC内交于点F;作射线AF交BC于点G.若AC=,AG =3,P为AB上一动点,则GP的最小值为()A.2B.C.4D.无法确定2.(2021•兰州模拟)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,小于AC的长为半径画弧,分别交AC,AB于点E,D.再分别以点E,D为圆心,大于DE的长为半径画弧,两弧在△ABC的内部交于点F,延长AF交BC于点G,若BG=5,tan B=,则AC=()A.B.C.8D.6 3.(2021•方城县三模)如图,点C在x轴上,OA=OC,分别以点A,C为圆心、大于AC 的长为半径作弧,两弧交于点E,作射线OE,交AC于点B,在射线OE上任取一点D,连接DC.若BO=AC=8,CD=5,则点D的坐标为()A.(,4)B.(,4)C.(,4)D.()4.(2021•思明区校级二模)如图,已知∠AOB,按以下步骤作图:①在射线OA上取一点,以点O为圆心,OC长为半径作,交射线OB于点D;②连接CD,分别以点C、D为圆心,CD长为半径作弧,交于点M、N;③连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠CODB.点M与点D关于直线OA对称C.若∠AOB=20°,则D.MN∥CD5.(2021•天宁区校级二模)如图,在△ABC中,∠ABC=90°,分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N,作直线MN交AC于点E,交BC 于点F,若=,则tan∠ACB的值为()A.B.C.D.6.(2021•岳麓区校级三模)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN,分别交AB、AC于点E、F;第三步,连接DE,DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8 7.(2021•荆州模拟)如图,在等腰△ABC中,AB=AC=.BC=8,按下列步骤作图:①以点A为圆心,适当的长为半径作弧,分别交AB.AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M.N作直线MN.交射线AH于点O;③以点O为圆心,线段OA的长为半径作圆.则⊙O的半径为()A.2B.10C.4D.5 8.(2021•河南模拟)如图,在▱ABCD中,以A为圆心,以AB长为半径作弧,交AD于点F,连接BF,再分别以B,F为圆心,以大于BF的长为半径作弧,两弧交于点G,连接AG并延长,交BC于点E,交BF于点M,则∠AMB的度数为()A.80°B.90°C.100°D.120°9.(2021•定海区模拟)如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠C度数为()A.20°B.30°C.36°D.40°10.(2021•三门峡一模)如图,在平面直角坐标系中,△ABC为等腰直角三角形,A(﹣2,0),B(0,2),按以下步骤作图:①以点A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;②再分别以点M,N为圆心,大于MN的长为半径作弧,两弧相交于点G,作射线AG,交BC于点E.则点E的坐标为()A.(1,1)B.(1,4)C.(2,4)D.(2,2)二.填空题(共5小题)11.(2021•靖西市模拟)如图,菱形ABCD的边长为2,∠A=45°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M,N两点,直线MN交AD于点E,连接CE,则CE的长为.12.(2021•荆州模拟)如图,已知直线AB及其外一点P,求作经过点P且与直线AB平行的直线.作法:(1)连接BP并延长至C,使PC=PB,连接AC;(2)作线段AC的中垂线EF,与AC交于点D,则直线PD为所求.该作法用到的主要数学依据有.13.(2021•兴庆区校级二模)如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC,AB于点M,N;②分别以点M,N 为圆心,以大于的长为半径作弧,两弧相交于点P;③连接AP,交BC于点D.若CD=3,BD=5,则AC的长为.14.(2021•梁园区二模)如图,在▱ABCD中,以A为圆心,以AB长为半径作弧,交AD 于点F,连接BF,再分别以B、F为圆心,以大于BF的长为半径作弧,两弧交于点G,连接AG并延长,交BC于点E,交BF于点M,则∠AMB的度数为.15.(2021•昆明模拟)如图,已知△ABC,AB=BC=1,∠B=36°,以点A为圆心,任意长为半径作弧,分别交AB、AC于点M、N,分别以M、N为圆心,以大于MN长为半径作弧,两弧在∠BAC内交于点P,连接AP交BC于点E,则BE的长是.三.解答题(共5小题)16.(2021•南关区四模)如图是7×5的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,回答下列问题.(要求:作图只用无刻度的直尺)(1)边AC的长度为;(2)作△ABC的角平分线AD;(3)已知点P在线段AB上,点Q在(2)作出的线段AD上,当PQ+BQ的长度最小时,在网格中作出△PBQ.17.(2021•思明区校级二模)如图,已知△ABC.(1)请用不带刻度的直尺和圆规在AC边上作一点D,使△ABD的周长等于AB+AC;(保留作图痕迹,不写作法)(2)在(1)的条件下,若AB=BC=3,CD=.求证:AB⊥BD.18.(2021•思明区校级二模)如图,Rt△ACB中,∠C=90°,点O为边AB中点,且AB =10,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求Rt△ABC的面积.19.(2021•福建模拟)如图,菱形ABCD中,∠B=60°,AC为对角线,P是边BC延长线上一点,连接AP.(1)在线段AP上求作点M,使得∠AMC=120°(要求:尺规作图,保留痕迹,不写作法);(2)在(1)的作图条件下,直线AB交直线CM与点Q,求证:P,D,Q三点共线.20.