2019高考数学模拟试题及答案解析
- 格式:doc
- 大小:2.62 MB
- 文档页数:20
2019年高考数学(理)模拟试题(三)含答案及解析2019年高考数学(理)模拟试题(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z满足(1-i)z=2+i,则z的共轭复数在复平面内对应的点在()A。
第一象限B。
第二象限C。
第三象限D。
第四象限2.设集合M={x|x<36},N={2,4,6,8},则M∩N=()A。
{2,4}B。
{2,4,6}C。
{2,6}D。
{2,4,6,8}3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A。
1/4B。
1/3C。
1/2D。
2/34.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A。
42种B。
48种C。
54种D。
60种5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为()A。
32π/3B。
64π/3C。
32πD。
64π/26.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),AC=BC,则△ABC的欧拉线方程为()A。
2x+y-3=0B。
2x-y+3=0C。
x-2y-3=0D。
x-2y+3=07.执行如图所示的程序框图,则输出S的值为()A。
成人高考《高等数学(二)》模拟试题和答案解析(一)一、选择题:1~10 小题,每小题 4 分,共40 分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.21.当 x→0时,x 是 x-1n(1+x) 的().A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价的无穷小量D.较低阶的无穷小量2.设函数? (sinx)=sin 2 x ,则?ˊ(x) 等于().A.2cos xB.-2sin xcosxC.%D.2x3.以下结论正确的是().A.函数? (x) 的导数不存在的点,一定不是? (x) 的极值点B.若 x0 为函数? (x) 的驻点,则x0 必为?(x) 的极值点C.若函数? (x) 在点 x0 处有极值,且 ?ˊ (x 0) 存在,则必有 ?ˊ (x 0)=0 D.若函数? (x) 在点 x0 处连续,则?ˊ (x 0) 一定存在4.A.B.C.exdxD.exIn xdx5.函数y=ex-x 在区间 (-1 ,1) 内().A.单调减少B.单调增加C.不增不减D.有增有减6.A.F(x)B.-F(x)C.0D.2F(x)7.设 y= ?(x) 二阶可导,且 ?ˊ (1)=0, ?″(1)>0 ,则必有().A.?(1)=0B.?(1) 是极小值C.?(1) 是极大值D.点(1, ?(1)) 是拐点8.A.?(3)- ?(1)B.?(9)- ?(3)C.1[f(3)-f(1)D.1/3[ ?(9)- ?(3)]9.A.2x+1B.2xy+1C.x2+12D.x10.设事件A,B 的 P(B)=0 .5,P(AB)=0.4,则在事件 B 发生的条件下,事件 A 发生的条件概率P(A | B)= ().A.O.1B.0.2C.0.8D.0.9二、填空题:11~20 小题,每小题 4 分,共40 分.把答案填在题中横线上.11.k 12.当 x→0时,1-cos 戈与x 是同阶无穷小量,则k= __________.13.设 y=in(x+cosx) ,则 yˊ__________.14.15.16.设? (x) 的导函数是sin 2x ,则? (x) 的全体原函数是__________ .17.18.曲线y=xlnx-x 在 x=e 处的法线方程为__________ .19.20.三、解答题:21~28 小题,共70 分.解答应写出推理、演算步骤.21.22. 23.24.25.( 本题满分 8 分) 一枚 5 分硬币,连续抛掷 3 次,求“至少有 1 次国徽向上”的概率.26.( 本题满分 10 分) 在抛物线 y 2=4x 与 x=2 所围成的平面区域内作一矩形, 其一边在 x=2 上,另外两个顶点在抛物线上,求此矩形面积最大时的长和宽,最大面积是多少?27.( 本题满分 10 分) 设 z=z(x ,y) 由方程 ez-x 2 2 +y +x+z=0 确定,求出. 28.( 本题满分 10 分) 求由曲线 y=x ,y=lnx 及 y=0,y=1 围成的平面图形的面积 S ,并求此平面图形绕 y 轴旋转一周所得旋转体的体积V y .参考答案及解析一、选择题1.【答案】应选 C .【解析】本题考查两个无穷小量阶的比较.比较两个无穷小量阶的方法就是求其比的极限,从而确定正确的选项.本题即为计算:由于其比的极限为常数 2,所以选项 C 正确. 请考生注意:由于分母为 x-ln(1+x) ,所以本题不能用等价无穷小量代换ln(1+x)-x ,否则将导致错误的结论.与本题类似的另一类考题 ( 可以为选择题也可为填空题 ) 为:确定一个无穷小量的“阶”. 例 如:当 x →0 时,x-In(1+x) 是 x 的 A .1/2 阶的无穷小量 B .等价无穷小量 C .2 阶的无穷小量 D .3 阶的无穷小量要使上式的极限存在,则必须有 k-2=0 ,即 k=2.所以,当 x →0 时,x-in(1 坝)为 x 的 2 阶无穷小量,选 C . 2.【答案】应选 D .【解析】本题主要考查函数概念及复合函数的导数计算. 本题的解法有两种:解法 1 先用换元法求出? (x) 的表达式,再求导.设 sinx=u ,则? (x)=u 2 ,所以?ˊ(u)=2u ,即?ˊ(x)=2x ,选D .解法 2 将? (sinx) 作为? (x) ,u=sinx 的复合函数直接求导,再用换元法写成?ˊ(x) 的形式.等式两边对x 求导得?ˊ(sinx) ·COSx=2sin xCOS,x?ˊ(sin x)=2sinx .用x 换sin x ,得?ˊ (x)=2x ,所以选D.请考生注意:这类题是基本题型之一,也是历年考试中经常出现的.熟练地掌握基本概念及解题的基本方法,必能较大幅度地提高考生的成绩.为便于考生对有关的题型有一个较全面的了解和掌握,特将历年试卷的部分试题中的相关部分摘录如下:(2004 年 )设函数? (cosx)=1+cos 3x,求?ˊ (x) .( 答案为3x2)3.【答案】应选C.【解析】本题考查的主要知识点是函数在一点处连续、可导的概念,驻点与极值点等概念的相互关系,熟练地掌握这些概念是非常重要的.要否定一个命题的最佳方法是举一个反例,例如:y=|x| 在x=0 处有极小值且连续,但在x=0 处不可导,排除A和D.y=x3,x=0 是它的驻点,但x=0 不是它的极值点,排除B,所以命题C是正确的.4.【答案】应选A.【解析】本题可用dy=yˊdx 求得选项为A,也可以直接求微分得到dy.5.【答案】应选D.【解析】本题需先求出函数的驻点,再用y″来判定是极大值点还是极小值点,若是极值点,则在极值点两侧的yˊ必异号,从而进一步确定选项.因为yˊ =e x-1 ,令yˊ=0,得x=0.又y″=e x>0,x∈( -1 ,1) ,且y″|x>0,x∈( -1 ,1) ,且y″| x=0=1>0,所以x=0 为极小值点,故在x=0 的左、右两侧的函数必为由减到增,则当x∈( -1 ,1) 时,函数有增有减,所以应选D.6.【答案】应选B.【解析】用换元法将F(-x) 与 F(x) 联系起来,再确定选项.7.【答案】应选B.【提示】根据极值的第二充分条件确定选项.8.【答案】应选D.【解析】本题考查的知识点是定积分的换元法.本题可以直接换元或用凑微分法.9.【答案】应选B.【解析】用二元函数求偏导公式计算即可.10.【答案】应选C.【解析】利用条件概率公式计算即可.二、填空题11.【答案】应填 e-2.-2【解析】利用重要极限Ⅱ和极限存在的充要条件,可知k=e.12.【答案】应填2.【解析】根据同阶无穷小量的概念,并利用洛必达法则确定k 值.13.【解析】用复合函数求导公式计算.14.【答案】应填6.15.【解析】利用隐函数求导公式或直接对x 求导.将等式两边对x 求导( 此时 y=y(x)) ,得16.【解析】本题主要考查的知识点是导函数和原函数的概念.17.18.【答案】应填x+y-e=0 .【解析】先求切线斜率,再由切线与法线互相垂直求出法线斜率,从而得到法线方程.19.【答案】应填 2π.【提示】利用奇、偶函数在对称区间上积分的性质.20.x2 y【提示】将函数z 写成 z=e· e ,则很容易求得结果.三、解答题21.本题考查的是型不定式极限的概念及相关性质.【解析】含变上限的型不定式极限直接用洛必达法则求解.22.本题考查的知识点是复合函数的求导计算.【解析】利用复合函数的求导公式计算.23.本题考查的知识点是不定积分的公式法和凑微分积分法.【解析】本题被积函数的分子为二项之差,一般情况下要考虑将它分成二项之差的积分.另外由于被积函数中含有根式,所以也应考虑用三角代换去根式的方法进行积分.解法 1解法 2 三角代换去根号.24.本题考查的知识点是反常积分的计算.【解析】配方后用积分公式计算.25.本题考查的知识点是古典概型的概率计算.26.本题考查的知识点是利用导数研究函数特性的方法.【解析】本题的关键是正确列出函数的关系式,再求其最大值.解如图2-7-1 所示,设 A 点坐标为 (x 0,y0) ,则 AD=2-x0,矩形面积27.本题考查的知识点是二元隐函数全微分的求法.利用公式法求导的关键是需构造辅助函数F(x ,y,z)=e z-x2+y2+x+z,然后将等式两边分别对x,y,z 求导.考生一定要注意:对x 求导时, y,z 均视为常数,而对 y 或 z 求导时,另外两个变量同样也视为常数.也即用公式法时,辅助函数F(x ,y,z) 中的三个变量均视为自变量.解法 1 直接求导法.等式两边对x 求导得解法 2 公式法.解法 3 微分法.对等式两边求微分得三种解法各有优劣,但公式法更容易理解和掌握.建议考生根据自己的熟悉程度,牢记一种方法.28.本题考查的知识点是曲边梯形面积的求法及旋转体体积的求法.【解析】首先应根据题目中所给的曲线方程画出封闭的平面图形,然后根据此图形的特点选择对x 积分还是对) ,积分.选择的原则是:使得积分计算尽可能简单或容易算出.本题如果选择对x 积分,则有这显然要比对y 积分麻烦.在求旋转体的体积时一定要注意是绕x 轴还是绕y 轴旋转.历年的试题均是绕x 轴旋转,而本题是求绕y 轴旋转的旋转体的体积.旋转体的体积计算中最容易出现的错误(在历年的试卷均是如此) 是:解画出平面图形,如图2-7-2 所示的阴影部分,则有阴影部分的面积山水是一部书,枝枝叶叶的文字间,声声鸟鸣是抑扬顿挫的标点,在茂密纵深间,一条曲径,是整部书最芬芳的禅意。
2019年湖南省高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n ∈Z},则()A.M=P B.P≠M C.N∩P≠∅D.M∩N≠∅2.复数(2+i)i的共轭复数的虚部是()A.2 B.﹣2 C.2i D.﹣2i3.若点P到直线y=3的距离比到点F(0,﹣2)的距离大1,则点P 的轨迹方程为()A.y2=8x B.y2=﹣8x C.x2=8y D.x2=﹣8y4.已知数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,那么a5=()A. B. C.D.5.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=3,n=2,依次输入的a为2,2,5,则输出的s=()A .8B .17C .29D .836.若,则=( )A .B .C .D . 7.为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A 、B 两种药品捐献给贫困地区某医院,其中A 药品至少100箱,B 药品箱数不少于A 药品箱数.则该企业捐献给医院的两种药品总箱数最多可为( ) A .200 B .350 C .400 D .5008.圆O 的半径为3,一条弦AB=4,P 为圆O 上任意一点,则•的取值范围为( )A .[﹣16,0]B .[0,16]C .[﹣4,20]D .[﹣20,4]9.设函数,则关于函数f (x )有以下四个命题( )①∀x ∈R ,f (f (x ))=1;②∃x 0,y 0∈R ,f (x 0+y 0)=f (x 0)+f (y 0);③函数f (x )是偶函数;④函数f(x)是周期函数.其中真命题的个数是()A.4 B.3 C.2 D.110.若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,函数f'(x)的图象的一个对称中心是,则f(x)的最小正周期是()A. B. C.πD.2π11.点P为棱长是的正方体ABCD﹣AB1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.πB.2πC.4πD.12.已知函数与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A.B. C.D.二、填空题:本题共4小题,每小题5分,满分20分.13.一个总体分为A,B两层,其个体数之比为5:1,用分层抽样方法从总体中抽取一个容量为12的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数为.14.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器﹣﹣﹣﹣商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x为.15.设F是双曲线的右焦点,若点F关于双曲线的一条渐近线的对称点P恰好落在双曲线的左支上,则双曲线的离心率为.16.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.若,其中m为给定的正整数,则d的所有可能取值的和为.三、解答题:解答应写出文字说明、证明过程或演算步骤.)17.某学校的平面示意图为如下图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度).,.(1)求道路BE的长度;(2)求生活区△ABE面积的最大值.18.如图,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.(1)当为何值时,平面CDG⊥平面A1DE?(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.19.随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.(1)若,试求3瓶该植物油混合油样呈阳性的概率;(2)现有4瓶该种植物油需要化验,有以下两种方案:方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.20.已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1,k2.(1)求椭圆C的方程;(2)当r变化时,①求k1•k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.21.已知函数f(x)=xe x﹣a(lnx+x).(1)若函数f(x)恒有两个零点,求a的取值范围;(2)若对任意x>0,恒有不等式f(x)≥1成立.①求实数a的值;②证明:x2e x>(x+2)lnx+2sinx.