金属线膨胀系数的测定.
- 格式:ppt
- 大小:1.17 MB
- 文档页数:19
金属线膨胀系数的测定教学目的:1.掌握用千分表测量微小位移的方法;2.学习测定金属棒线膨胀系数的方法;3.掌握温控仪的使用方法;4.学习PID 调节的原理;5.通过实验了解参数设置对PID 调节过程的影响。
教学内容:1.绝大多数物质具有热胀冷缩特性,在一维情况下,固体受热后长度的增加称为线膨胀。
线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。
2.利用千分表和PID 温控仪来测定铜棒和铝棒的线膨胀系数,测量公式为01L L t α∆=⋅∆。
实验要注意的是:千分表应水平放置,千分表要刚刚接触上金属棒,也不能使接触太紧,否则千分表的读数不会发生变化,一旦开始升温及读数,避免再触动实验仪;为减小系统误差,将第1次温度达到平衡时的当前温度T 及千分表读数分别作为t 0和l 0。
重点难点:1.重点:利用千分表和PID 温控仪来测定铜棒和铝棒的线膨胀系数;2.难点:千分表的放置和读数。
教学设计:1.讲述物质膨胀系数特性的应用(5min )2.讲述线膨胀系数的测量原理(10min )3.介绍千分表和PID 温控仪的使用和使用注意事项(10min )4.讲述实验操作步骤,要特别强调将第1次温度达到平衡时的当前温度T 及千分表读数分别作为t 0和l 0(15min )5.学生自己完成实验,老师辅导(85min )6.检查学生测量的实验数据(10min )作业、实验:写一份完整的实验报告。
实验报告要求:通过测量数据描绘Lt ∆∆的直线图,利用图解法求出线膨胀系数α。
金属线膨胀系数的测定(讲稿)大家都知道绝大多数物质都具有“热胀冷缩”的性质。
这是由于当温度增高时,组成物质的分子间距膨胀增大,这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工中,都必须加以考虑。
否则,将影响结构的稳定性和仪表的精度,甚至会造成工程结构的毁损,仪表的失灵等。
金属线膨胀系数的测定实验报告一、实验目的。
本实验旨在通过测定金属线的膨胀系数,探究金属在受热作用下的膨胀规律,并验证线性膨胀系数的概念。
二、实验原理。
金属在受热作用下会发生线性膨胀,其膨胀量与温度变化呈线性关系。
金属线的膨胀量可用以下公式表示:ΔL = αL0ΔT。
其中,ΔL为金属线的膨胀量,α为线性膨胀系数,L0为金属线的原始长度,ΔT为温度变化量。
三、实验器材。
1. 金属线。
2. 热水槽。
3. 温度计。
4. 尺子。
四、实验步骤。
1. 准备金属线,并测量其原始长度L0。
2. 将金属线固定在支架上。
3. 将热水倒入热水槽中,待温度稳定后,记录水温作为初始温度T1。
4. 将金属线放入热水中,测量金属线的膨胀量ΔL。
5. 记录金属线在热水中的最终温度T2。
6. 根据实验数据计算金属线的线性膨胀系数α。
五、实验数据记录。
1. 金属线原始长度L0 = 1m。
2. 初始温度T1 = 25°C。
3. 最终温度T2 = 75°C。
4. 金属线膨胀量ΔL = 5mm。
六、实验结果分析。
根据实验数据计算得到金属线的线性膨胀系数α为:α = ΔL / (L0ΔT) = 5mm / (1m × 50°C) = 1 × 10^-4 /°C。
七、实验结论。
通过本实验的测定和计算,验证了金属线在受热作用下会发生线性膨胀的规律,并得到了金属线的线性膨胀系数α。
实验结果表明,金属线的膨胀量与温度变化呈线性关系,膨胀系数是一个常数,可用于预测金属在不同温度下的膨胀量。
八、实验注意事项。
1. 在实验过程中要小心热水的温度,避免烫伤。
2. 测量金属线的膨胀量时要注意准确度,避免误差。
九、实验总结。
本实验通过测定金属线的膨胀量,验证了金属在受热作用下的线性膨胀规律,得到了金属线的线性膨胀系数α。
实验结果对于理解金属膨胀规律具有重要意义,也为工程应用提供了重要参考。
以上为金属线膨胀系数的测定实验报告。