(2021•武汉模拟)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫格点,△ABC的顶点都在格点上,请仅用无刻度的直尺在所给的网格中完成下列画(画图过程用虚线,画图结果用实线):(1)△ABC的周长为;(2)如图1,点D,P分别是AB与竖格和横格线的交点、画出点P关于过点D竖格线的对称点Q;(3)在图1中画△ABC的角平分线BE;(4)将边AB绕点B逆时针旋转∠ABC的度数得到线段BF,在图2中画出点F.2022年中考数学三轮复习:尺规作图参考答案与试题解析一.选择题(共10小题)1.(2021•通山县模拟)如图,在直径为AB的半圆O中,C为半圆上一点,连接AC,BC,利用尺规在AB,AC上分别截取AD,AE,使AE=AD;分别以D,E为圆心、以大于DE 的长为半径作弧,两弧在∠BAC内交于点F;作射线AF交BC于点G.若AC=,AG =3,P为AB上一动点,则GP的最小值为()A.2B.C.4D.无法确定【考点】作图—复杂作图;勾股定理.【专题】作图题;几何直观;推理能力.【分析】利用基本作图得到AG平分∠BAC,再根据圆周角定理得到∠C=90°,则利用勾股定理可计算出CG=2,接着利用角平分线的性质得到GH=GC=2,然后根据垂线段最短求解.【解答】解:由作法得AG平分∠BAC,∵AB为直径,∴∠C=90°,在Rt△ACG中,CG===2,∵AG平分∠BAC,GC⊥AC,GH⊥AB,∴GH=GC=2,∵P为AB上一动点,∴GP的最小值为2.故选:A.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质、圆周角定理和垂线段最短.2.(2021•兰州模拟)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,小于AC的长为半径画弧,分别交AC,AB于点E,D.再分别以点E,D为圆心,大于DE的长为半径画弧,两弧在△ABC的内部交于点F,延长AF交BC于点G,若BG=5,tan B=,则AC=()A.B.C.8D.6【考点】角平分线的性质;作图—基本作图;解直角三角形.【专题】作图题;几何直观;推理能力.【分析】过G点作GH⊥AB于H,如图,由作法得AG平分∠BAC,根据角平分线的性质得到GH=GC,利用正切的定义得到tan B==,则可设GH=3t,BH=4t,所以BG=5t=5,解得t=1,从而得到CG=GH=3,然后在Rt△ABC中利用正切的定义可求出AC的长.【解答】解:过G点作GH⊥AB于H,如图,由作法得AG平分∠BAC,而GH⊥AB,GC⊥AC,∴GH=GC,在Rt△BGH中,∵tan B==,∴设GH=3t,BH=4t,∴BG=5t,即5t=5,解得t=1,∴CG=GH=3,∴BC=BG+CG=5+3=8,在Rt△ABC中,∵tan B==,∴AC=BC=×8=6.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了角平分线的性质和解直角三角形.3.(2021•方城县三模)如图,点C在x轴上,OA=OC,分别以点A,C为圆心、大于AC 的长为半径作弧,两弧交于点E,作射线OE,交AC于点B,在射线OE上任取一点D,连接DC.若BO=AC=8,CD=5,则点D的坐标为()A.(,4)B.(,4)C.(,4)D.()【考点】作图—复杂作图.【专题】作图题;几何直观;推理能力.【分析】利用基本作图可判断OD平分∠AOC,则根据等腰三角形的性质得到OD⊥AC,AB=CB=4,再利用勾股定理计算出BD=3,OC=4,作DH⊥x轴于H,如图,证明△OBC∽△OHD,然后利用相似比计算出OH、DH,从而得到D点坐标.【解答】解:由作法得OD平分∠AOC,∵OA=OC,∴OD⊥AC,AB=CB=AC=×8=4,在Rt△CBD中,BD===3,在Rt△OBC中,OC===4,作DH⊥x轴于H,如图,∵∠COB=∠DOH,∠OBC=∠OHD,∴△OBC∽△OHD,∴==,即==,∴OH=,DH=,∴D点坐标为(,).故选:D.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和相似三角形的判定与性质.4.(2021•思明区校级二模)如图,已知∠AOB,按以下步骤作图:①在射线OA上取一点,以点O为圆心,OC长为半径作,交射线OB于点D;②连接CD,分别以点C、D为圆心,CD长为半径作弧,交于点M、N;③连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠CODB.点M与点D关于直线OA对称C.若∠AOB=20°,则D.MN∥CD【考点】平行线的判定;作图—复杂作图;轴对称的性质.【专题】作图题;几何直观.【分析】根据等弧所对圆周角相等可以判断A;根据平行线的判定可以判断D;根据CM =CD,OM=OD,可得OA垂直平分MD,可以判断B;根据∠AOB=∠AOM=∠BON =20°,得∠MON=60°,由OM=ON,可得△OMN为等边三角形,进而可以判断C.【解答】解:由作法得CM=CD,∴=,∴∠COM=∠COD,所以A选项的结论正确;连接MD,∵=,∴∠DMN=∠MDC,∴CD∥MN,所以D选项的结论正确;∵CM=CD,OM=OD,∴OA垂直平分MD,∴点M与点D关于OA对称,所以B选项的结论正确;∵∠AOB=∠AOM=∠BON=20°,∴∠MON=60°,∵OM=ON,∴△OMN为等边三角形,∴OM=MN,所以C选项的结论错误.故选:C.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆心角、弧、弦的关系和垂径定理.5.(2021•天宁区校级二模)如图,在△ABC中,∠ABC=90°,分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N,作直线MN交AC于点E,交BC 于点F,若=,则tan∠ACB的值为()A.B.C.D.【考点】线段垂直平分线的性质;作图—基本作图;解直角三角形.【专题】作图题;几何直观;推理能力.