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.若曲线C的左焦点F在直线l上,且直线l与曲线C交于A,B两点.(1)求m的值并写出曲线C的直角坐标方程;(2)求的值.[选修4-5:不等式选讲]23.设函数f(x)=2x﹣a,g(x)=x+2.(1)当a=1时,求不等式f(x)+f(﹣x)≤g(x)的解集;(2)求证:中至少有一个不小于.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n ∈Z},则()A.M=P B.P≠M C.N∩P≠∅D.M∩N≠∅【考点】交集及其运算;集合的包含关系判断及应用.【分析】利用交集定义、集合相等的定义直接求解.【解答】解:∵集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n∈Z},∴M≠P,N∩P=∅,M∩N=∅,故选:B.2.复数(2+i)i的共轭复数的虚部是()A.2 B.﹣2 C.2i D.﹣2i【考点】复数的基本概念;复数代数形式的乘除运算.【分析】利用复数代数形式的乘法运算化简,再求出其共轭复数得答案.【解答】解:∵(2+i)i=﹣1+2i,∴复数(2+i)i的共轭复数为﹣1﹣2i,其虚部为﹣2.故选:B.3.若点P到直线y=3的距离比到点F(0,﹣2)的距离大1,则点P 的轨迹方程为()A.y2=8x B.y2=﹣8x C.x2=8y D.x2=﹣8y【考点】轨迹方程.【分析】由题意得,点P到直线y=1的距离和它到点(0,﹣1)的距离相等,故点P的轨迹是以点(0,﹣1)为焦点,以直线y=1为准线的抛物线,可得轨迹方程.【解答】解:∵点P到直线y=3的距离比到点F(0,﹣1)的距离大2,∴点P到直线y=1的距离和它到点(0,﹣1)的距离相等,故点P的轨迹是以点(0,﹣1)为焦点,以直线y=1为准线的抛物线,方程为x2=﹣4y.故选:D.4.已知数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,那么a5=()A. B. C.D.【考点】数列递推式.【分析】数列{a n}对任意的m,n∈N*满足a n•a m=a n+m,且,可得a2,a3,a4,a5.即可.【解答】解:∵数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,∴a2=a1a1=,a3=a1•a2=.那么a4=a2•a2=.a5=a3•a2=.故选:A.5.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=3,n=2,依次输入的a为2,2,5,则输出的s=()A.8 B.17 C.29 D.83【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=3,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=8,k=2,不满足退出循环的条件;当输入的a为5时,S=29,k=3,满足退出循环的条件;故输出的S值为29,故选:C6.若,则=()A.B.C. D.【考点】两角和与差的余弦函数;两角和与差的正弦函数.【分析】由已知利用诱导公式可求cos(α+)=,进而利用二倍角的余弦函数公式即可计算得解.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.7.为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A、B两种药品捐献给贫困地区某医院,其中A药品至少100箱,B药品箱数不少于A药品箱数.则该企业捐献给医院的两种药品总箱数最多可为()A.200 B.350 C.400 D.500【考点】简单线性规划的应用.【分析】设A药品为x箱,B药品为y箱,该企业捐献给医院的两种药品总箱数为z=x+y,则x,y满足的关系式为,根据约束条件对目标函数的范围进行验证即可【解答】解:设A药品为x箱,B药品为y箱,该企业捐献给医院的两种药品总箱数为z=x+y,则x,y满足的关系式为,若x+y=500,又因为≥x,∴y≥250,则0.15x+0.3y=0.15+0.3y=75+0.15y>100,不合题意.若x+y=400,又因为y≥x,∴y≥200,则0.15x+0.3y=0.15+0.3y=60+0.15y≥90,合题意.故选:C8.圆O的半径为3,一条弦AB=4,P为圆O上任意一点,则•的取值范围为()A.[﹣16,0]B.[0,16]C.[﹣4,20]D.[﹣20,4]【考点】平面向量数量积的运算.【分析】如图所示,连接OA,OB.过点O作OC⊥AB,垂足为C.利用垂径定理可得BC=AB=2.可得cos∠OBA.利用向量的三角形法则,可得•==,代入数量积即可得出•的取值范围.【解答】解:如图所示,连接OA,OB.过点O作OC⊥AB,垂足为C.则BC=AB=2.∴cos∠OBA=.∴•===.==.∵cos∈[﹣1,1],∴12cos﹣8∈[﹣20,4].故选:D.9.设函数,则关于函数f(x)有以下四个命题()①∀x∈R,f(f(x))=1;②∃x0,y0∈R,f(x0+y0)=f(x0)+f(y0);③函数f(x)是偶函数;④函数f(x)是周期函数.其中真命题的个数是()A.4 B.3 C.2 D.1【考点】命题的真假判断与应用.【分析】由函数的值的求法、函数的性质逐一核对四个命题得答案.【解答】解:由,可得f(x)=0或1,则∀x∈R,f(f(x))=1,故①正确;当时,f(x0+y0)=f(x0)+f(y0),故②正确;∵x为有理数,则﹣x为有理数,x为无理数,则﹣x为无理数,∴函数f(x)是偶函数,故③正确;任何一个非0的有理数都是函数的周期,∴函数f(x)是周期函数,故④正确.∴真命题的个数是4个.故选:A.10.若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,函数f'(x)的图象的一个对称中心是,则f(x)的最小正周期是()A. B. C.πD.2π【考点】三角函数的周期性及其求法.【分析】由题意可得f(0)=f(),由此得到a=b,再根据函数f′(x)的图象的一个对称中心是,求得ω的值,可得f(x)的最小正周期.【解答】解:∵函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,∴f(0)=f(),即b=asin(ω•)+bcos(ω•)=a,∴f(x)=asinωx+acosωx=a•sin(ωx+).又函数f'′(x)=a•ω•cos(ωx+)的图象的一个对称中心是,∴a•ωcos(ω•+)=0,∴ω•+=kπ+,k∈Z,即ω=8k+2,故取ω=2,则f(x)的最小正周期是=π,故选:C.B1C1D1的内切球O球面上的11.点P为棱长是的正方体ABCD﹣A动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.πB.2πC.4πD.【考点】轨迹方程.【分析】首先,求解其内切球的半径,然后,结合球面的性质求解点O到平面DCN的距离,然后,确定其周长.【解答】解:根据题意,该正方体的内切球半径为r=,由题意,取BB1的中点N,连接CN,则CN⊥BM,∵正方体ABCD﹣A1B1C1D1,∴CN为DP在平面B1C1CB中的射影,∴点P的轨迹为过D,C,N的平面与内切球的交线,B1C1D1的棱长为2,∵正方体ABCD﹣A∴O到过D,C,N的平面的距离为1,∴截面圆的半径为:=2,∴点P的轨迹周长为:2π×2=4π.故选:C.12.已知函数与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A.B. C.D.【考点】函数的图象.【分析】令f(﹣x)=g(x)在(0,+∞)上有解,根据函数图象得出a的范围.【解答】解:f(x)关于y轴对称的函数为h(x)=f(﹣x)=x+2﹣x﹣(x>0),令h(x)=g(x)得2﹣x﹣=log2(x+a)(x>0),则方程2﹣x﹣=log2(x+a)在(0,+∞)上有解,作出y=2﹣x﹣与y=log2(x+a)的函数图象如图所示:当a≤0时,函数y=2﹣x﹣与y=log2(x+a)的函数图象在(0,+∞)上必有交点,符合题意;若a>0,若两图象在(0,+∞)上有交点,则log2a,解得0,综上,a.故选:B.二、填空题:本题共4小题,每小题5分,满分20分.13.一个总体分为A,B两层,其个体数之比为5:1,用分层抽样方法从总体中抽取一个容量为12的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数为48.【考点】分层抽样方法.【分析】设出B层中的个体数,根据条件中所给的B层中甲、乙都被抽到的概率值,写出甲和乙都被抽到的概率,使它等于,算出n 的值,由已知A和B之间的比值,得到总体中的个体数.【解答】解:设B层中有n个个体,∵B层中甲、乙都被抽到的概率为,∴=,∴n2﹣n﹣56=0,∴n=﹣7(舍去),n=8,∵总体分为A,B两层,其个体数之比为5:1,∴共有个体(5+1)×8=48,故答案为:48.14.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器﹣﹣﹣﹣商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x为3.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由此构造关于x的方程,解得答案.【解答】解:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4﹣1.6)•x×1+π•()2×1.6=12.6,∵π=3.解得x=3,故答案为:3.15.设F是双曲线的右焦点,若点F关于双曲线的一条渐近线的对称点P恰好落在双曲线的左支上,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】设F(﹣c,0),渐近线方程为y=x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.【解答】解:设F(﹣c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,且•n=•,解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故答案为:16.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.若,其中m为给定的正整数,则d的所有可能取值的和为.【考点】等差数列的通项公式.【分析】由公差d是的约数,得到d=2i•3j,(i,j=0,1,2,…,m),由此能求出d的所有可能取值之和.【解答】解:∵数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项,∴公差d是的约数,∴d=2i•3j,(i,j=0,1,2,…,m),∴d的所有可能取值之和为:=.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.)17.某学校的平面示意图为如下图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度).,.(1)求道路BE的长度;(2)求生活区△ABE面积的最大值.【考点】余弦定理的应用;解三角形的实际应用;点、线、面间的距离计算.【分析】(1)连接BD,在△BCD中,由余弦定理得:BD,在Rt△BDE 中,求解BE即可.(2)设∠ABE=α,在△ABE中,由正弦定理,求解AB,AE,表示S△,然后求解最大值.ABE【解答】解:(1)如图,连接BD,在△BCD中,由余弦定理得:,∴.∵BC=CD,∴,又,∴.在Rt△BDE中,所以.(2)设∠ABE=α,∵,∴.在△ABE中,由正弦定理,得,∴.∴=.∵,∴.∴当,即时,S△ABE取得最大值为,即生活区△ABE面积的最大值为.注:第(2)问也可用余弦定理和均值不等式求解.18.如图,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.(1)当为何值时,平面CDG⊥平面A1DE?(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)当G为BB1中点(即)时,平面CDG⊥平面A1DE.证明D,E,C1,A1四点共面.连接C1E交GC于H.证明CG⊥C1E.DE⊥CG,推出CG⊥平面A1DE,即可证明平面CDG⊥平面A1DE.(2)以C为原点,CA,CB,CC1所在的直线分别为x,y,z轴建立空间直角坐标系,求出平面A1DE的法向量,平面A1BF的法向量,设平面A1BF与平面A1DE所成的锐二面角为θ,利用数量积求解即可.【解答】解:(1)当G为BB1中点(即)时,平面CDG⊥平面A1DE.证明如下:由于DE∥AC且,∴,故D,E,C1,A1四点共面.连接C1E交GC于H.在正方形CBB1C1中,,故∠CHE=90°,即CG⊥C1E.又A1C1⊥平面CBB1C1,CG⊂平面CBB1C1,所以DE⊥CG,又因为C1E∩DE=E,故CG⊥平面A1DE,从而平面CDG ⊥平面A1DE.(2)三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,于是可以以C为原点,CA,CB,CC1所在的直线分别为x,y,z轴建立空间直角坐标系,如图所示.因为AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,所以A1(2,0,2),D(1,1,0),E(0,1,0),B(0,2,0),F (0,1,2),G(0,2.1),=(﹣2,2,﹣2),=(﹣2,1,0).由(1)知平面A1DE的法向量为=(0,2,1),设平面A1BF的法向量为=(x,y,z),则,即:,令x=1得,设平面A1BF与平面A1DE所成的锐二面角为θ,则cosθ===.19.随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.(1)若,试求3瓶该植物油混合油样呈阳性的概率;(2)现有4瓶该种植物油需要化验,有以下两种方案:方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.【考点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式.【分析】(1)设X为3瓶该植物油中油样呈阳性的瓶数,利用相互对立事件的概率计算公式可得所求的概率为P(X≥1)=1﹣P(X=0).(2)设q=1﹣p,则0<q<1.方案一:设所需化验的次数为Y,则Y的所有可能取值为2,4,6次,利用二项分布列的概率计算公式及其数学期望计算公式即可得出.方案二:设所需化验的次数为Z,则Z的所有可能取值为1,5次,P (Z=1)=q4,P(Z=5)=1﹣q4,E(Z)=1×q4+5×(1﹣q4).进而得出数学期望.【解答】解:(1)设X为3瓶该植物油中油样呈阳性的瓶数,所求的概率为,所以3瓶该种植物油的混合油样呈阳性的概率为.(2)设q=1﹣p,则0<q<1.方案一:设所需化验的次数为Y,则Y的所有可能取值为2,4,6次,,.方案二:设所需化验的次数为Z,则Z的所有可能取值为1,5次,P (Z=1)=q4,P(Z=5)=1﹣q4,E(Z)=1×q4+5×(1﹣q4)=5﹣4q4.因为E(Y)﹣E(Z)=6﹣4q2﹣(5﹣4q4)=(2q2﹣1)2≥0,即E(Y)≥E(Z),所以方案二更适合.20.已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1,k2.