直线的方程单元测试题
- 格式:pdf
- 大小:147.76 KB
- 文档页数:4
完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
高二数学直线和圆的方程单元测试班级 学号 姓名一.选择题(3 ⨯12).1.下列命题正确的是( )A .若直线的斜率存在,则必有倾斜角α与它对应 ;B .若直线的倾斜角存在,则必有斜率与它对应;C .直线的斜率为k ,则这条直线的倾斜角为arctan k ;D .直线的倾斜角为α,则这条直线的斜率为tanα . 2.过点()2,3P 与()1,5Q 的直线PQ 的倾斜角为( ) A .arctan 2 B .()arctan 2- C .2πarctan 2- D .arctan 2π- 3.过点()()2,,,4A m B m -的直线的倾斜角为2πarctan 2+,则实数m 的值为( ) A .2 B .10 C .-8 D .0 4.直线023cos =++y x α的倾斜角的范畴是( )A .]65,2()2,6[ππππB .),65[]6,0[πππC .]65,0[πD .]65,6[ππ5.下列说法中不正确的是( )A .点斜式()11y y k x x -=-适用于不垂直于x 轴的任何直线B .斜截式y kx b =+适用于不垂直于x 轴的任何直线C .两点式112121y y x x y y x x --=--适用于不垂直于x 轴和y 轴的任何直线D .截距式1x ya b+=适用于只是原点的任何直线 6.过点()2,1M 的直线与x 、y 轴分别交于P 、Q ,若M 为线段PQ 的中点,则这条直线的方程为 A .230x y --= B .250x y +-= C .240x y +-= D .230x y -+= 7.直线10x y +-=到直线sin cos 10()42x y ππααα⋅+⋅-=<<的角为 ( )A .4πα-B .4πα-C .34πα-D .54πα-8.直线012=++y a x 与直线03)1(2=+-+by x a 互相垂直,∈b a ,R ,则||ab 的最小值为 ( )A .1B .2C .3D .49.已知点(2,-1)和(-3,2)在直线20x y a -+=的异侧,则a 的取值范畴是( )A .(4,7)B .(-4,7)C .(-7,4)D .(-4,4) 10.若点A (4,a )到直线4x -3y -1=0的距离不大于3,则 ( )A .-1<a <9B .0≤a ≤10C .5<a <8D .-2≤a ≤6 11.已知点P (-1,1)、Q (2,2),若直线L :0=++m my x 与线段PQ 的延长线相交,则m 的取值范畴为( )A .)32,3(--B .13(,)32C .)3,32( D .以上都不对12.若动点),(11y x A 、),(22y x B 分别在直线05:07:21=-+=-+y x l y x l 和上移动,则线段AB 的中点M到原点的距离的最小值为( )A .32B .33C .23D .2413.过点A (4,1)且在两坐标轴上的截距互为相反数的直线的方程是 14. 一条直线过点()5,4P -,且与两坐标轴围成的三角形的面积为5的直线的方程为15.已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩则2x y +的最大值是16.不等式组200360x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩所表示的平面区域的面积是 _____________; 17.已知两直线1l :y x =,2l :0ax y -=,当这两条直线的夹角在区间0,12π⎛⎫⎪⎝⎭内变化时, a 的取值范畴是 . 三.解答题:18.(9分) 直线:24l y x =-与x 轴的交点为M ,把直线l 绕点M 逆时针方向旋转045,求得到的直线方程。
人教A 必修2第三章《直线与方程》单元测试题(时间:60分钟,满分:100分) 班别 座号 姓名 成绩一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23-D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )27 4. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) A 3x-y-8=0 B 3x+y+4=0C 3x-y+6=0D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0C 2x+y-5=0D x+2y-4=07. 直线mx-y+2m+1=0经过一定点,则该点的坐标是A (-2,1)B (2,1)C (1,-2)D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有A. k 1<k 3<k 2B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=011点(3,9)关于直线x +3y -10=0对称的点的坐标是( )A (-1,-3)B (17,-9)C (-1,3)D (-17,9)12方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A 恒过定点(-2,3) B 恒过定点(2,3) C 恒过点(-2,3)和点(2,3) D 都是平行直线13直线x tan 3π+y =0的倾斜角是( ) A -3π B 3π C 3π2 D 3π2- 二、填空题(本大题共4小题,每小题5分,共20分)1.