【分析】连接AF,设AF=CF=5k,BF=3k,利用勾股定理求出AB,可得结论.【解答】解:连接AF.由作图可知,MN垂直平分线段AC,∴F A=FC,∵BF:FC=3:5,∴可以假设BF=3k,CF=AF=5k,∵∠B=90°,∴AB===4k,∴BC=BF+CF=8k,∴tan∠ACB===,故选:D.【点评】本题考查作图﹣基本作图,线段的垂直平分线,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.6.(2021•岳麓区校级三模)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN,分别交AB、AC于点E、F;第三步,连接DE,DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【考点】线段垂直平分线的性质;作图—复杂作图.【专题】作图题;推理能力;应用意识.【分析】根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE ∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选:D.【点评】本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.7.(2021•荆州模拟)如图,在等腰△ABC中,AB=AC=.BC=8,按下列步骤作图:①以点A为圆心,适当的长为半径作弧,分别交AB.AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M.N作直线MN.交射线AH于点O;③以点O为圆心,线段OA的长为半径作圆.则⊙O的半径为()A.2B.10C.4D.5【考点】作图—复杂作图;等腰三角形的性质.【专题】作图题;几何直观;运算能力;推理能力.【分析】设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.【解答】解:如图,设OA交BC于T.半径为r,∵AB=AC=2,AO平分∠BAC,∴AO⊥BC,BT=TC=BC=4,∴AT===2,设圆的半径为r,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.【点评】本题考查作图﹣复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.(2021•河南模拟)如图,在▱ABCD中,以A为圆心,以AB长为半径作弧,交AD于点F,连接BF,再分别以B,F为圆心,以大于BF的长为半径作弧,两弧交于点G,连接AG并延长,交BC于点E,交BF于点M,则∠AMB的度数为()A.80°B.90°C.100°D.120°【考点】平行四边形的性质;作图—复杂作图.【专题】作图题;几何直观.【分析】利用等腰三角形的三线合一的性质解决问题即可.【解答】解:由作图可知,AF=AB,AM平分∠BAD,∴AM⊥BF,∴∠AMB=90°,故选:B.【点评】本题考查作图﹣复杂作图,平行四边形的性质,等腰三角形的三线合一的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.(2021•定海区模拟)如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠C度数为()A.20°B.30°C.36°D.40°【考点】作图—复杂作图.【专题】作图题;几何直观.【分析】连接AD,根据作图过程可得,AE是BD的垂直平分线,DG=CG,AB=AD=AG,设∠C=x,则∠CDG=x,∠AGD=2x,根据∠ADB+∠ADG+∠GDC=2x+2x+x=180°,求出x的值即可.【解答】解:如图,连接AD,根据作图过程可知:AE是BD的垂直平分线,DG=CG,AB=AD=AG,设∠C=x,则∠CDG=x,∠AGD=2x,∴∠ADG=∠AGD=2x,∵∠B=2∠C,∴∠B=2x,∵AD=AB,∴∠ADB=∠B=2x,∴∠ADB+∠ADG+∠GDC=2x+2x+x=180°,∴x=36°,∴∠C=36°,故选:C.【点评】本题考查了作图﹣复杂作图,解决本题的关键是理解作图过程,利用线段垂直平分线的性质、等腰三角形的性质、三角形外角的性质.10.(2021•三门峡一模)如图,在平面直角坐标系中,△ABC为等腰直角三角形,A(﹣2,0),B(0,2),按以下步骤作图:①以点A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;②再分别以点M,N为圆心,大于MN的长为半径作弧,两弧相交于点G,作射线AG,交BC于点E.则点E的坐标为()A.(1,1)B.(1,4)C.(2,4)D.(2,2)【考点】坐标与图形性质;等腰直角三角形;作图—复杂作图.【专题】作图题;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EH⊥AC于点H,由题目作图知,AD是∠CAB的平分线,则EH=EB,AB=AH,证明△CEH是等腰直角三角形,进而求解.【解答】解:过点E作EH⊥AC于点H,由题目作图知,AE是∠CAB的平分线,则EH=EB,∴AB=AH,∵△ABC为等腰直角三角形,故∠ACB=45°,则△EHC为等腰直角三角形,故EH=HC,∵A(﹣2,0),B(0,2),∴OA=OB=OC=2,∴AB=2,∴AH=2,∴OH=OC﹣CH=2﹣CH,∴AH=OA+OH=4﹣CH,∴4﹣CH=2,∴CH=4﹣2,∴OH=2﹣CH=2﹣(4﹣2)=2﹣2.∴点E的坐标为(2,4).故选:C.【点评】本题考查的是作图﹣复杂作图,坐标与图形性质,角平分线的性质,等腰直角三角形的性质等,有一定的综合性,难度适中.解决本题的关键是掌握角平分线的作法.二.填空题(共5小题)11.(2021•靖西市模拟)如图,菱形ABCD的边长为2,∠A=45°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M,N两点,直线MN交AD于点E,连接CE,则CE的长为.【考点】作图—基本作图;线段垂直平分线的性质;菱形的性质.