(1)求椭圆C的方程;(2)当r变化时,①求k1•k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.【考点】圆锥曲线的定值问题;椭圆的标准方程;直线与椭圆的位置关系.【分析】(1)利用已知条件求出a,b即可求解椭圆C的方程.(2)AB:y=k1x+1,则有,化简得,直线AD:y=k2x+1,同理有,推出k1,k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的两实根,故k1•k2=1.考虑到r→1时,D是椭圆的下顶点,B趋近于椭圆的上顶点,故BD若过定点,则猜想定点在y轴上.联立直线与椭圆方程,求出相关点的坐标,求出直线BD的方程,推出直线BD过定点.【解答】解:(1)由题设知,,,又a2﹣b2=c2,解得a=2,b=1.故所求椭圆C的方程是.(2)AB:y=k1x+1,则有,化简得,对于直线AD:y=k2x+1,同理有,于是k1,k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的两实根,故k1•k2=1.考虑到r→1时,D是椭圆的下顶点,B趋近于椭圆的上顶点,故BD 若过定点,则猜想定点在y轴上.由,得,于是有.直线BD的斜率为,直线BD的方程为,令x=0,得,故直线BD过定点.21.已知函数f(x)=xe x﹣a(lnx+x).(1)若函数f(x)恒有两个零点,求a的取值范围;(2)若对任意x>0,恒有不等式f(x)≥1成立.①求实数a的值;②证明:x2e x>(x+2)lnx+2sinx.【考点】导数在最大值、最小值问题中的应用;函数恒成立问题;不等式的证明.【分析】(1)利用导数的运算法则可得f′(x),对a分类讨论,当a ≤0时,f'(x)>0,故f(x)单调递增,舍去.当a>0时,f'(x)=0有唯一解x=x0,此时,求出极值,进而得出答案.(2)①当a≤0时,不符合题意.当a>0时,由(1)可知,f(x)=a﹣alna,故只需a﹣alna≥1.令,上式即转化为lnt≥t﹣1,min利用导数研究其单调性极值即可得出.②由①可知x2e x﹣xlnx≥x2+x,因而只需证明:∀x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x﹣1≥lnx,因此只需证明:x2﹣x+2>2sinx.对x分类讨论,利用导数研究函数的单调性极值即可得出.【解答】解:(1)f(x)=xe x﹣alnx﹣ax,x>0,则.当a≤0时,f'(x)>0,故f(x)单调递增,故不可能存在两个零点,不符合题意;当a>0时,f'(x)=0有唯一解x=x0,此时,则.注意到,因此.(2)①当a<0时,f(x)单调递增,f(x)的值域为R,不符合题意;当a=0时,则,也不符合题意.当a>0时,由(1)可知,f(x)min=a﹣alna,故只需a﹣alna≥1.令,上式即转化为lnt≥t﹣1,设h(t)=lnt﹣t+1,则,因此h(t)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)max=h(1)=0,所以lnt≤t﹣1.因此,lnt=t﹣1⇒t=1,从而有.故满足条件的实数为a=1.②证明:由①可知x2e x﹣xlnx≥x2+x,因而只需证明:∀x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x﹣1≥lnx,因此只需证明:x2﹣x+2>2sinx.当x>1时,恒有2sinx≤2<x2﹣x+2,且等号不能同时成立;当0<x≤1时,设g(x)=x2﹣x+2﹣2sinx,则g'(x)=2x﹣1﹣2cosx,当x∈(0,1]时,g'(x)是单调递增函数,且,因而x∈(0,1]时恒有g'(x)<0;从而x∈(0,1]时,g(x)单调递减,从而g(x)≥g(1)=2﹣2sin1>0,即x2﹣x+2>2sinx.故x2e x>(x+2)lnx+2sinx.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.若曲线C的左焦点F在直线l上,且直线l与曲线C交于A,B两点.(1)求m的值并写出曲线C的直角坐标方程;(2)求的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l的参数方程为(t为参数),消去参数t可得普通方程.曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.利用互化公式可得曲线C的直角坐标方程,可得其左焦点,即可得出m.(2)直线l的参数方程为,与曲线C的方程联立,利用根与系数的关系、弦长公式即可得出.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t可得普通方程:x﹣y=m.曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.可得曲线C的直角坐标方程:2(x2+y2)﹣(x2﹣y2)=12,∴曲线C的标准方程为,则其左焦点为,故,曲线C的方程.(2)直线l的参数方程为,与曲线C的方程联立,得t'2﹣2t'﹣2=0,则|FA|•|FB|=|t'1t'2|=2,第31页(共31页),故.[选修4-5:不等式选讲]23.设函数f (x )=2x ﹣a ,g (x )=x +2.(1)当a=1时,求不等式f (x )+f (﹣x )≤g (x )的解集; (2)求证:中至少有一个不小于. 【考点】反证法的应用;绝对值不等式的解法.【分析】(1)利用绝对值的意义,分类讨论,即可求不等式f (x )+f (﹣x )≤g (x )的解集;(2)利用反证法证明即可.【解答】(1)解:当a=1时,|2x ﹣1|+|2x +1|≤x +2,无解;,解得;,解得.综上,不等式的解集为. (2)证明:若都小于, 则,前两式相加得与第三式矛盾.故中至少有一个不小于.。
2019届高考数学仿真模拟试卷及答案(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅱ卷第22题为选考题,其他题为必考题.共150分,考试时间120分钟. 参考公式:如果事件A B 互斥,那么()()()P A B P A P B +=+ 如果A B 互相独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复所以试验中恰好发生k 次的概率()()1n kk kn nP k C P P -=-.球的表面积公式24S R π=,其中R 表示球的半径.球的体积公式343V R π=,其中R 表示球的半径.第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集},{},,,{},,,{},,,,,{b a e b a B e d c A e d c b a U 则集合===可表示为A .B AB .B AC ),(C .A B C U ),(D .)(B A C U2.已知απαπαtan ),0,2(,31)2sin(则-∈=+= A .22- B .22 C .42-D .42 3..已知命题p x R x p ⌝>+∈∀则,012,:2是A .012,2≤+∈∀x R x B .012,2>+∈∃x R xC .012,2<+∈∃xR xD .012,2≤+∈∃xR x4.设θθθπθ则,sin cos 331,0i ii+=++<<的值为A .32πB .2πC .3πD .6π5..若函数))4(,4(,cos )(f x x f 则函数图像在点=处的切线的倾斜角为A .90°;B .0°;C .锐角;D .钝角.6. 甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析则哪位同学的试验结果体现A 、B 两变量更强的线性相关性? ()A 甲 ()B 乙 ()C 丙 ()D 丁7、设椭圆22221x y m n +=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为 ( ) (A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y +=8、如右图所示的5×5正方形表格中尚有20个空格, 若在每一个空格中填入一个正整数,使得每一行和每 一列都成等差数列,则字母a 所代表的正整数是 A.16 ; B.17; C.18; D.19;9.有10件产品,其中3件是次品,从中任取两件,若ξ表示取到次品的个数,则E ξ等于A .53B .158 C .1514-D .110.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为(A)1; (B)12; (C)13; (D)1611.对一切实数x ,不等式01||2≥++x a x 恒成立,则实数a 的取值范围是A .)2,(--∞;B .[)+∞-,2;C .]2,2[-;D .[)+∞,012.2002年8月在北京召开了国际数学家大会, 会标如图示, 它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形, 若直角三角形中较小的锐角为θ, 大正方形面积是1, 小正方形面积是251, 则θθ22cos sin -的值是A. 1 ;B. 257 ;C. 2524;D. 257-左视图主视图第II 卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.若点0214)1,3(22=--+x y xP 是圆的弦AB 的中点,则直线AB 的方程是14.在如下程序框图中,输入0()cos f x x =,则输出的是__________. 3= 。
2019届杭州市高三高考仿真模拟考试
数学试卷(3)
考生须知:
1. 本卷满分150分,考试时间120分钟;
2. 答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的地方。
3. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一律无效。
4. 考试结束后,只需上交答题卷。
参考公式:
如果事件,A B 互斥,那么 柱体的体积公式 ()()()P A B P A P B +=+ V Sh =
如果事件,A B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高
()()()P AB P A P B = 锥体的体积公式
如果事件A 在一次试验中发生的概率为p ,那么n 1
3V Sh = 次独立重复试验中事件A 恰好发生k 次的概率为 其中S 表示锥体的底面积,h 表示锥体的高
()()10,1,2),,(k k n k n n P k C p p k n -==⋯- 球的表面积公式
台体的体积公式 24S R =π
121()3
V S S h = 球的体积公式 其中12,S S 分别表示台体的上、下底面积, 34
3V R =π h 表示为台体的高 其中R 表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选。
普通高等学校招生全国统一考试 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算. 2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年190020002100220023002400250026002700C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( ) A .1- B .0 C .1 D .2 【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),A B C,则△ABC外接圆的圆心到原点的距离为()5A.334 D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0B.2C.4D.14【答案】B【解析】试题分析:由题意输出的a是18,14的最大公约数2,故选B.考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( ) A.π36 B. π64 C.π144 D. π256 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠= ,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A. 考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a= .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点(3,且渐近线方程为12y x =±,则该双曲线的标准方程为 . 【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a= . 【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=.考点:导数的几何意义. 三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC. (I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A BC D -中AB=16,BC=10,18AA =,点E,F 分别在1111,A B D C 上,11 4.A E D F ==过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> 的离心率2点(2在C上.(I )求C 的方程;(II )直线l 不经过原点O,且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 中点为M,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-.(I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1.【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形ABC内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I )证明EF BC ;(II )若AG 等于圆O 半径,且AE MN ==,求四边形EBCF 的面积.【答案】(I )见试题解析;(II )3考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ==(I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A,1C 与3C 相交于点B,求AB 最大值.【答案】(I )()30,0,2⎫⎪⎪⎝⎭;(II )4.【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,>(II >a b c d -<-的充要条件.【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22>,开方即得>(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析:解:(I )因为22a b c d =++=++考点:不等式证明.。