金属线胀系数的测量1.引言金属材料在物理环境的变化下会产生热胀冷缩的效应,因此,在工业生产和实验研究中要考虑到材料的热膨胀性能。
其中,线膨胀系数是衡量物质在长度方向上的热膨胀的指标。
本文探讨了金属线胀系数的测量方法及其应用。
2.线膨胀系数的定义和计算公式线膨胀系数是指材料在温度变化下单位长度的变化量,通常用α表示。
线膨胀系数可以根据材料的特性来计算,具体计算公式如下:α=ΔL/(L0×ΔT)其中,ΔL表示线材的长度变化量,L0表示线材的初始长度,ΔT表示温度的变化量。
线膨胀系数的单位通常是m/m °C。
3.1 编织网法编织网法是一种相对简单的测量线膨胀系数的方法。
具体操作如下:①先制作一块编织网,其网孔大小应该适合于线膨胀系数的测量。
编织网可用铜网或不锈钢网制作。
②将待测样品嵌入编织网中,并将两端固定在支架上。
③取一个温度计将其固定在样品的中央位置。
④将样品和温度计放入恒温器中,升温至所需温度,使样品达到稳态。
⑤记录样品的长度变化量和温度变化量。
⑥根据线膨胀系数的计算公式计算材料的线膨胀系数。
3.2 拉伸法拉伸法需要使用精密的仪器和设备,比编织网法的测量精度要高。
具体操作步骤如下:①将待测样品插入到仪器的卡槽中,两端各钳紧一个夹具。
②加热样品,同时保持夹具上下的温度相同。
③在进行加热的同时,由于样品被卡在夹具中,因此在材料的线膨胀系数作用下,样品将在长度方向上扩张。
3.3 差异法①将两根相同的样品A和B固定在两个不同的支架上,相隔一段距离,保证两个试样上下温度相等。
②用导线将两个样品连接到直流稳压源上,将其通过电路连接起来。
③在稳定的电流过程中,对试样进行加热,此时会存在两个样品长度的差异,通过测量差异长度就可以计算出材料的线膨胀系数。
4. 线膨胀系数的应用① 材料选择:根据材料的线膨胀系数,可以选择在升温或降温过程中性能更稳定的材料。
② 构件设计:针对长大膨胀系数较大的构件,在其设计中要考虑到升温对构件的影响。
实验一 金属热膨胀系数的测量物体因温度改变而发生的膨胀现象叫“热膨胀”。
通常在外界压强不变的情况下,大多数物质在温度升高时,其体积增大,温度降低时体积缩小。
也有少数物质在一定的温度范围内,温度升高时,其体积反而减小。
绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
对晶体而言,其热膨胀还有各相异性;如石墨受热时,沿某些方向膨胀,而沿另一些方向则收缩。
金属是晶体,它们是由许多晶粒构成的,而且这些晶粒在空间方位上的 排列是无规则的,所以,金属整体表现出各相同性,或称它们的线膨胀在各个方向均相同。
因此可以用金属在一维方向上的线膨胀规律来表征它的体膨胀。
虽然金属的热膨胀非常微小,但由于使物体发生很小形变时就需要很大的应力。
这个特性在工程结构的设计,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到这一因素。
【实验目的】1.了解FD-LEA 金属热膨胀系数实验仪的基本结构和工作原理。
2.掌握千分表和温度控制仪的使用方法。
3.掌握测量金属线热膨胀系数的基本原理,测量铁、铜、铝等的线膨胀系数。
4.学习用图解图示法处理实验数据,并分析实验误差。
【实验原理】在一定温度范围内,原长为0L (在0t =0℃时的长度)的物体受热温度升高时,一般固体由于原子或分子的热运动加剧而发生热膨胀,在t (单位℃)温度时,伸长量L ∆,它与温度的增加量t ∆近似成正比,与原长0L 也成正比,即:t L L ∆⨯⨯=∆0α (1)此时总长为:L L L t ∆+=0 (2)式中α为固体的线膨胀系数,它是固体材料热性能的物理量。
在温度变化不大时,α是一个常数,可由式(1)和(2)得:tL L t L L L t ∆⋅∆=∆-=1000α (3) 上式中,α的物理意义:在一定温度范围内,当温度每升高1℃时,物体的伸长量L ∆与它在0℃时的原长0L 成正比。
α是一个很小的量,附录中列有几种常见的固体材料的α值。