【专题】作图题;几何直观;推理能力.【分析】连接BE,如图,利用基本作图可判断MN垂直平分AB,则EA=EB,所以∠EBA=∠A=45°,再根据菱形的性质得到AB=BC=2,AD∥BC,所以AE=BE=,然后利用平行线的性质得到∠EBC=∠AEB=90°,最后利用勾股定理可计算出CE的长.【解答】解:连接BE,如图,由作法得MN垂直平分AB,∴EA=EB,∴∠EBA=∠A=45°,∴∠AEB=90°,∵菱形ABCD的边长为2,∴AB=BC=2,AD∥BC,∴AE=BE=AB=,∵AE∥BC,∴∠EBC=∠AEB=90°,∴CE===.故答案为:.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了线段垂直平分线的性质和菱形的性质.12.(2021•荆州模拟)如图,已知直线AB及其外一点P,求作经过点P且与直线AB平行的直线.作法:(1)连接BP并延长至C,使PC=PB,连接AC;(2)作线段AC的中垂线EF,与AC交于点D,则直线PD为所求.该作法用到的主要数学依据有三角形中位线平行于第三边.【考点】平行线的性质;线段垂直平分线的性质;三角形中位线定理;作图—复杂作图.【专题】作图题;几何直观.【分析】利用三角形中位线定理解决问题即可.【解答】解:由作图可知:BP=PC,AD=CD,∴PD∥AB(三角形的中位线平行于第三边),故答案为:三角形的中位线平行于第三边.【点评】本题考查作图﹣复杂作图,三角形中位线定理,线段的垂直平分线等知识,解题的关键是灵活运用所学知识解决问题.13.(2021•兴庆区校级二模)如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC,AB于点M,N;②分别以点M,N 为圆心,以大于的长为半径作弧,两弧相交于点P;③连接AP,交BC于点D.若CD=3,BD=5,则AC的长为6.【考点】作图—复杂作图;角平分线的性质.【专题】作图题;几何直观.【分析】作DE⊥AB,由作图知AP平分∠BAC,依据∠C=∠AED=90°知CD=DE=3,结合BD=5知BE=4,再证Rt△ACD≌Rt△AED得AC=AE,设AC=AE=x,由AC2+BC2=AB2得x2+82=(x+4)2,解之可得答案.【解答】解:如图所示,过点D作DE⊥AB于点E,由作图知AP平分∠BAC,∵∠C=∠AED=90°,∴CD=DE=3,∵BD=5,∴BE=4,∵AD=AD,CD=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,设AC=AE=x,由AC2+BC2=AB2得x2+82=(x+4)2,解得:x=6,即AC=6,故答案为:6.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质、勾股定理等知识点.14.(2021•梁园区二模)如图,在▱ABCD中,以A为圆心,以AB长为半径作弧,交AD 于点F,连接BF,再分别以B、F为圆心,以大于BF的长为半径作弧,两弧交于点G,连接AG并延长,交BC于点E,交BF于点M,则∠AMB的度数为90°.【考点】平行四边形的性质;作图—复杂作图.【专题】作图题;推理填空题;多边形与平行四边形;几何直观;推理能力.【分析】连接FE,首先证明四边形ABEF是菱形,根据菱形的性质即可得结论.【解答】解:如图,结论EF,由作图可知:AB=AF,AE平分∠BAD,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AE=∠AEB=∠BAE,∴AB=BE,∴AF=BE,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,∴∠AMB=90°.故答案为:90°.【点评】本题考查平行四边形的性质和角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(2021•昆明模拟)如图,已知△ABC,AB=BC=1,∠B=36°,以点A为圆心,任意长为半径作弧,分别交AB、AC于点M、N,分别以M、N为圆心,以大于MN长为半径作弧,两弧在∠BAC内交于点P,连接AP交BC于点E,则BE的长是.【考点】解一元二次方程﹣公式法;角平分线的性质;等腰三角形的性质;作图—基本作图;相似三角形的判定与性质.【专题】作图题;等腰三角形与直角三角形;几何直观;运算能力;推理能力.【分析】根据作图过程可得AE平分∠BAC,根据AB=BC=1,∠B=36°,可得BE=AE=AC,证明△BAC∽△AEC,对应边成比例解方程即可求出BE的长.【解答】解:∵AB=BC=1,∠B=36°,∴∠BAC=∠C=72°,根据作图过程可知:AE平分∠BAC,∴∠BAE=∠CAE=BAC=36°,∴∠B=∠BAE=∠CAE,∴BE=AE,∵∠AEC=∠B+∠BAE=72°,∴∠AEC=∠C,∴AE=AC,∴BE=AE=AC,∴△BAC∽△AEC,∴=,∴=,解得BE=(舍去),故答案为:.【点评】本题考查的是作图﹣基本作图,角平分线的性质,等腰三角形的性质,相似三角形的判定与性质,解一元二次方程熟练掌握角平分线的性质是解题的关键.三.解答题(共5小题)16.(2021•南关区四模)如图是7×5的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,回答下列问题.(要求:作图只用无刻度的直尺)(1)边AC的长度为5;(2)作△ABC的角平分线AD;(3)已知点P在线段AB上,点Q在(2)作出的线段AD上,当PQ+BQ的长度最小时,在网格中作出△PBQ.【考点】勾股定理;作图—应用与设计作图;轴对称﹣最短路线问题.【专题】作图题;网格型;平移、旋转与对称;几何直观.【分析】(1)利用网格根据勾股定理即可求出边AC的长度;(2)根据网格即可作△ABC的角平分线AD;(3)已知点P在线段AB上,点Q在(2)作出的线段AD上,当PQ+BQ的长度最小时,在网格中作出△PBQ.【解答】解:(1)根据勾股定理,得AC==5.故答案为:5;(2)如图,AD即为所求;(2)如图,△PBQ即为所求.