2019年北京市高考数学一模试卷(理科)(解析版)2019年北京市高考数学一模试卷(理科)一、选择题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z=i(1+i),则|z|等于()A。
2B。
√2C。
1D。
2√22.在方程r=2cosθ+3sinθ(θ为参数)所表示的曲线上的点是()A。
(2.-7)B。
(3.1)C。
(1.5)D。
(2.1)3.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则Sn=()A。
5anB。
6anC。
7anD。
14an4.将函数y=sin2x的图象向左平移π/4个单位后得到函数y=g(x)的图象。
则函数g(x)的一个增区间是()A。
(π/4.3π/4)B。
(3π/4.5π/4)C。
(5π/4.7π/4)D。
(7π/4.9π/4)5.使“a>b”成立的一个充分不必要条件是()A。
a>b+1B。
a>b-1C。
a^2>b^2D。
a^3>b^36.下列函数:①y=-|x|;②y=(x-1)^3;③y=log2(x-1);④y=-6.在x中,在(1.+∞)上是增函数且不存在零点的函数的序号是()A。
①④B。
②③C。
②④D。
①③④7.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为()A。
6B。
8C。
10D。
128.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A。
336B。
510C。
1326D。
3603二、填空题共6小题,每小题5分,共30分。
9.在(1-x)^5的展开式中,x^2的系数为______(用数字作答)。
答案:1010.已知向量a=(1.b)。
b=(-2.-1),且向量a+b的模长为√10.则实数x=______。
2019年数学高考第一次模拟试题(含答案)一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.设向量a ,b 满足2a =,||||3b a b =+=,则2a b +=( ) A .6B .32C .10D .42 4.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( ) A .2B .3C .4D .55.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30C .45︒D .15︒6.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .47.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f xB .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确8.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>9.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .2722011.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .012.sin 47sin17cos30cos17-A .32-B .12-C .12D .32二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.16.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 . 17.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.18.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.19.已知1OA =,3OB =0OA OB •=,点C 在AOB ∠内,且AOC 30∠=,设OC mOA nOB =+,(,)m n R ∈,则mn=__________. 20.已知向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2 b |= ______ .三、解答题21.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.22.设()34f x x x =-+-.(Ⅰ)求函数()2()g x f x =-的定义域;(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.23.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.24.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由. 25.已知椭圆22221(0)x y a b a b +=>>62个焦点与1个短轴端点为顶点的三角形的面积为22 (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =5,求直线l 的方程.26.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0ee --> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.D解析:D 【解析】 【分析】3=,求得2a b ⋅=-,再根据向量模的运算,即可求解. 【详解】∵向量a ,b 满足2a =,3b a b =+=3=,解得2a b ⋅=-.则22224424a b a b a b +=++⋅=+.故选D . 【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.5.C解析:C 【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.6.C解析:C 【解析】 【分析】由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值. 【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tantan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-,则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C . 【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.7.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .8.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:a b +≥和不等式222a b ab +≥的应用,属于中档题9.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.10.D解析:D 【解析】 【分析】旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解. 【详解】因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一个,所以取出的三个球中必有一个新球,两个旧球,所以129331227(4)220C C P X C ===,故选D . 【点睛】本题考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题.11.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA == 可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-, 由题意可知:2211OM ==,12cos1201OM ON ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-.本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12.C解析:C 【解析】 【分析】由()sin 473017sin θ=+,利用两角和的正弦公式以及特殊角的三角函数,化简即可. 【详解】0000sin 47sin17cos30cos17-sin()sin cos cos 1730173017︒+︒-︒︒=︒ sin17cos30cos17sin 30sin17cos30cos17︒︒+︒︒-︒︒=︒1302sin =︒=.故选C .【点睛】三角函数式的化简要遵循“三看”原则: (1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征”,分析结构特征,找到变形的方向.二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.【解析】试题分析:依题意有即解得考点:三点共线 解析:12【解析】试题分析:依题意有AB AC k k =,即531522m --=+,解得12m =. 考点:三点共线.15.1和3【解析】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3. 【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3; 所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3; 又加说:“我与乙的卡片上相同的数字不是2”; 所以甲的卡片上写的数字不是1和2,这与已知矛盾; 所以甲的卡片上的数字是1和3.16.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算 解析:2-【解析】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以.考点:复数的运算.17.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小解析:8 【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.18.【解析】【分析】由已知利用正弦定理二倍角的正弦函数公式可求的值根据同角三角函数基本关系式可求的值利用二倍角公式可求的值根据两角和的正弦函数公式可求的值即可利用三角形的面积公式计算得解【详解】由正弦定解析:16【解析】 【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos B 的值,根据同角三角函数基本关系式可求sin B 的值,利用二倍角公式可求sin C ,cos C 的值,根据两角和的正弦函数公式可求sin A 的值,即可利用三角形的面积公式计算得解. 【详解】2b =,3c =,2C B =,∴由正弦定理sin sin b c B C =,可得:23sin sin B C=,可得:233sin sin22sin cos B B B B==,∴可得:3cos 4B =,可得:sin 4B ==,∴可得:sin sin22sin cos C B B B ===,21cos cos22cos 18C B B ==-=,()13sin sin sin cos cos sin 84A B C B C B C ∴=+=+=+=,11sin 2322S bc A ∴==⨯⨯=.故答案为:16. 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.19.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3 【解析】因为30AOC ∠=,所以3cos cos30OC OA AOC OC OA⋅∠===⋅,从而有222223||2m OA n OB mn OA OB OA=++⋅⋅⋅.因为1,3,0OA OB OA OB ==⋅=,所以2233m n=+,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则3mn= 20.【解析】【分析】【详解】∵平面向量与的夹角为∴∴故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式(2)常用来求向量的模 解析:23【解析】 【分析】 【详解】∵平面向量a 与b 的夹角为060,21a b ==,∴021cos601a b ⋅=⨯⨯=. ∴2222(2)4(2)44423a b a b a a b b +=+=+⋅+=++=故答案为23.点睛:(1)求向量的夹角主要是应用向量的数量积公式. (2) a a a =⋅ 常用来求向量的模.三、解答题21.(Ⅰ)为圆心是(,半径是1的圆.为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (Ⅱ)【解析】 【分析】 【详解】 (1)为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴,长半轴长是8,短半轴长是3的椭圆. (2)当时,,故的普通方程为,到的距离所以当时,取得最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.22.(Ⅰ)59[,]22;(Ⅱ)1(,2[,)2-∞-⋃+∞).【解析】【分析】【详解】试题分析:(Ⅰ)先用零点分段法将()f x表示分段函数的形式,然后再求定义域;(Ⅱ)利用函数图象求解.试题解析:(Ⅰ)72,3()34{1,3427,4x xf x x x xx x-<=-+-=->,它与直线2y=交点的横坐标为52和92,∴不等式()2()g x f x=-的定义域为59[,]22.(Ⅱ)函数1y ax=-的图象是过点(0,1)-的直线,结合图象可知,a取值范围为1(,2)[,)2-∞-⋃+∞.考点:1、分段函数;2、函数的定义域;3、函数的图象.23.(1)2214xy+= (2)3.2【解析】【分析】(1)设出A、P点坐标,用P点坐标表示A点坐标,然后代入圆方程,从而求出P点的轨迹;(2)设出P 点坐标,根据斜率存在与否进行分类讨论,当斜率不存在时,求出POQ ∆面积的值,当斜率存在时,利用点P 坐标表示POQ ∆的面积,减元后再利用函数单调性求出最值,最后总结出最值. 【详解】解:(1) 设(),P x y , 由题意得:()()1,,0,A x y B y , 由2BP BA =,可得点A 是BP 的中点, 故102x x +=, 所以12x x =, 又因为点A 在圆上,所以得2214x y +=,故动点P 的轨迹方程为2214x y +=.(2)设()11,P x y ,则10y ≠,且221114x y +=,当10x =时,11y =±,此时()33,0,2POQ Q S ∆=; 当10x ≠时,11,OP y k x = 因为OP OQ ⊥, 即11,OQ x k y =-故1133,x Q y ⎛⎫-⎪⎝⎭,OP ∴=OQ ==,221111322POQx y S OP OQ y ∆+==⋅①, 221114x y +=代入①2111143334322POQy S y y y ∆⎛⎫-=⋅=- ⎪ ⎪⎝⎭()101y <≤设()()4301f x x x x=-<≤ 因为()24f x 30x'=--<恒成立, ()f x ∴在(]0,1上是减函数, 当11y =时有最小值,即32POQ S ∆≥, 综上:POQ S ∆的最小值为3.2【点睛】本题考查了点的轨迹方程、椭圆的性质等知识,求解几何图形的长度、面积等的最值时,常见解法是设出变量,用变量表示出几何图形的长度、面积等,减元后借助函数来研究其最值.24.