实验四 金属线胀系数的测定绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工中,都应考虑到,否则,将影响结构的稳定性和仪表的精度。
材料的线膨胀系数是材料受热膨胀时,在一维方向上的伸长,线胀系数是选用材料的一项重要指标。
本实验采用光杠杆的原理来测量微小量。
【实验目的】1.掌握测定金属杆线膨胀系数的方法。
2.掌握用光杠杆测量微小伸长量的原理。
【实验仪器】GXZ —2金属线胀系数仪、光杠杆、米尺、望远镜、游标卡尺、待测金属杆。
【仪器简介】仪器结构GXZ —。
使用方法 1、GXZ —2金属线胀系数仪的电压控制部分及温度控制部分都由“PID 温度控制器”控制。
温度的测量采用的是温度传感器,温度传感器与“PID 温度控制器”连接在一起,温度通过“PID 温度控制器”控制,保险管安装在电源插座内。
“PID 温度控制器”具体操作步骤:首先将金属线胀系数仪温度传感器和加热带的线与PID 温度控制器连接好,插好电源线,打开电源开关,温度控制器的数码管亮,便可按需要开始设置。
a .使用软件锁:要防止设置的参数被其它人更改,可使用软件锁功能。
设置方式:按住“SET ”键约3秒钟以上待测量显示窗显示“LC ”时松开,再按“△”或“▽”键,下排显示窗显示“OFF ”时表示加锁,显示“ON ”时表示不加锁。
b .设置“控制”值:在软件锁打开的状态下,按照所需值,例如所需控制温度为90℃,则使下排数码管显示改变至“90”即可。
c .设置“误差修正”值:当确定包括传感器在内的控制系统出现误差而不能与更高精度等级的测量装置取得一致结果时,可使用“修正”功能,以取得一致。
设置方式:按“SET ”键约3秒钟,至测量显示窗显示为“5C ”时松开,再按“△”或“▽”键在误差修正范围内设置一个与误差方向相反的相同值即可。
d .需要加热时,将加热开关打向上,加热带带电,同时指示灯亮。
测量金属线膨胀系数的方法金属的膨胀系数是指在单位温度变化下,金属材料单位长度的线膨胀量。
测量金属线膨胀系数的方法有多种,下面将介绍其中几种常用的方法。
1. 热胀冷缩法热胀冷缩法是一种常用的测量金属线膨胀系数的方法。
该方法利用热胀冷缩的原理,通过测量金属材料在不同温度下的长度变化来计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。
(2)然后,将装置置于恒温箱中,并将温度控制在不同的温度下,如20℃、30℃、40℃等。
(3)测量每个温度下金属线的长度,并记录下来。
(4)根据测得的数据,计算金属线膨胀系数的值。
公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。
2. 拉伸法拉伸法也是一种常用的测量金属线膨胀系数的方法。
该方法通过施加不同的拉力来测量金属材料在不同温度下的长度变化,进而计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在拉伸装置上。
(2)然后,通过拉伸装置施加不同的拉力,使金属线逐渐延长。
(3)同时,利用测量装置测量金属线的长度,并记录下来。
(4)根据测得的数据,计算金属线膨胀系数的值。
公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。
3. 光栅法光栅法是一种利用光栅原理测量金属线膨胀系数的方法。
该方法利用光栅装置对金属线进行光学测量,通过测量金属线在不同温度下的光栅位移来计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。
(2)然后,将光栅装置对准金属线,使光栅的光束垂直射向金属线。
(3)随后,通过调整光栅装置,使光栅与金属线的光斑重合。
(4)测量不同温度下的光栅位移,并记录下来。
(5)根据测得的数据,计算金属线膨胀系数的值。
金属线胀系数的测量实验报告物理金属线膨胀系数测量实验报告实验(七)项目名称:金属线膨胀系数测量实验一、实验目的1、学习测量金属线膨胀系数的一种方法。
2、学会使用千分表。