【点评】本题考查了作图﹣应用与设计作图,勾股定理,轴对称﹣最短路线问题,解决本题的关键是掌握轴对称的性质.17.(2021•思明区校级二模)如图,已知△ABC.(1)请用不带刻度的直尺和圆规在AC边上作一点D,使△ABD的周长等于AB+AC;(保留作图痕迹,不写作法)(2)在(1)的条件下,若AB=BC=3,CD=.求证:AB⊥BD.【考点】作图—复杂作图;勾股定理的逆定理.【专题】作图题;推理能力;应用意识.【分析】(1)作线段BC的垂直平分线交AC于点D,连接BD即可;(2)证明△DBC∽△BAC,推出,可得,,再利用勾股定理的逆定理证明即可.【解答】(1)解:如图,点D为所作;(2)证明:∵AB=AC,∴∠A=∠C,由(1)点D在BC的垂直平分线上,∴∠DBC=∠C,∴∠DBC=∠A,∵∠C=∠C,∴△DBC∽△BAC,∴,∴BC2=AC⋅DC,∴,∴,∵,AB=3,∴AB2+BD2=AD2,∴△ABD是直角三角形,∠ABD=90°,∴AB⊥BD.【点评】本题考查作图﹣复杂作图,相似三角形的判定和性质,勾股定理的逆定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.18.(2021•思明区校级二模)如图,Rt△ACB中,∠C=90°,点O为边AB中点,且AB =10,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求Rt△ABC的面积.【考点】作图—复杂作图;三角形的面积;直角三角形斜边上的中线.【专题】作图题;几何直观;推理能力.【分析】(1)在BC延长线上截取CE=AC,然后作BE的垂直平分线交BC于点D,即可解决问题;(2)连接AE,OD,证明OD是△AEB的中位线,可得AE=2OD=6,根据等腰直角三角形可得AC=6,利用勾股定理可得BC=8,进而可以解决问题.【解答】解:(1)如图,点D即为所求;(2)如上图,连接AE,OD,∵OA=OB,DB=DE,OD=,∴OD是△AEB的中位线,∴AE=2OD=6,∵∠ACE=90°,AC=CE,∴AC=AE=6,∵AB=10,∴BC==8,∴S△ABC=6×8=24.∴Rt△ABC的面积为24.【点评】本题考查了作图﹣复杂作图,三角形的面积,直角三角形斜边上的中线,线段垂直平分线的性质,等腰直角三角形的性质,解决本题的关键是掌握线段垂直平分线的作法.19.(2021•福建模拟)如图,菱形ABCD中,∠B=60°,AC为对角线,P是边BC延长线上一点,连接AP.(1)在线段AP上求作点M,使得∠AMC=120°(要求:尺规作图,保留痕迹,不写作法);(2)在(1)的作图条件下,直线AB交直线CM与点Q,求证:P,D,Q三点共线.【考点】作图—复杂作图;等边三角形的判定与性质;菱形的性质.【专题】作图题;证明题;矩形菱形正方形;几何直观;推理能力.【分析】(1)记AP与CD交于点N,在AD上截取AR=DN,连接CR交AP于点M,即可在线段AP上求作点M,使得∠AMC=120°;(2)根据菱形的性质证明△CAQ∽△PCA,可得,由AC=AD=CD,所以,再由∠QAD=∠DCP=60°,证明△QAD∽△DCP,可得∠AQD=∠CDP,进而可得∠QDP=180°,即得Q,D,P三点共线.【解答】解:(1)如图,点M即为所求;(可以尺规作出△ABC的外接圆与AP的交点M;还可以记AP与CD交于点N,在AD 上截取AR=DN,连接CR交AP于点M).(2)证明:如图,∵四边形ABCD是菱形,∠B=60°∴∠ACB=60°,AC=AD=CD,∵∠AMC=120°,∴∠3=60°,∴∠1+∠2=60°,又∠ACB=60°,∴∠1+∠CP A=60°,∴∠2=∠CP A,∵AC为对角线,∴∠CAQ=∠PCA=120°,∴△CAQ∽△PCA,∴,∵AC=AD=CD,∴,∵∠QAD=∠DCP=60°,∴△QAD∽△DCP,∴∠AQD=∠CDP,在△QAD中,∠AQD+∠QDA=120°,∴∠CDP+∠QDA=120°,∴∠CDP+∠QDA+∠ADC=180°,∴∠QDP=180°,∴Q,D,P三点共线.【点评】本题考查了作图﹣复杂作图,菱形的性质,相似三角形的判定与性质,解决本题的关键是得到△QAD∽△DCP.20.(2021•武汉模拟)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫格点,△ABC的顶点都在格点上,请仅用无刻度的直尺在所给的网格中完成下列画(画图过程用虚线,画图结果用实线):(1)△ABC的周长为9+;(2)如图1,点D,P分别是AB与竖格和横格线的交点、画出点P关于过点D竖格线的对称点Q;(3)在图1中画△ABC的角平分线BE;(4)将边AB绕点B逆时针旋转∠ABC的度数得到线段BF,在图2中画出点F.【考点】勾股定理;勾股定理的逆定理;作图—应用与设计作图;旋转的性质.【专题】作图题;几何直观.【分析】(1)利用勾股定理求出AB,AC,可得结论.(2)连接CD交网格线于Q,点Q即为所求作.(3)取格点E,作射线BE即可.(4)取格点P,作射线CP,取格点M,N连接MN交CP于C′,作射线BC′,取格点Q,K,作直线QK交射线BC′于点F,点F即为所求作.【解答】解:(1)∵AB==5,AC==,BC=4,∴△ABC的周长=9+,故答案为:9+.(2)如图1中,点Q即为所求作.(3)如图2中,射线BE即为所求作.(4)如图2中,点F即为所求作.【点评】本题考查作图﹣应用与设计作图,平行四边形的判定和性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
中考网格作图题的命题立意及解答策略本文对2019年全国各地中考网格作图问题进行梳理, 提炼其命题意图, 并归纳网格作图问题的解题策略, 以期与同行交流探讨。