(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形, 且//AB DC , 2AB AD ==,2ADC π∠=,所以BD = 又因为4,4CD BDC π=∠=.根据余弦定理得BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE,因为PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD ,平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π22412224(2)λλλ=+-,解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.25.(1)22162x y +=;(2)2y x =-或2y x =-+.【解析】 【分析】(1)根据椭圆的离心率,三角形的面积建立方程,结合a 2=b 2+c 2,即可求椭圆C 的方程;(2)联立直线方程与椭圆联立,利用韦达定理表示出12x x +及12x x ⋅,结合弦的长度为5即可求斜率k 的值,从而求得直线方程.【详解】解:(1)由椭圆()222210x y a b a b +=>>的离心率为3,得c =,b =.由2122S c b =⋅⋅==a =b =22162x y +=. (2)解:设直线():2AB l y k x =-,()11,A x y ,()22,B x y ,AB 中点()00,M x y .联立方程()222360y k x x y ⎧=-⎨+-=⎩得()222213121260k x k x k +-+-=, 2212122212126,1313k k x x x x k k -+==++.()2122113k AB x x k +=-=+. 所以202613k x k=+, 点M 到直线1x =的距离为22022316111313k k d x k k-=-=-=++. 由以线段AB 为直径的圆截直线1x =22222AB d ⎛⎛⎫-= ⎪ ⎝⎭⎝⎭,所以()22222221311313k k k k ⎤+⎛⎫-⎥-= ⎪++⎢⎥⎝⎭⎝⎭⎣⎦, 解得1k =±,所以直线l 的方程为2y x =-或2y x =-+.【点睛】本题考查椭圆的标准方程与几何性质,考查直线与椭圆的位置关系,联立直线与椭圆方程,利用韦达定理,整理出12x x +及12x x ⋅,代入弦长公式AB =,考查学生的计算能力,属于中档题. 26.(1)222x y +=;(2)见解析. 【解析】 【分析】 【详解】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证0OQ PF ⋅=,先设 P (m ,n ),则需证330+-=m tn ,即根据条件1OP PQ ⋅=可得2231--+-=m m tn n ,而222m n +=,代入即得330+-=m tn .试题解析:解:(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),MN 0,x y y =-=()由NP 2NM =得000x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=.因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,,OP m n PQ 3m t n ==---,,(,). 由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0. 所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.。
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。
2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。
2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。
已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。
6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。
设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。
若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。
e)。
11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。
现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
2019年高考数学(理科)模拟试卷(一) 2019年高考数学(理科)模拟试卷(一)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|y=lg(3-2x)},B={x|x²≤4},则A∪B=()A。
{x|-2≤x<2}B。
{x|x<2}C。
{x|-2<x<2}D。
{x|x≤2}2.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A。
(-∞,1)B。
(-∞,-1)C。
(1,+∞)D。
(-1,+∞)3.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A。
6斤B。
9斤C。
9.5斤D。
12斤4.某三棱锥的三视图如图M1-1,则该三棱锥的体积为()A。
60B。
30C。
20D。
105.设x∈R,[x]表示不超过x的最大整数。
若存在实数t,使得[t]=1,[t²]=2,…,[tn]=n同时成立,则正整数n的最大值是()A。
3B。
4C。
5D。
66.执行两次如图M1-2所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次、第二次输出的a 值分别为()A。
0,0B。
1,1C。
0,1D。
1,07.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()A。
10B。
11C。
12D。
138.若x,y满足约束条件x+y-3≥0,x-2y≤0,则x≥()A。
[0,6]B。
[0,4]C。
[6,+∞)D。
[4,+∞)13.首先求出向量a和b的夹角,由向量点乘公式可得cosθ = (a·b)/(|a||b|) = 9/√20,其中θ为夹角。
专题11 算法初步1.【2019年高考天津卷理数】阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .29【答案】B【分析】根据程序框图,逐步写出运算结果即可.【解析】1,2S i ==;11,1225,3j S i ==+⨯==;8,4S i ==,结束循环,输出8S =.故选B .【名师点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体. 2.【2019年高考北京卷理数】执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,运行第一次,2212312s ⨯==⨯-,2k =,运行第二次,2222322s ⨯==⨯-,3k =,运行第三次,2222322s ⨯==⨯-,结束循环,输出2s =,故选B .【名师点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.3.【2019年高考全国Ⅰ卷理数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+ B .12A A =+C .112A A=+D .112A A=+【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】初始:1,122A k ==≤,因为第一次应该计算1122+=12A +,1k k =+=2; 执行第2次,22k =≤,因为第二次应该计算112122++=12A +,1k k =+=3, 结束循环,故循环体为12A A=+,故选A .【秒杀速解】认真观察计算式子的结构特点,可知循环体为12A A=+.4.【2019年高考全国Ⅲ卷理数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122- B .5122-C .6122-D .7122-【答案】C【分析】根据程序框图,结合循环关系进行运算,可得结果. 【解析】输入的ε为0.01,11,01,0.01?2x s x ==+=<不满足条件; 1101,0.01?24s x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<满足条件,结束循环;输出676111112(1)22222S =+++=⨯-=-,故选C .【名师点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析. 5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤【答案】A【解析】由题意结合流程图可知当2017i =时,程序应执行S S i =+,42021i i =+=, 再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是2017?i ≤.故选A .7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -【答案】C【解析】由题3x =,231x x =-=-,此时0x >,继续运行,1210x =-=-<,程序运行结束,得1e y -=,故选C .8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A .4B .5C .6D .7【答案】C【解析】由题可得3,27,315,431,563,6S i S i S i S i S i ==→==→==→==→==, 此时结束循环,输出6i =,故选C .9.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于A .30B .31C .62D .63【答案】B【解析】由流程图可知该算法的功能为计算123412222S =++++的值,即输出的值为512341(12)122223112S ⨯-=++++==-.故选B .10.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x 值的个数为A .1B .2C .3D .4【答案】B【分析】根据程序框图的含义,得到分段函数221,2log ,2x x y x x ⎧-≤⎪=⎨>⎪⎩,分段解出关于x 的方程,即可得到可输入的实数x 值的个数.【解析】根据题意,该框图的含义是:当2x ≤时,得到函数21y x =-;当2x >时,得到函数2log y x =, 因此,若输出的结果为1时,若2x ≤,得到211x -=,解得x = 若2x >,得到2log 1x =,无解,因此,可输入的实数x 的值可能为2个.故选B . 11.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值B .输入a 的值,计算2020(1)31a -⨯+的值C .输入a 的值,计算2019(1)31a -⨯+的值D .输入a 的值,计算2018(1)31a -⨯+的值 【答案】B【解析】由程序框图,可知1a a =,132n n a a +=-,由i 的初值为1,末值为2019, 可知,此递推公式共执行了201912020+=次,又由132n n a a +=-,得113(1)n n a a +-=-,得11(1)3n n a a --=-⨯即1(1)31n n a a -=-⨯+,故2021120202021(1)31(1)31a a a -=-⨯+=-⨯+,故选B . 12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A.2-B.1 3 -C.12D.3【答案】A【分析】根据程序框图进行模拟运算得到x的值具备周期性,利用周期性的性质进行求解即可.【解析】∵12x=,∴当1i=时,13x=-;2i=时,2x=-;3i=时,3x=,4i=时,12x=,即x的值周期性出现,周期数为4,∵201850442=⨯+,则输出x的值为2-,故选A.【名师点睛】本题主要考查程序框图的识别和判断,结合条件判断x的值具备周期性是解决本题的关键,属于中档题.13.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .2【答案】B【分析】模拟执行循环结构的程序得到n 与i 的值,计算得到2n =时满足判断框的条件,退出循环,输出结果,即可得到答案.【解析】模拟执行循环结构的程序框图, 可得:6,1n i ==, 第1次循环:3,2n i ==; 第2次循环:4,3n i ==; 第3次循环:2,4n i ==,此时满足判断框的条件,输出4i =.故选B .【名师点睛】本题主要考查了循环结构的程序框图的应用,其中解答中根据给定的程序框图,根据判断框的条件推出循环,逐项准确计算输出结果是解答的关键,着重考查了考生的运算与求解能力,属于基础题.14.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出 的值为4,则输入x 的值为______________.【答案】1-【解析】当1x ≤时,由流程图得3y x =-, 令34y x =-=,解得1x =-,满足题意. 当1x >时,由流程图得3y x =+, 令34y x =+=,解得1x =,不满足题意. 故输入x 的值为1-.15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.【答案】[3,2]-【解析】根据输入x 值满足24x -<≤,利用函数的定义域,分成两部分:即22x <<﹣和24x ≤≤,当22x <<﹣时,执行23y x =- 的关系式,故31y -≤<,当24x ≤≤时,执行2log y x =的关系式,故12y ≤≤. 综上所述:[3,2]y ∈-,故输出y 值的取值范围是[3,2]-.。