二、实验原理材料的线膨胀是材料受热膨胀时,在一维方向的伸长。
线胀系数是选用材料的一项重要指标。
特别是研制新材料,少不了要对材料线胀系数做测定。
固体受热后其长度的增加称为线膨胀。
经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?t近似成正比,与原长L亦成正比,即:LLt (1)式中的比例系数?称为固体的线膨胀系数(简称线胀系数)。
大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、(来自: 写论文网:金属线胀系数的测量实验报告)熔融石英的线胀系数很小。
殷钢和石英的这一特性在精密测量仪器中有较多的应用。
实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。
某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。
另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。
因此测定线胀系数也是了解材料特性的一种手段。
但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。
为测量线胀系数,我们将材料做成条状或杆状。
由(1)式可知,测量出时杆长L、受热后温度从t1升高到t2时的伸长量?L和受热前后的温度升高量?t(?t?t2?t1),则该材料在(t1 , t2)温度区域的线胀系数为:??L(2)(L??t)其物理意义是固体材料在(t1 , t2)温度区域内,温度每升高一度时材料的相对伸长量,其单位为(C)。
测量线胀系数的主要问题是如何测伸长量?L。
我们先粗估算一下?L的大小,若L?250mm,温度变化t2?t1?100C,金属的?数量级为?10?5(0C)?1,则估算出?1LLt0.25mm。
对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。
可采用千分表(分度值为0.001mm)、读数显微镜、光杠杆放大法、光学干涉法等方法。
金属线胀系数的测定实验数据实验目的:测定金属的线胀系数,了解线胀系数的测量方法及实验结果的处理方法。
实验原理:金属的线胀系数是指金属在温度变化时,长度和直径发生变化的大小。
在进行线胀系数测定时,需要将金属样品在两个温度下测量其长度和直径,然后计算出其线胀系数。
通常情况下,线胀系数可以通过公式 C=([L-L0]/L0)×100% 来计算,其中 C 为线胀系数,[L-L0] 为温度变化时金属的长度变化,L0 为金属在恒温下的长度。
实验步骤:1. 准备试样:从不同部位取出长度约为 100mm 的金属样品,将其固定在拉伸机上。
2. 测量起始长度和直径:在室温下测量金属样品的长度和直径,并记录下来。
3. 将金属样品恒温至目标温度:将金属样品放置在恒温箱中,使其恒温至目标温度。
常用的目标温度范围为室温至 300°C。
4. 测量结束长度和直径:在目标温度下,再次测量金属样品的长度和直径,并记录下来。
5. 计算线胀系数:根据实验数据和公式 C=([L-L0]/L0)×100% 计算金属的线胀系数。
实验数据:表格 1:金属的线胀系数测量数据| 温度 (°C)| 长度变化 (%) | 直径变化 (%) | 线胀系数 | | -------- | -------- | -------- | -------- || 20 | -3.8 | -2.1 | 0.16 || 50 | -10.3 | -6.2 | 0.21 || 100 | -21.8 | -12.9 | 0.26 || 150 | -32.3 | -20.6 | 0.31 || 200 | -41.7 | -28.9 | 0.36 |实验结果分析:从表格 1 中可以看出,金属的线胀系数随着温度的升高而减小。
在室温下,金属的线胀系数通常在 0.17 左右。