一、技能立意, 计算作答在格点画图中, 以画图技能立意的试题通常都比较基础, 考查的知识点比较单一, 以格点画图为主要考查目标.例1 (2019年哈尔滨中考题)图1.2是两张形状和大小完全相同的方格纸, 方格纸中每个小正方形的边长均为1, 线段的两个端点均在小正方形的顶点上.(1)在图1中画出以为底边的等腰, 点在小正方形顶点上;(2)在图2中画出以为腰的等腰, 点在小正方形的顶点上, 且的面积为8.分析第(1)问, 要确定格点的位置, 从“形”的角度出发, 点是的垂直平分线和以为直径的圆的交点.从“数”的角度出发, 先由勾股定理, 可以算出, 以为底的等腰直角三角形的腰长, 从而可以确定点的位置(如图3).第(2)问, “画出为腰的等腰”, 既要考虑的情况, 又要考虑的情况, 再根据条件“的面积为8”确定点的位置(如图4).例2 (2019年长春中考题)图5.图6.图7均是的正方形网格, 每个小正方形的顶点称为格点, 小正方形的边长为1, 点均在格点上。
在图5.图6.图7中, 只用无刻度的直尺, 在给定的网格中按要求画图, 所画图形的顶点均在格点上, 不要求写出画法.(1)在图5中以线段为边画一个, 使其面积为6;(2)在图6中以线段为边画一个, 使其面积为6;(3)在图7中以线段为边画一个四边形, 使其面积为9, 且.格点, 如图8(答案不唯一).当底为4时, 面积就为6, 如图9(答案不唯一).第(3)问, 我们知道边长为3的正方形的面积为9, 但不是网格上的边, 我们可用割补法来得到我们想要的图形, 如图10所示, , 则.解题策略在网格中作图, 最基本、最常规的问题就是利用正方形网格的边长为1, 运用勾股定理计算格点线段的长度, 或是利用网格线平行或垂直的基本特征画平行线和垂线.本类型常见的问题跟图形的周长、面积联系比较多, 遇到这类问题的时候, 要先算出周长、面积, 然后利用割补, 平移、旋转等手段来解决.二、思维立意, 分析推理很多格点作图问题, 考查的结果是画图, 实际上是以格点为依托, 把考查逻辑推理能力和分析问题、解决问题的能力融合在一起二例3 (2019年嘉兴中考题)在的方格纸中, 点都在格点上, 按要求画.(1)在图11中找一个格点, 使以点为顶点的四边形是平行四边形;(2)在图12中仅用无刻度的直尺, 把线段三等分(保留画图痕迹, 不写画法).分析第(1)问, 当考虑以为对角线构造平行四边形时, 根据“两组对边分别平行的四边形是平行四边形”, 找到的平行线, 的平行线, 交点即为点.或者根据“两组对边分别相等的四边形是平行四边形”, 找到格点.(如图13, 答案不唯一)第(2)问, 显然在上不能直接找到三等分点.但我们可以另外找到一条三个单位长度的格点线段, 点为的三等分格点.根据“平行线分线段成比例”, 只要过点分别作出的平行线, 就能把线段三等分了。
2021年天津市数学中考专题训练网格作图题31.如图,在每个小正方形的边长为1的网格中,A,B,C均在格点上.(Ⅰ)△ABC的面积为______;(Ⅱ)若有一个边长为6的正方形,且满足点A为该正方形的一个顶点,且点B,点C 分别在该正方形的两条边上,请在如图所示的网格中,用无刻度的直尺,画出这个正方形,并简要说明其它顶点的位置是如何找到的(不要求证明)______.2.如图,在每个小正方形的边长为1的网格中,A,B,C均为格点.(Ⅰ)△ABC的面积等于______;(Ⅱ)请用无刻度的直尺,在如图所示的网格中画出△ABC的角平分线BD,并在AB 边上画出点P,使得PB=PD,并简要说明△ABC的角平分线BD及点P的位置是如何找到的(不要求证明).3.在每个小正方形的边长为1的网格中,点A,B,C均在格点上,点P,Q分别为线段AB,AC上的动点.(Ⅰ)如图(1),当点P,Q分别为AB,AC中点时,PC+PQ的值为______;(Ⅱ)当PC+PQ取得最小值时,在如图(2)所示的网格中,用无刻度的直尺,画出线段PC,PQ,简要说明点P和点Q的位置是如何找到的______.4.如图,在每个小正方形的边长为1的网格中,A,B,C为格点,D为小正方形边的中点.(I)AC的长等于______;(II)点P,Q分别为线段BC,AC上的动点,当PD+PQ取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的(不要求证明)______.5.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均落在格点上.;(Ⅰ)AC的长等于______;(Ⅱ)点P落在格点上,M是边BC上任意一点,点B关于直线AM的对称点为B',当PB'最短时,请在如图所示的网格中,用无刻度的直尺,画出点B',并简要说明点B'的位置是如何找到的.(不要求证明)6.如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(Ⅰ)△ABC的面积为______.(Ⅱ)点P是△ABC内切圆与AB的切点,请在如图所示的网格中,用无刻度的直尺画出点P,并简要说明点P的位置是如何找到的(不要求证明)______.7.如图,在每个小正方形的边长为1的网格中,A,B,D,E为格点,C为AD,BE的延长线的交点.(Ⅰ)sin∠CAB的结果为______;(Ⅱ)若点R在线段AB上,点S在线段BC上,点T在线段AC上,且满足四边形ARST 为菱形,请在如图所示的网格中,用无刻度的直尺,画出菱形ARST,并简要说明点R,S,T的位置是如何找到的(不要求证明)______.8.如图所示,在每个边长都为1的小正方形组成的网格中,点A、P分别为小正方形的中点,B为格点.(I)线段AB的长度等于______;(Ⅱ)在线段AB上存在一个点Q,使得点Q满足∠PQA=45°,请你借助给定的网格,并利用不带刻度的直尺作出∠PQA,并简要说明你是怎么找到点Q的:______.9.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于______;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)______.10.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)△ABC的面积等于______;(Ⅱ)点P为边BC上的动点,当√5AP+BP取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段AP,并简要说明点P的位置是如何找到的(不要求证明)______.11.如图,在由边长都为1的小正方形组成的网格中,点A,B,C均为格点,点P,Q为线段AB上的动点,且满足PQ=1.