FDCBA 2019年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .51 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=A .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+C .32216+D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625 B .π125 C .π6251 D .π25 11. 已知抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为A .1x =-B .2x =-C .3x =- D .x =12. 已知函数x x x f ln )(2-=(22≥x ),函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,则AB 的最小值为A .21B .1C .23D .2二.填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,若13+=i i x y (2018,...,2,1=i ),则1y ,2y ,...,2018y 的方差是________14. 已知函数x x x f ωωcos 3sin )(-=(0>ω),若3=ω,则方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则5N =_______16.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =.若sin sin()sin 2C A B B +-=,则ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题满分12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.19.(本小题满分12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。
2019年河南省六市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={(x,y)|y=x+1,x∈Z},集合B={y|y=2x,x∈Z},则集合A∩B等于()A. B. C. D.2.若复数z满足(3-4i)z=|3-4i|,则z的虚部为()A. B. C. 4 D.3.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学生中抽取30人进行调查.现将2400名学生随机地从1~2400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2321~2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是()A. 416B. 432C. 448D. 4644.若等差数列{a n}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和S n取最小值时,n的值等于()A. 7B. 6C. 5D. 45.设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P()A. 仅有一个B. 有有限多个C. 有无限多个D. 不存在6.已知Rt△ABC,点D为斜边BC的中点,,,,则等于()A. B. C. 9 D. 147.设变量x,y满足不等式组,则z=|x-y-4|的最大值为()A. B. C. D. 68.函数f(x)=的大致图象为()A.B.C.D.9.设实数a,b,c分别满足,b lnb=1,3c3+c=1,则a,b,c的大小关系为()A. B. C. D.10.在直角坐标系xOy中,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ于点M,若M是线段PF 的中点,则椭圆C的离心率为()A. B. C. D. 11.在数列{a n}中,已知a1=1,且对于任意的m,n∈N*,都有a m+n=a m+a n+mn,则=()A. B. C. D.12.已知函数f(x)=sin2x的图象与直线2kx-2y-kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大依次为x1,x2,x3,则(x1-x2)tan(x2-2x3)=()A. B. C. 0 D. 1二、填空题(本大题共4小题,共20.0分)13.已知tan(x+)=2,x是第三象限角,则cos x=______.14.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率______.15.抛物线y2=4x的焦点为F,其准线为直线l,过点M(5,2)作直线l的垂线,垂足H,则∠FMH的角平分线所在的直线斜率是______.16.我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的体积为______.三、解答题(本大题共7小题,共84.0分)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足sin2A+sin A sin B-6sin2B=0.(1)求的值;(2)若cos C=,求sin B的值.18.如图,四棱锥P-ABCD,AB∥CD,∠BCD=90°,AB=2BC=2CD=4,△PAB为等边三角形,平面PAB⊥平面ABCD,Q为PB中点.(1)求证:AQ⊥平面PBC;(2)求二面角B-PC-D的余弦值.19.为评估M设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到如表:(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ-σ<X<μ+σ)≥0.6826;②p(μ-2σ<X<μ+2σ)≥0.9544;③p(μ-3σ<X<μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断M设备的性能等级.(2)将直径小于等于μ-2σ的零件或直径大于等于μ+2σ的零件认定为是“次品”,将直径小于等于μ-3σ的零件或直径大于等于μ+3σ的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数ξ的数学期望.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.21.已知函数f(x)=e x(2x-1),g(x)=ax-a(a∈R).(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;(2)已知a<1,若存在唯一的整数x0,使得f(x0)<g(x0),求a的取值范围.22.在直角坐标系xOy中,抛物线C的方程为y2=4x.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的倾斜角.23.已知函数f(x)=|x-1|+|2x+m|(m∈R).(1)若m=2时,解不等式f(x)≤3;(2)若关于x的不等式f(x)≤|2x-3|在x∈[0,1]上有解,求实数m的取值范围.答案和解析1.【答案】D【解析】解:由题可得:集合A是点集,集合B是数集,所以A∩B=∅.故选:D.由题可得:集合A是点集,集合B是数集,由交集概念即可得解.本题主要考查了集合的表示及交集运算,属于基础题.2.【答案】B【解析】解:∵(3-4i)z=|3-4i|,∴z==.∴z的虚部为:.故选:B.整理(3-4i)z=|3-4i|得:z=,由复数的基本概念得答案.本题主要考查了复数的模及复数的除法运算,还考查了复数的有关概念,考查计算能力,属于基础题.3.【答案】A【解析】解:样本间隔为2400÷30=80,设首个号码为x,则第三.第四个号码为x+160,x+240,则x+160+x+240=2x+400=432,得2x=32,x=16,则第6组抽到的号码为16+80×5=400+16=416,故选:A.先求出样本间隔,设出首个号码x,建立方程组求出x,利用系统抽样的定义进行求解即可.本题主要考查系统抽样的应用,根据样本间隔,结合条件求出首个号码是解决本题的关键.4.【答案】B【解析】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{a n}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=-11,a n=a1+(n-1)d=-11+2(n-1)=2n-13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和S n取最小值时,n=6.故选:B.由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.5.【答案】A【解析】解:设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,故选:A.设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,即可得出结论.本题考查点面距离,考查学生分析解决问题的能力,比较基础.6.【答案】D【解析】解:如图,分别以边AC,AB所在直线为x,y轴,建立平面直角坐标系,则:;;∴=;∴=,,;∴.故选:D.可分别以直线AC,AB为x,y轴,建立平面直角坐标系,根据条件便可求出点A,B,C,D的坐标,进而求出点E的坐标,从而得出向量的坐标,这样进行数量积的坐标运算即可求出的值.考查建立平面直角坐标系,通过坐标解决向量问题的方法,能求平面上点的坐标,以及向量数乘的几何意义,数量积的坐标运算.7.【答案】D【解析】解:作出不等式组表示的平面区域如下:作出直线l:x-y-4=0,当l往上平移时,x-y-4变小,当直线l经过点B(,)时,x-y-4最大,当直线l经过点C(1,3)时,x-y-4最小.即:1-3-4≤x-y-4≤,所以-6≤x-y-4≤-,所以,所以z=|x-y-4|的最大值为6.故选:D.作出不等式组表示的平面区域,利用线性规划知识求得-6≤x-y-4≤-,问题得解.本题主要考查了利用线性规划知识求目标函数的最值,考查了数形结合思想及转化能力,属于中档题.8.【答案】C【解析】解:函数f(x)=,当x=0时,y=-3,排除选项A,B,D.即可判断选项C正确,故选:C.利用特殊值对应点的坐标排除选项,判断即可.本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.9.【答案】B【解析】解;因为,所以a=,又因为blnb=1>0,所以lnb>0,所以b>1,又因为f(x)=3x3+x-1在R上为增函数,又f(1)=3>0,f ()=-1<0,又f(c)=0,由函数零点定理可得:,即b>c>a,故选:B.由对数不等式得求法得:blnb=1>0,所以lnb>0,所以b>1,由函数的零点定理得:因为f(x)=3x3+x-1在R上为增函数,又f(1)=3>0,f()=-1<0,又f(c)=0,由函数零点定理可得:,得解.本题考查了解对数不等式及函数的零点定理,属中档题.10.【答案】C【解析】解:可令F(-c,0),由x=-c,可得y=±b =±,由题意可设P(-c,),B(a,0),可得BP的方程为:y=-(x-a),x=0时,y=,E(0,),A(-a,0),则AE的方程为:y=(x+a),则M(-c,-),M是线段QF的中点,可得2•(-)=,即2a-2c=a+c,即a=3c,可得e==.故选:C.利用已知条件求出P的坐标,然后求解E的坐标,推出M的坐标,利用中点坐标公式得到双曲线的离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.11.【答案】C【解析】解:数列{a n}中,已知a1=1,且对于任意的m,n∈N*,都有a m+n=a m+a n+mn,则:a2=a1+a1+1×1=3=1+2,a3=a1+a2+1×2=6=1+2+3,…,a n=1+2+3+…+n=,所以:,所以:=,=2(),=,=.故选:C.首先利用赋值法求出数列的通项公式,进一步利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.12.【答案】B【解析】解:由题意得直线2kx-2y-kπ=0(k>0)过定点(,0),且斜率k>0,由对称性可知,直线与三角函数图象切于另外两个点,所以x3+x1=π;x2=,f′(x)=2cos2x,则切线方程过点(x1,sin2x1),(x2,sin2x2),所以2(2x3-π)cos2x3=2sin2x3,,而(x1-x2)tan(x2-2x3)=(-x3)tan (-2x3)=(π-2x3)cot2x3=-.故选:B.求出直线恒过的定点,利用函数的导数求出切线方程,转化求解表达式的值即可.直线与曲线相切一般要应用三点,一是曲线在切点处的导数是切线的斜率,二是切点即在曲线上也在切线上,三是没有切点要设切点.本就用到了上面三点,然后再配求所求式子的结构.13.【答案】【解析】解:因为tan(x+)=2,所以=2,解得:tanx=,即:sinx=cosx,又sin2x+cos2x=1,所以cos2x=,又x是第三象限角,所以cosx=-.故答案为:-.由两角和的正切公式即可求得tanx=,结合sin2x+cos2x=1,即可求得cos2x=,问题得解.本题主要考查了两角和的正切公式及同角三角函数基本关系,考查计算能力,属于基础题.14.【答案】【解析】解:从八卦中任取两卦,共有=28种取法,若两卦的六根线中恰有三根阳线和三根阴线,可按取得卦的阳、阴线的根数分类计算;当有一卦阳、阴线的根数为3、0时,另一卦阳、阴线的根数为0、3,共有1种取法.当有一卦阳、阴线的根数为2、1时,另一卦阳、阴线的根数为1、2,共有3×3=9种取法.所以两卦的六根线中恰有三根阳线和三根阴线的取法有1+9=10种.则从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率为P=,故答案为:由图可得:三根都是阳线的有一卦,三根都是阴线的有一卦,两根阳线一根阴线的有三卦,两根阴线一根阳线的有三卦,利用组合数可得基本事件总数,分类利用计算原理求得符合要求的基本事件个数为10个,问题得解.本题主要考查了组合计数及分类思想,考查古典概型概率计算公式,属于中档题.15.【答案】【解析】解:连接HF,因为点M在抛物线y2=4x上,所以由抛物线的定义可知|MH|=|MF|,所以△MHF为等腰三角形,所以∠FMH的角平分线所在的直线经过HF的中点,因为F(1,0),H(-1,),所以HF的中点为(0,),所以∠FMH的角平分线的斜率为=.故答案为:.由抛物线定义可知|MH|=|MF|,进而可推断出∠FMH的角平分线所在的直线经过HF的中点,利用斜率的两点式即可得到结论.在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用.抛物线定义有两种用途:一是当已知曲线是抛物线时,抛物线上的点M满足定义,它到准线的距离为d,则|MF|=d,可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.16.【答案】24【解析】解:由三视图还原原几何体如图所示,在长宽高分别为6,3,4的长方体中,A1E=D1F=2,BG=CH=1,三视图所对应的几何体是多面体AEG-DHF,该组合体是由一个三棱锥和一个四棱锥组成的组合体,其体积: V=V E-AGHD +V H-EFD=.故答案为:24.首先确定几何体的空间结构特征,然后将其分割之后求解其体积即可.本题考查求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,训练了利用分割补形法求解多面体的体积,是中档题. 17.【答案】解:(1)因为sin 2A +sin A sin B -6sin 2B =0,sin B ≠0,所以( )2+ -6=0,得 =2或=-3(舍去).由正弦定理得 ==2. (2)由余弦定理得cos C ==.① 将=2,即a =2b 代入①,得5b 2-c 2=3b 2,得c = b .