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 .2.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 .3.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .4.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 .三、解答题(本大题共3小题,每小题10分,共30分)1. ①求平行于直线3x+4y-12=0,且与它的2.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值.②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*3.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:;;;;;;;;; A 12 A 13 C+4y-7=0或x=-1; +y-3=0或2x-y=0; 3.261; +5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. =0或m=-1;=1或3x-4y-3=0.。
高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。
中职数学直线与圆的方程单元测试(一)含参考答案一、单项选择题1.已知A(2,3),B(2,5),则线段AB 的中点坐标为( )A .(1,2) B.(0,-1) C .(0,-2) D .(2,4)2.若直线l 的倾斜角是o 120,则该直线的斜率是( )A .-1B .0 C.3- D .33.已知33+-=x y ,斜率为( ).A .3B .-3C .-1D .04.直线012=--y x 在y 轴上的截距为( )A .1B .1-C .2D .2-5.经过点P(l ,3),且斜率为2的直线方程是( )。
A .012=++y xB .012=+-y xC .012=--y xD .052=++y x6.直线x y 5=与直线3-=ax y 平行,则a =( ).A .-1B .0C . 1D .57.直线52-+y x =0与直线x =3的交点坐标为( ).A. (3,1)B. (1,3)C. (3,2)D. (2,3)8.点M(-3,1)到直线0543=-+y x 的距离为( ).A .2-B .1-C . 2D .19.圆心为C(2,-1),半径为3的圆的方程为( ).A .9)1(222=-++y x )(B .3)1(222=-++y x )( C .9)1(222=++-y x )( D .3)1(222=++-y x )(10.圆6)5(222=++-y x )(的圆心坐标与半径分别是( )A .),(52-,6=rB .),(52-,6=r C . ),(52-,6=r D .),(52-,6=r 11. 直线02=+-m y x 过圆046422=+--+y x y x 的圆心,则m =( ).A .1B .0C .1-D .212.经过圆25)2(122=-++y x )(的圆心且与直线04=--y x 垂直的直线方程为( )A .01=++y xB .01=+-y xC .01=-+y xD .01=+-y x二、填空题13.已知两点A(0,6),B (-8,0),则线段AB 的长度为14.倾斜角为45。
直线与方程单元测试题一.选择题1.下列直线中,斜率为 -43 ,且不经过第一象限的是( )A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=02.已知直线l 1:3x +4y -5=0和l 2:3x +5y -6=0相交,则它们的交点是( )A .(-1, 13 )B . (1, 13 )C . (13 ,1)D . (-1,- 13)3.方程x +y =0, x +by +2=0, 2x -y +3=0所表示的直线相交于同一点,则b 的值为( ).A .1B .-1C .-4D .44.已知直线3x +2y -3=0与6x +m y +1=0互相平行,则它们之间的距离为( )A .4B .21313 C . 51326 D . 713265.直线kx -y +1=3k ,当k 变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)6.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限7.若图中直线123,,l l l 的斜率分别为k 1,k 2,k 3,则( ) A.k 2<k 1<k 3 B.k 3<k 2<k 1 C.k 2<k 3<k 1 D.k 1<k 3<k 28.