在目标温度下,金属的线胀系数通常会比室温下的线胀系数小,这是因为在高温下金属的原子运动更加剧烈,导致金属的线胀系数减小。
实验 4.20 金属线膨胀系数的测定【实验目的】1.理解线膨胀系数的意义,掌握测定金属杆线膨胀系数的方法。
2.掌握用光杠杆测量固体微小伸长量的原理及方法。
【实验仪器】金属线胀系数测定仪、光杠杆、米尺、望远镜、游标卡尺、电子温度计。
【实验原理】一、线胀系数测量的基本原理任何物体都具有“热胀冷缩”的特性,这个特性在工程设计、精密仪表设计、材料的焊接和加工中都必须加以考虑。
线胀系数是描述材科受热膨胀的一项重要参数,金属线胀系数的测定是大学物理实验中一个重要的热学实验。
测量金属线胀系数的方法按加热方式分为流水加热法、水蒸气加热法、电加热法等;按测量方式分为:千分表法、组合法、单色光的劈尖干涉法、光杠杆法、传感器测量法等。
目前,金属线胀系数测量较为常见的是利用电加热待测金属杆,采用温度计在多个温度工作点下,用尺度望远镜和光扛杆测量金属杆由不同状态温差所引起的长度变化,从而得到金属杆的线胀系数。
固体加热时,体积将增大,这是一般物体所具有“热胀冷缩”的特性,固体受热后长度的增长称为“线膨胀”,其长度L和温度之间的关系为L=L0(1+αt+βt2+⋯) (4.20.1)式中L0为温度 t=0℃时的长度。
α、β……是和被测物质有关的常数,都是很小的数值。
而β以后各系数和α相比更小。
所以在常温下可以忽略,则(4.20.1)式可写成:L=L0(1+αt)(4.20.2)式中α就是通常所称的线胀系数,其物理意义为温度每升1℃度时物体的伸长量与它在零度时的长度比,单位是℃-1。
如果在温度 t1和t2时,金属杆的长度分别为L1和 L2则可写出:L1=L0(1+αt1)(4.20.3)L2=L0(1+αt2)(4.20.4)将式(4.20.3)代入式(4.20.4),化简后得:α=L2−L1L1(t2−L2L1t1)(4.20.5)由于 L2与L1变化微小,L2L1⁄≈1所以(4.20.5)式可近似写成α=L2−L1L1(t2−t1)=∆LL1∆t(4.20.6)其中∆L 是温度由t1升至t2时金属棒的伸长量。
金属线膨胀系数的测量
金属线膨胀系数是指金属材料在温度变化时线膨胀的比例关系,通常以单位温度变化时单位长度的膨胀量(如μm/mK)来表示。
金属线膨胀系数的测量可使用线膨
胀系数仪器进行,具体步骤如下:
1. 准备样品:选择需要测量的金属样品,并将其加工成具有一定长度的细丝状。
2. 悬挂样品:用专用夹具将样品悬挂在线膨胀系数仪器中,保证其自由度和垂直度。
3. 温度控制:通过加热、制冷或温度控制器以控制该区域的温度。
4. 读数和记录:使用测量仪器测量样品在不同温度下的长度,从而计算出金属线膨胀系数。
在测量过程中需要记录温度和每个样品的长度,以便计算金属线膨胀系数并进行数据分析。
需要注意的是,测量精度受到实验条件、测量仪器的精度、样品纯度和金属材料的品质等因素的影响。
因此,在实验过程中需要保持一个相对恒定的温升速率和温度梯度,确保样品表面清洁且无氧化物污染,避免对实验数据的干扰。
【DOC】金属线膨胀系数测定实验目的:通过测定金属线在不同温度下的长度变化,确定金属线的膨胀系数。
实验原理:金属材料在受热后,由于分子热运动加剧,分子间的距离扩大,材料的长度也会发生变化。
根据引力法则,分子间的距离增加相当于引力减小,因此金属材料在受热时会发生向外的膨胀。
金属材料在单位温度变化时的长度变化量与其初始长度的比值称为膨胀系数,通常用α表示。
根据式子:△L = αL0△T式中,△L为温度变化ΔT时的长度变化,L0为原长度,α为膨胀系数。
实验材料:金属线、恒温水浴、温度计、游标卡尺实验步骤:1. 准备一段金属线,量取其长度L0,记录下来。
2. 将金属线固定在架子上,使它可以自由伸长和收缩。
3. 将温度计放入恒温水浴中,使水温逐渐升高,记录下每次升温时的温度值ΔT。
4. 在每次升温之前,用游标卡尺测量金属线的长度,记录每次测量值。
5. 重复以上步骤,直到温度升高到一定值为止。
6. 根据记录的数据,画出金属线的长度变化曲线,计算出金属线的膨胀系数。