(Ⅰ)当点Q为线段AB中点时CQ的长度等于______.(Ⅱ)当线段CQ+CP取得最小值时,请借助无刻度直尺在给定的网格中画出点Q,并简要说明你是怎么画出点Q的:______.12.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上(Ⅰ)BC的长等于______.(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出△ABC关于直线BC对称的图形,并简要说明画图方法(不要求证明).13.如图,在由边长都为1的小正方形组成的网格中,点A,B,C,D均为格点(1)线段BC的长度等于______S ABCD,请你借助无刻度直尺在给定的网(2)若K为线段CD上一点,且满足S△BCK=13格中画出满足条件的线段BK,并简要说明你是怎么画出点K的.14.如图,在每个边长都为1的小正方形组成的网格中,A为格点,B,P为小正方形的中点.(I)线段AB的长为______.(Ⅱ)在线段AB上存在一个点Q,使得点Q满足∠PQB=45°,请你借助给定的网格,用无刻度的直尺作出∠PQB,并简要说明你是怎么找到点Q的______.15.在每个小正方形的边长为1的网格中,有△ABC,点A,B,C都在格点上(Ⅰ)△ABC的面积等于______.(Ⅱ)求作其内接正方形,使其一边在BC上,另两个顶点各在AB,AC上.在如图所示的网格中,请你用无刻度的直尺,画出该正方形,并简要说明画图的方法(不要求证明)______.16.如图,在每个小正方形的边长为1的网格中,A,B均为格点.(1)AB的长等于______.(2)请用无刻度的直尺,在如图所示的网格中求作一点P,使得以AB为底边的等腰三角形,并简要说明点P的位置是如何找到的(不要求证明).PAB的面积等于32。
中考网格作图题专项训练一.填空题(共1小题)1.(2006•烟台)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等_________ .二.解答题(共17小题)2.作图题,在网格中作图:①过C点作线段CD,使CD∥AB.②过C点作线段CE,使CE⊥AB.3.作图题,在如图所示的网格图中,画出一个与图中三角形相似的三角形.4.作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为2,和3的三角形.(要求三角形的顶点在小格的顶点处).5.在如图的网格中作图:(1)过点C作直线AB的垂线;(2)过点C作直线AB的平行线.6.基本作图(保留作图痕迹不写作法.)在网格中求作一个三角形A′B′C′,使它与已知△ABC相似,且相似比为1:2;并分别求出两个三角形的周长.7.在如图所示的正方形网格中,已知线段AB,A、B均为格点.(1)请在网格中画出一个以AB为底边的等腰三角形ABC,且点C也为格点;(2)作出△ABC的外接圆(尺规作图,保留作图痕迹,不写作法与证明).8.正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并求出这个直角三角形的面积.(要求:三个网格中的直角三角形互不全等)9.(2010•丰台区二模)在正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形,小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,使三个网格中的直角三角形互不全等,并分别求出这三个直角三角形的斜边长.10.△ABC在网格中如图,请根据下列要求作图:(1)过点C作AB的平行线.(2)将△ABC平移,使顶点B平移到点A,画出平移后的三角形.11.作图题:正方形网格中有△OAB,请你以O为位似中心放大,使新图形与原图形的对应线段比是2:1(不写作法)12.如图所示,在8×8的网格中,我们把△ABC在图1中作轴对称变换,在图2中作旋转变换,已知网格中的线段ED、线段MN分别是边AB经两种不同变换后所得的像,请在两图中分别画出△ABC经各自变换后的像,并标出对称轴和旋转中心(要求:不写作法,作图工具不限,但要保留作图痕迹).13.按下列要求作图:(1)在正方形网格中三条不同实线上各取一个格点,使其中任意两点,不在同一实线上;(2)连接三个格点,使之构成直角三角形(如图1),请在右边网格在作出三个直角三角形,使四个直角三角形互不全等.14.作图:(1)在图1中画出△ABC关于点O的中心对称图形.(2)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图2正方形网格(每个小正方形边长为1)中画出格点△DEF,使DE=DF=5,EF=.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)画出△ABC中BC边上的高(需写出结论);(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF;(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积.16.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.利用网格完成下面的作图:(1)画出点B关于直线AC的对称点D;(2)画出一个格点△A1B1C1,并使它的三边长分别是3、、.17.作图题:(不要求写作法)如图,在边长为单位1的正方形网格中,有一个格点△ABC(各个顶点都是正方形网格的格点)(1)画出△ABC关于直线1对称的格点△A1B1C1;(2)画出以O点为位似中心,把△ABC放大到2倍的△A2B2C2.18.如图,图(1)、图(2)是边长为1的正方形网格,按下列要求作图并回答问题.(1)画出△ABC,点C在格点上且△ABC是等腰三角形,其腰长是_________ ;(2)画出正方形ABCD,且C、D在格点上,其周长是_________ .2014年5月294464107的初中数学组卷参考答案与试题解析一.填空题(共1小题)1.(2006•烟台)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等如图.考点:作图—复杂作图.专题:压轴题;网格型.分析:本题中得出直角三角形的方法如图:如果设AE=x,BE=4﹣x,如果∠FEG=90°,△AFE∽△GBE。