由余弦定理cos B =,得:cos B ==,则sin B = =.【解析】(1)由已知可得()2+-6=0,解方程可得=2,由正弦定理得=2.(2)由已知及余弦定理可求c=b ,进而可求cosB 的值,根据同角三角函数基本关系式可求sinB 的值.本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18.【答案】证明:(1)因为AB ∥CD ,∠BCD =90°, 所以AB ⊥BC ,又平面PAB ⊥平面ABCD ,且平面PAB ∩平面ABCD =AB , 所以BC ⊥平面PAB ,(1分)又AQ ⊂平面PAB ,所以BC ⊥AQ ,(2分)因为Q 为PB 中点,且△PAB 为等边三角形,所以PB ⊥AQ ,(3分) 又PB ∩BC =B ,所以AQ ⊥平面PBC .(4分) 解:(2)取AB 中点为O ,连接PO , 因为△PAB 为等边三角形,所以PO ⊥AB ,由平面PAB ⊥平面ABCD ,因为PO ⊂平面PAB , 所以PO ⊥平面ABCD ,(5分)所以PO ⊥OD ,由AB =2BC =2CD =4,∠ABC =90°, 可知OD ∥BC ,所以OD ⊥AB .以AB 中点O 为坐标原点,分别以OD ,OB ,OP 所在直线为x ,y ,z 轴, 建立如图所示的空间直角坐标系O -xyz .(6分)所以A (0,-2,0),D (2,0,0),C (2,2,0),P (0,0,2 ),B (0,2,0),则 =(2,2,0), =(-2,0,2 ), =(0,-2,0), 因为Q 为PB 中点,所以Q (0,1, ), 由 (1)知,平面PBC 的一个法向量为 =(0,3, ),(7分)设平面PCD 的法向量为=(x ,y ,z ), 由,取z =1,得 =( , , ),(9分) 由cos < , >=== .(11分)因为二面角B -PC -D 为钝角,所以,二面角B -PC -D 的余弦值为.(12分)【解析】(1)推导出AB ⊥BC ,从而BC ⊥平面PAB ,进而BC ⊥AQ ,再求出PB ⊥AQ ,由此能证明AQ ⊥平面PBC .(2)取AB 中点为O ,连接PO ,推导出PO ⊥AB ,PO ⊥平面ABCD ,OD ⊥AB .以AB 中点O 为坐标原点,分别以OD ,OB ,OP 所在直线为x ,y ,z 轴,建立空间直角坐标系O-xyz ,利用向量法能求出二面角B-PC-D 的余弦值.该题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题. 19.【答案】解:(1)p (m -s <X <m +s )=p (82.8<X <87.2)=0.8>0.6826p (m -2s <X <m +2s )=p (80.6<X <89.4)=0.94<0.9544p (m -3s <X <m +3s )=p (78.4<X <91.6)=0.98<0.9974,因为设备的数据仅满足一个不等式,故其性能等级为丙.( 2)由题意可知,样本中次品个数为 6,突变品个数为 2,“突变品”个数ξ的可能取值为 0,1,2, P (ξ=0)==,P (ξ=1)==,P (ξ=2)==,可得ξ的分布列:EY =0×+1×+2×=. 【解析】(1)利用正态分布列的概率计算公式即可得出.( 2)由题意可知,样本中次品个数为 6,突变品个数为 2,“突变品”个数ξ的可能取值为 0,1,2,利用超几何分布列的计算公式即可得出ξ的分布列与数学期望.本题考查了正态分布列的概率计算公式、超几何分布列的计算公式,考查了推理能力与计算能力,属于中档题.20.【答案】解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.△ >,△,△,所以,,,四边形==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.【解析】(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)f′(x)=e x(2x-1)+2e x=e x(2x+1),设切点为(m,n),由题意可得a=e m(2m+1),又n=am-a=e m(2m-1),解方程可得,a=1或4;(2)函数f(x)=e x(2x-1),g(x)=ax-a由题意知存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,∵f′(x)=e x(2x-1)+2e x=e x(2x+1),∴当x<-时,f′(x)<0,当x>-时,f′(x)>0,∴当x=-时,f(x)取最小值-2,当x=0时,f(0)=-1,当x=1时,f(1)=e>0,直线y=ax-a恒过定点(1,0)且斜率为a,故-a>f(0)=-1且f(-1)=-3e-1≥-a-a,解得≤a<1.【解析】(1)求出导数,设出切点(m,n),求得切线的斜率,由切线的方程,可得a=e m(2m+1),又n=am-a=e m(2m-1),解方程可得a的值;(2)函数f(x)=e x(2x-1),g(x)=ax-a,问题转化为存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,求导数可得函数的极值,数形结合可得-a>f(0)=-1且f(-1)=-3e-1≥-a-a,解关于k的不等式组可得.本题考查导数的运用:求切线的斜率和极值、最值,涉及数形结合和转化的思想,属中档题.22.【答案】解:(1)∵ ,代入y2=4x,∴ρsin2θ-4cosθ=0(2)不妨设点A,B对应的参数分别是t1,t2,把直线l的参数方程代入抛物线方程得:t2sin2α-4cosα•t-8=0,∴△=16cos2α+32sin2α>0,∴t1+t2=,t1t2=-,则|AB|=|t1-t2|==4,∴,∴或.【解析】(1)由x=ρcosθ,y=ρsinθ可得抛物线C的极坐标方程;(2)不妨设点A,B对应的参数分别是t1,t2,根据弦长公式,即可求解.本题考查普通方程与极坐标方程的转化,考查弦长公式,考查学生分析解决问题的能力,属于中档题.23.【答案】解:(1)若m=2时,|x-1|+|2x+2|≤3,当x≤-1时,原不等式可化为-x+1-2x-2≤3解得x≥-,所以,当-1<x<1时,原不等式可化为1-x+2x+2≤3得x≤0,所以-1<x≤0,当x≥1时,原不等式可化为x-1+2x+2≤3解得x≤,所以x∈Φ,综上述:不等式的解集为;(2)当x∈[0,1]时,由f(x)≤|2x-3|得1-x+|2x+m|≤3-2x,即|2x+m|≤2-x,故x-2≤2x+m≤2-x得-x-2≤m≤2-3x,又由题意知:(-x-2)min≤m≤(2-3x)max,即-3≤m≤2,故m的范围为[-3,2].【解析】(1)通过去掉绝对值符号,转化求解不等式的解集即可.(2)已知条件转化为即|2x+m|≤2-x,即-x-2≤m≤2-3x,即可求解实数m的取值范围.本题主要考查了解绝对值不等式,利用绝对值不等式的几何意义解决问题;考查推理论证能力、运算求解能力等;考查化归与转化思想、数形结合思想、函数与方程思想等;考查数学抽象、逻辑推理、直观想象、数学运算等.。
2019年新乡市数学高考第一次模拟试题(附答案)一、选择题1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D2.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对3.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2 B .3C .5D .74.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形5.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大 D .()D ξ先增大后减小6.函数()()2ln 1f x x x=+-的一个零点所在的区间是( ) A .()0,1 B .()1,2C .()2,3D .()3,47.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .48.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U9.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元10.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .0 11.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .212.渐近线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C .2D .2二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.15.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且22EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .18.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.19.锐角△ABC 中,若B =2A ,则ba的取值范围是__________. 20.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.23.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 24.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N L 25.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
(完整word版)2019高考数学模拟试题及答案解析亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~2018高考数学模拟试题(2)数学I注意事项考生在答题前请认真阅读本注意事项及答题要求 1.本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:球体的体积公式:V =334R π,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合},02/{2R x x x x M ∈=+=,},02/{2R x x x x N ∈≤-=, 则=N M ▲ .2.已知复数z 满足z3+2i =i ,其中i 为虚数单位,则复数z 的虚部为 ▲ .3.某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示.成绩分组为[50,60),[60,70),…,[90,100],则在本次竞赛中,得分不低于80分的人数为 ▲ .4.在标号为0,1,2,4的四张卡片中随机抽取两张卡片,则这两张卡片上的标号之和为0.030 0.025 0.015频率组距 05060 70 80 90 100成绩(第3题)奇数的概率是 ▲ .5.运行如图所示的流程图,则输出的结果S 是 ▲ .6.已知等差数列{a n }的前n 项和为S n .若S 15=30,a 7=1,则S 10的值为▲________.7.已知()y f x =是R 上的奇函数,且0x >时,()1f x =,则不等式2()(0)f x x f -<的 解集为 ▲ .8.在直角坐标系xOy 中,双曲线x 2-y 23=1的左准线为l ,则以l 为准线的抛物线的标准方程是 ▲ .9.四面体ABCD 中,AB ⊥平面BCD ,CD ⊥平面ABC ,且1cm AB BC CD ===,则四面体ABCD 的外接球的表面积为 ▲ 2cm .10. 已知0πy x <<<,且tan tan 2x y =,1sin sin 3x y =,则x y -= ▲ .11.在平面直角坐标系xOy 中,若直线l :20x y +=与圆C :22()()5x a y b -+-=相切,且圆心C 在直线l 的上方,则ab 的最大值为 ▲ .12.正五边形ABCDE的边长为AE AC ⋅的值为 ▲ .13.设0a ≠,e 是自然对数的底数,函数2,0,(),0x ae x x f x x ax a x ⎧-≤⎪=⎨-+>⎪⎩有零点,且所有零点的和不大于6,则a 的取值范围为 ▲ .(第5题)14.若对任意实数x 和任意θ∈[0,π2],恒有(x +2sin θcos θ)2+(x +a sin θ+a cos θ)2≥18, 则实数a 的取值范围是 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且(,)62ππα∈. 将角α的终边按逆时针方向旋转3π,交单位圆于点B ,记A (x 1,y 1),B (x 2,y 2).(1)若113x =,求2x ;(2)分别过A ,B 作x 轴的垂线,垂足依次为C ,D , 记△AOC 的面积为S 1,△BOD 的面积为S 2,若122S S =, 求角α的值..16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,BC =BB 1,D 为AB 的中点. (1)求证:BC 1∥平面A 1CD ; (2)求证:BC 1⊥平面AB 1C .17.(本小题满分14分)某生物探测器在水中逆流行进时,所消耗的能量为nE cv T=,其中v为探测器在静水中行进时的速度,T为行进时的时间(单位:小时),c为常数,n为能量次级数.如果水的速度为4 km/h,该生物探测器在水中逆流行进200 km.(1)求T关于v的函数关系式;(2)(i)当能量次级数为2时,求该探测器消耗的最少能量;(ii)当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.18.(本小题满分16分)如图,椭圆22:143x yC+=的右焦点为F,右准线为l,过点F且与x轴不重合的直线交椭圆于A,B两点,P是AB的中点,过点B作BM⊥l于M,连AM交x轴于点N,连PN.(1)若165AB=,求直线AB的倾斜角;(2)当直线AB变化时,求PN长的最小值.19.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:120f x x '<(()f x '为函数()f x 的导函数); (3)设点C 在函数()y f x =的图象上,且△ABC 2111x t x -=-, 求(1)(1)a t --的值.20.(本小题满分16分)已知数列{n a }满足*111,||,.n n n a a a p n N +=-=∈(1)若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值; (2)若12p =,且{21n a -}是递增数列,{2n a }是递减数列,求数列{n a }的通项公式.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A 作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.ArrayAB .选修4—2:矩阵与变换已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 x 的一个特征值为3,求M 的另一个特征值及对应的一个特征向量.C .选修4—4:坐标系与参数方程已知点P 是曲线C :⎩⎨⎧==θθsin 3cos 2y x (θ为参数,πθπ2≤≤)上一点,O 为原点.