实验注意事项:1. 金属线固定时应使其自由伸长和收缩,防止受力过大影响测量结果。
2. 在测量金属线长度时,应注意游标卡尺的精度和读数准确度。
3. 温度计应校准,确保温度测量准确。
实验数据及计算:温度(℃)变化量ΔT(℃)初始长度L0(mm)长度变化△L(mm)膨胀系数α(×10^-6 K^-1)20℃(室温) 0 500 0 /30℃ 10 500 0.1 20.040℃ 10 500 0.2 40.050℃ 10 500 0.3 60.060℃ 10 500 0.4 80.0根据实验数据,可绘制出金属线的长度变化曲线,如下图所示:金属线的膨胀系数α = (△L/L0)/ ΔT将实验数据带入计算,得出金属线的膨胀系数为:α = 80.0×10^-6 K^-1实验结论:通过实验可以得出,金属线的膨胀系数随着温度的升高而增大。
金属线的膨胀系数是每个金属材料固有的性质,可以用于热膨胀计及其它热学应用中。
金属线膨胀系数测量实验(FB712型金属线膨胀系数测定仪)绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。
否则,将影响结构的稳定性和仪表的精度。
考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。
【实验目的】1.学习并掌握测量金属线膨胀系数的一种方法。
2.学会用千分表测量长度的微小增量。
【实验仪器】FB712型金属线膨胀系数测量仪实验装置如图1、图2所示:【实验原理】材料的线膨胀是材料受热膨胀时,在一维方向的伸长。
线胀系数是选用材料的一项重要指标。
特别是研制新材料,少不了要对材料线胀系数做测定。
固体受热后其长度的增加称为线膨胀。
经验表明,在一定的温度范围内,原长为L的∆与其温度的增加量t∆近似成正比,与原长L亦成正比,即:物体,受热后其伸长量Lt L L ∆∙∙α=∆ (1)式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。
大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。
殷钢和石英的这一特性在精密测量仪器中有较多的应用。
几种材料的线胀系数织发生变化的温度附近,同时会出现线胀量的突变。
另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。
因此测定线胀系数也是了解材料特性的一种手段。
但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。
为测量线胀系数,我们将材料做成条状或杆状。
由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ∆和受热前后的温度升高量t ∆(12t t t -=∆),则该材料在)t , t (21温度区域的线胀系数为:()t L L ∆∙∆=α (2) 其物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1C -︒。
金属线胀系数的测定数据一、引言金属线胀系数是指金属在温度变化下的线胀程度,是一个重要的物理性质参数。
了解金属线胀系数对于工程设计和材料选择具有重要意义。
在本文中,我们将介绍金属线胀系数的测定方法,并提供一些实际测定数据作为参考。
二、测定方法1. 线膨胀计法:通过测量金属线在温度变化下的长度变化,计算出线胀系数。
这种方法适用于较小温度范围内的测定,如常温到200摄氏度范围。
2. 热电偶法:利用热电偶原理,测量金属线两端的温度差,并计算出线胀系数。
这种方法适用于高温范围的测定,如200摄氏度以上的温度范围。
3. 拉伸法:通过测量金属线在不同温度下的拉伸变化,计算出线胀系数。
这种方法适用于较大温度范围内的测定,如常温到1000摄氏度范围。
三、实际测定数据以下是一些常见金属的线胀系数测定数据,供参考:1. 铝:线胀系数为23.1×10^-6/摄氏度。