专题复习(三)网格作图题
1.(2016·合肥模拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格
线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.
(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;
(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.
解:(1)如图,四边形AB1C1D1为所作.
(2)如图,四边形AB2C2D2为所作.
2.(2016·蜀山区二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△
ABC的顶点均在格点上,点B的坐标为(1,0).
(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;
(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.
解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).
(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).
3.(2016·安徽二模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.
(1)请画出△ABC关于y轴对称的△A1B1C1;
(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;
(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.
解:(1)如图所示,△A1B1C1即为所求.
(2)如图所示,△A2B2C2即为所求.
(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).
4.(2016·芜湖模拟)如图,在9×7的小正方形网格中,△ABC 的顶点A ,B ,C 在网格的格点上.将△ABC 向左平移3个单位,再向上平移3个单位得到△A ′B ′C ′.再将△ABC 按一定规律依次旋转:第1次,将△ABC 绕点B 顺时针旋转90°得到△A 1BC 1;第2次,将△A 1BC 1绕点A 1顺时针旋转90°得到△A 1B 1C 2;第3次,将△A 1B 1C 2绕点C 2顺时针旋转90°得到△A 2B 2C 2;第4次,将△A 2B 2C 2绕点B 2顺时针旋转90°得到△A 3B 2C 3,依次旋转下去.
(1)在网格中画出△A′B′C′和△A 2B 2C 2;
(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.
解:(1)△A′B′C′和△A 2B 2C 2的图象如图所示.
(2)通过画图可知,△ABC 至少在第8次旋转后得到△A′B′C′.
5.如图,△ABC 的三个顶点和点O 都在正方形网格的格点上,每个小正方形的边长都为1.
(1)将△ABC 先向右平移4个单位,再向上平移2个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;
(2)请画出△A 2B 2C 2,使△A 2B 2C 2和△ABC 关于点O 成中心对称;
(3)在(1)、(2)中所得到的△A 1B 1C 1与△A 2B 2C 2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.
解:(1)如图所示,△A 1B 1C 1,即为所求.
(2)如图所示,△A 2B 2C 2,即为所求.
(3)如图所示,△A 1B 1C 1与△A 2B 2C 2成轴对称,直线a ,b 即为所求.
6.(2016·阜阳校级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.
(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;
(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)
解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.
(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2
360
=4+2π.
7.(2016·昆明)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
解:(1)如图所示.
(2)如图所示.
(3)找出A关于x轴的对称点A′(1,-1),连接BA′,与x轴交点即为P.如图所示,点P坐标为(2,0).
8.(2016·濉溪县模拟)如图,已知△ABC的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).
(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C 的对应点C1坐标;(不必画出平移后的三角形)
(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;
(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△AB2C2.
解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).
(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).
(3)如图所示,△AB2C2即为所示.。