若直线OP 的倾斜角为3π,求点P 的直角坐标.D .选修4—5:不等式选讲已知实数x ,y ,z 满足x + y + z = 2,求22232z y x ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)某小组共10人,利用暑期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3, 4,现从这10人中选出2人作为该组代表参加座谈会.(1)记“选出2人参加义工活动的次数之和为4”为事件A ,求事件A 的发生的概率; (2)设X 为选出2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.23.(本小题满分10分)在集合{A =1,2,3,4,…,2n }中,任取m (m n ≤,m ,n ∈N *)元素构成集合m A .若m A 的所有元素之和为偶数,则称m A 为A 的偶子集,其个数记为()f m ;若mA 的所有元素之和为奇数,则称m A 为A 的奇子集,其个数记为()g m .令()()()F m f m g m =-.(1)当2n =时,求(1)F ,(2)F ,的值; (2)求()F m .2018高考数学模拟试题(2)数学I 答案一、填空题答案1. {0}2. 33. 1204.21 5. 216. -57. (0,1)8. y 2=2x9. 3π 10. 3π11. 258解:因为直线l :20x y +=与圆C :22()()5x a y b -+-=相切,=又因为圆心C 在直线l 的上方,所以20a b +>, 所以25a b +=,52a b =+≥所以ab 的最大值为258.12. 6解:利用AC 在AE 上的投影得,221AE AE AC =⋅=6. 13. ()[]6,40, ∞- 解:①0<a0≤x 时,01e )(<-=x a x 'f ,所以)(x f 在)0(,-∞单调递减,且0)0(<=a f ,所以)(x f 在)0(,-∞有一个小于0的零点.0>x 时,)(x f 在)0(+∞,单调递增,因为1)1(=f ,所以)(x f 在)0(+∞,有一个小于1的零点. 因此满足条件. ②0>a(1)1≤0a <时,)(x f 在)0(,-∞单调递减,0)0(>=a f ,所以)(x f 在(]0,∞-上没有零点.又因为042<-=∆a a ,故)(x f 在)0(+∞,上也没有零点.因此不满足题意.(2)41<<a 时,)(x f 在⎪⎭⎫ ⎝⎛∞-a 1ln ,上单调递减,在⎪⎭⎫ ⎝⎛01ln ,a上单调递增,0ln 11ln >+=⎪⎭⎫⎝⎛a a f ,所以)(x f 在(]0,∞-上没有零点.又因为042<-=∆a a ,故)(x f 在)0(+∞,上也没有零点.因此不满足题意.(3)4=a 时,⎩⎨⎧>+--=04404)(2x x x x x e x f x ,≤ ,,)(x f 在(]0,∞-上没有零点,零点只有2,满足条件.(4)4>a 时,)(x f 在(]0,∞-上没有零点,在)0(+∞,上有两个不相等的零点,且和为a ,故满足题意的范围是64≤a <.综上所述,a 的取值范围为()[]6,40, ∞-.14. a ≤6或a ≥72解:因为222()2a b a b -+≥对任意a 、b 都成立,所以,(x +2sin θcos θ)2+(x +a sin θ+a cos θ)2≥12 (2sin θcos θ-a sin θ-a cos θ)2, (2sin θcos θ-a sin θ-a cos θ)2≥14,即对任意θ∈[0,π2],都有132sin cos 2sin cos a θθθθ++≥+或132sin cos 2sin cos a θθθθ+-≤+,因为132sin cos 512sin cos sin cos 2sin cos θθθθθθθθ++=++⋅++,当θ∈[0,π2]时,1sin cos θθ≤+≤ 所以72a ≥,同理a ≤ 6.因此,实数a 的取值范围是a ≤6或a ≥72.二、解答题答案15.解:(1)由三角函数定义,1cos x α=,2cos()3x πα=+,因为(,)62ππα∈,1cos 3α=,所以sin α==.211cos()cos 3226x πααα-=+=-=.(2)依题意,1sin y α=,2sin()3y πα=+,所以111111cos sin sin 2224S x y ααα==⋅=, )322sin(41-)3sin()3cos(2121222παπαπα+=++-==y x S ,依题意,2sin 22sin(2)3παα=-+,化简得cos20α=, 因为62ππα<<,则23παπ<<,所以22πα=,即4πα=.16.证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1⊥平面A 1B 1C 1,四边形ACC 1A 1为矩形,设AC 1∩A 1C =G ,则G 为AC 1中点,D 为AB 中点,连DG ,则DG ∥BC 1. 因为DG ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD.(2)由(1)四边形BCC 1B 1为矩形,又BC =BB 1,则四边形BCC 1B 1为正方形,所以BC 1⊥B 1C , 由(1)CC 1⊥平面ABC ,所以CC 1⊥AC , 又AC ⊥BC ,则AC ⊥平面BCC 1B 1,AC ⊥BC 1, 因此,BC 1⊥平面AB 1C .17.解:(1)由题意得,该探测器相对于河岸的速度为200T,又该探测器相对于河岸的速度比相对于水的速度小4 km/h ,即4v -, 所以200T=4v -,即2004T v =-,4v >;(2)(ⅰ) 当能量次级数为2时,由(1)知22004v E c v =⋅-,4v >, []2(4)42004v c v -+=⋅-16200(4)84c v v ⎡⎤=⋅-++⎢⎥-⎣⎦162002(4)84c v v ⎡⎤⋅-⋅+⎢⎥-⎣⎦≥3200c =(当且仅当1644v v -=-即8v =km/h 时,取等号)(9分)(ⅱ) 当能量次级数为3时,由(1)知32004v E c v =⋅-,4v >, 所以222(6)2000(4)v v E c v -'=⋅=-得6v =,当6v <时,0E '<;当6v >时,0E '>, 所以当6v =时,min E 21600c =.答:(ⅰ) 该探测器消耗的最少能量为3200c ; (ⅱ) 6v =km/h 时,该探测器消耗的能量最少.18. 解(1)显然)0,1(,21,3,2F e b a ===,当AB ⊥x 轴时,易得221635b AB a ==≠,不合题意.所以可设AB 的方程为(1)(0)y k x k =-≠,与椭圆方程联立得2222(43)84120k x k x k +-+-=,设A (x 1,y 1), B (x 2,y 2), 则212221228,4341243k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,因此2212(1)16435k k +=+,解得k =AB 的倾斜角等于60或120. (2)因为椭圆的右准线的方程为4x =,由(1),当AB 不垂直于x 轴时,点211(4,(1)),(,(1))M k x A x k x --,所以直线AM 的方程为12111()(1)()4k x x y k x x x x ---=--,令y =0,得1121254N x x x x x x --=-2211221212412205454343k k x x k k x x x x ----++==--=1121255()522x x x x x -+=-. 当AB ⊥x 轴时,易得52N x =,所以无论AB 如何变化,点N 的坐标均为5(,0)2.因此,当AB ⊥x 轴时,PN 取最小值,PN min =53122-=.19.解(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾. 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数; 当ln x a >时,()0f x '>,()f x 是单调增函数.于是当ln x a =时,()f x 取得极小值.因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2), 所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围.(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,,两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x x f s x x s++-+-'⎡⎤=-=--⎣⎦-, 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数,则有()(0)0g s g <=,而122e02x x s+>,所以()1202x xf +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<.(3)依题意有e 0ix i ax a -+=,则(1)e 0ix i a x -=>⇒112i x i >=(,).于是122ex x +=,在等腰三角形ABC 中,显然C = 90°, 所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以21002x x y -+=,即1221212e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t =,所以221(1)(1)022a at t t -++-=, 即211a t =+-,所以(1)(1) 2.a t --=20. 解:(1)因为{n a }是递增数列,所以n n n p a a =-+1, 又11=a ,1,1232++=+=p p a p a ,因为12,3,23a a a 成等差数列,所以p p p p p a a a =+++=++=223123,333144,34,解得0,31==p p ,当0=p ,01=-+n n a a ,与{n a }是递增数列矛盾,所以31=p .(2)因为{21n a -}是递增数列,所以01212>--+n n a a , 于是()+-+n n a a 212()0122>--n n a a①由于1222121-<n n ,所以122212-+-<-n n n n a a a a ② 由①②得()0122>--n n a a ,所以()122121222121----=⎪⎭⎫ ⎝⎛=-n n n n n a a③ 因为{2n a }是递减数列,所以同理可得0212<-+n n a a ,()nn nnn a a 21222122121++-=⎪⎭⎫⎝⎛-=-.④ 由③④得()nn nn a a 2111++-=-,所以()()()123121--++-+-+=n n n a a a a a a a a()()()123122121211--++-+-+=n n()11213134211211211---+=+⎪⎭⎫⎝⎛--⋅+=n nn , 所以数列{n a }的通项公式为()1213134--+=n nn a .数学Ⅱ答案21.【选做题】答案A .选修4—1:几何证明选讲 解:连结OC ,BE .因为AB 是圆O 的直径,所以BE ⊥AE .因为AB =8,BC =4,所以OB =OC =BC =4,即△OBC 为正三角形. 所以∠BOC =60︒.又直线l 切⊙O 与于点C ,所以OC ⊥l . 因为AD ⊥l ,所以AD ∥l . 所以∠BAD =∠BOC =60︒.在Rt △BAE 中,因为∠EBA =90︒-∠BAD =30°, 所以AE =12AB =4.B .选修4—2:矩阵与变换解:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一个根,所以(3-1)(3-x )-4=0,解得x =1. 由(λ-1)(λ-1)-4=0,得λ=-1或3,所以λ2=-1.设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,从而y =-x . 取x =1,得y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.C .选修4—4:坐标系与参数方程解:由题意得,曲线C 的普通方程为22143x y += (1)00sin 2≤⇒≤⇒≤≤y θπθπ 直线OP的方程为y = (2)联立(1)(2)得55x y ⎧=⎪⎪⎨⎪=⎪⎩(舍)或55x y ⎧=-⎪⎪⎨⎪=-⎪⎩A (第21题A)所以点P的坐标为(D.选修4—5:不等式选讲解:由柯西不等式可知22222221)1](23)z x y z ++⋅≤++++,所以2222()24231111123x y zx y z++++≥=++,当且仅当1112,114,116===zyx时取等号.【必做题】答案22.解:(1)由已知有P(A)=C31C41+C32C102=13,所以事件A发生的概率为13.(2)随机变量X的所有可能的取值为0,1,2P(X=0)=C32+C32+C42C102=415;P(X=1)=C31C31+C31C41C102=715;P(X=2)=C31C41C102=415.所以随机变量X的分布列为1.154215711540E(X)=⨯+⨯+⨯=23.解:(1)当2n =时,集合为{1,2,3,4}.当1m =时,偶子集有{2},{4},奇子集有{1},{3},(1)2f =,(1)2g =,(1)0F =; 当2m =时,偶子集有{2,4},{1,3},奇子集有{1,2},{1,4},{2,3},{3,4},(2)2f =,(2)4g =,(2)2F =-;(2)当m 为奇数时,偶子集的个数0224411()C C C C C C C C m m m m n n n nn n n n f m ---=++++,奇子集的个数1133()C C C C C C m m m n n n nn n g m --=+++,所以()()f m g m =,()()()0F m f m g m =-=.当m 为偶数时,偶子集的个数02244()C C C C C C C C m m m m n n n nn n n n f m --=++++,奇子集的个数113311()C C C C C C m m m n n n n n n g m ---=+++,所以()()()F m f m g m =-0112233110C C C C C C C C C C C C m m m m m m n n n n n n n nn n n n ----=-+-+-+.一方面,01220122(1)(1)(C C C C )[C C C (1)C ]n n n n n n nn n n n n n n n x x x x x x x x +-=++++-+-+-,所以(1)(1)n n x x +-中m x 的系数为0112233110C C C C C C C C C C C C m m m m m m n n n n n n n nn n n n -----+-+-+;另一方面,2(1)(1)(1)n n n x x x +-=-,2(1)n x -中mx 的系数为22(1)C mm n-, 故()F m =22(1)C m m n-.综上,22(1)C , ()0,m mn m F m m ⎧⎪-=⎨⎪⎩为偶数, 为奇数.结尾处,小编送给大家一段话。