铝是一种轻质金属,在温度变化下线胀较为明显,常用于制造飞机和汽车等产品。
2. 铜:线胀系数为16.6×10^-6/摄氏度。
铜是一种导电性能良好的金属,常用于电线电缆和管道等应用领域。
3. 钢:线胀系数为12.0×10^-6/摄氏度。
钢是一种常用的结构材料,线胀系数较低,适用于各种温度条件下的工程设计。
4. 不锈钢:线胀系数为17.3×10^-6/摄氏度。
不锈钢具有耐腐蚀性能,常用于制造厨具和化工设备等。
5. 铁:线胀系数为11.8×10^-6/摄氏度。
铁是一种常见的金属材料,线胀系数较低,适用于各种结构和机械应用。
四、应用和意义金属线胀系数的测定数据对于工程设计和材料选择具有重要意义。
在建筑结构设计中,了解金属线胀系数可以帮助工程师预测材料在不同温度下的变形和应力分布,从而提高结构的安全性和稳定性。
在热工设备设计中,了解金属线胀系数可以帮助工程师选择合适的材料,并合理设计热胀冷缩的补偿装置,以避免因温度变化而引起的设备破坏或故障。
如下是关于金属线膨胀系数的测定实验总结:一、引言1.1 金属线膨胀系数的概念在物理学中,金属线膨胀系数是指金属材料在受热时长度的增加量与原来长度的比值。
这一物理性质在工程实践中具有十分重要的应用,因此对金属线膨胀系数进行准确测定是十分必要的。
1.2 实验目的本实验旨在通过测定不同金属材料的线膨胀系数,探索金属材料在受热时的行为规律,为工程应用提供准确的数据支持。
二、实验原理和方法2.1 线膨胀系数的计算公式金属的线膨胀系数通常用α表示,它与温度变化的关系可用以下公式表示:ΔL = αL0ΔT其中,ΔL为金属的长度变化量,L0为金属原来的长度,ΔT为温度变化量。
2.2 实验方法本实验选取了不同金属材料的丝材进行测定,首先将金属丝固定在实验装置上,然后利用恒温箱对金属丝进行升温和降温处理,通过测定金属丝的长度变化量和温度变化量,最终计算获得金属线膨胀系数。
三、实验结果和数据分析3.1 实验结果我们分别选取了铜丝、铁丝和铝丝进行了线膨胀系数的测定实验,得到了它们在不同温度下的长度变化数据。
3.2 数据分析通过对实验数据的分析,我们可以发现不同金属材料的线膨胀系数存在一定的差异性,这与金属的物理性质和分子结构有着密切的关系。
四、实验总结4.1 结果总结通过本次实验,我们成功地测定了铜丝、铁丝和铝丝的线膨胀系数,为金属材料在受热时的行为规律提供了准确的数据支持。
4.2 感悟与思考在实验过程中,我们对金属线膨胀系数的测定方法和影响因素有了更深入的了解,也更加认识到金属材料的性能对工程应用的重要性。
五、个人观点在今后的工程应用中,我们需要更加重视金属材料的线膨胀系数这一物理性质,并通过实验手段获取准确的数据,以保证工程设计的精确性和可靠性。
金属线膨胀系数的测定实验对于深入理解金属材料的物理性质具有重要的意义,也为工程应用提供了重要的参考依据。
希望通过本次实验总结,能够对相关领域的研究和实践起到一定的启发作用。
金属线膨胀系数的测量实验
金属线膨胀系数的测量实验可以采用以下步骤:
1. 准备材料:选择需要测量的金属线材,如铜线或铁线,并准备一根定长的参考线,如尺子或标尺。
2. 测量初始长度:使用尺子或标尺测量金属线的初始长度,并记录下来。
3. 设置实验装置:可以制作一个简易的装置,将金属线固定在一端,另一端悬空。
确保金属线能够自由伸展。
4. 加热金属线:使用火焰或其他加热源加热金属线的自由端,直至金属线达到稳定温度。
5. 测量膨胀长度:使用尺子或标尺再次测量金属线的长度,并记录下来。
6. 计算膨胀系数:根据膨胀长度的变化以及金属线的初始长度,可以计算金属线的线膨胀系数。
膨胀系数可以使用以下公式进行计算:
膨胀系数= (膨胀长度- 初始长度) / (初始长度×温度变化)
7. 重复实验:为了提高实验的准确性,可以重复实验数次,并取平均值作为最终结果。
需要注意的是,在进行实验时要注意安全,避免火焰或加热源接触到其他可燃物品,并确保实验装置的稳定性。
同时,温度变化应控制在可控范围内,以避免过高温度对金属线产生不可逆的影响。