点(2,2)P -到直线124x y+=的距离为( )A .255B . 5C .2D .2 5 9.直线l 1.l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A.平行 B.重合 C.相交但不垂直 D.垂直10.若三条直线l 1:x -y =0;l 2:x +y -2=0; l 3:5x -ky -15=0围成一个三角形,则k 的取值范围是( )A .k ∈R 且k ±≠5且k ≠1B .k ∈R 且k ±≠5且k ≠-10C .k ∈R 且k ±≠1且k ≠0D .k ∈R 且k ±≠ 5二.填空题11.过点(-1,2)且倾斜角为450的直线方程是____________.12.若点),4(a到直线0134=--yx的距离等于3,则a的值为___________. 13.已知A(1,1), B(0,2), C(3,-5),则△ABC的面积为_____________.14. 直线y = 2x关于x轴对称的直线方程是_______________.15. 如图,写出直线的截距式方程______________________.x(第15题)16.如图,一条光线从点P(-3, 3)射出,与x轴交于Q(-1,0),经x轴反射,则反射光线所在的直线方程为______________.三.解答题17. 已知△ABC的顶点A(2,8), B(-4,0) ,C(6,0),(1) 求直线AB的斜率; (2)求BC边上的中线所在直线的方程.18.已知点M(2,2)和N(5,-2),点P在x轴上,且∠MPN为直角,求点P的坐标。
班级:________姓名:________得分:________直线的两点式方程单元测试试卷一、基础过关1.过点A(3,2),B(4,3)的直线方程是( ) A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=02.一条直线不与坐标轴平行或重合,则它的方程( ) A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式3.直线xa2-yb2=1在y轴上的截距是( ) A.|b| B.-b2C.b2D.±b4.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=05.过点P(6,-2),且在x轴上的截距比在y轴上的截距大1的直线方程是________________.6.过点P(1,3)的直线l分别与两坐标轴交于A、B两点,若P为AB的中点,则直线l的截距式方程是______________.7.已知直线l的斜率为6,且被两坐标轴所截得的线段长为37,求直线l的方程.8.已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:(1)△ABC中平行于BC边的中位线所在直线的方程并化为截距式方程;(2)BC边的中线所在直线的方程并化为截距式方程.二、能力提升9.直线xm-yn=1与xn-ym=1在同一坐标系中的图象可能是( )10.过点(5,2),且在x轴上的截距(直线与x轴交点的横坐标)是在y轴上的截距的2倍的直线方程是( )A.2x+y-12=0 B.2x+y-12=0或2x-5y=0C.x-2y-1=0 D.x+2y-9=0或2x-5y=011.已知点A(2,5)与点B(4,-7),点P在y轴上,若|PA|+|PB|的值最小,则点P的坐标是________.12.三角形ABC的三个顶点分别为A(0,4),B(-2,6),C(-8,0).(1)求边AC和AB所在直线的方程;(2)求AC边上的中线BD所在直线的方程;(3)求AC边上的中垂线所在直线的方程.三、探究与拓展13.已知直线l经过点(7,1)且在两坐标轴上的截距之和为零,求直线l的方程.答案1.D 2.B 3.B 4.B 5.x 3+y 2=1或x2+y =1 6.x 2+y6=1 7.解 设所求直线l 的方程为y =kx +b .∵k =6,∴方程为y =6x +b .令x =0,∴y =b ,与y 轴的交点为(0,b );令y =0,∴x =-b6,与x 轴的交点为⎝ ⎛⎭⎪⎫-b 6,0.根据勾股定理得⎝ ⎛⎭⎪⎫-b 62+b 2=37,∴b =±6.因此直线l 的方程为y =6x ±6.8.解 (1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12,整理得,6x -8y -13=0,化为截距式方程为x136-y138=1. (2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为 y +43+4=x -12-1, 即7x -y -11=0,化为截距式方程为x 117-y11=1. 9.B 10.D 11.(0,1)12.解 (1)由截距式得x -8+y4=1,∴AC 所在直线的方程为x -2y +8=0,由两点式得y -46-4=x-2,∴AB 所在直线的方程为x +y -4=0.(2)D 点坐标为(-4,2),由两点式得y -26-2=x ---2--.∴BD 所在直线的方程为2x -y +10=0.(3)由k AC =12,∴AC 边上的中垂线的斜率为-2,又D (-4,2),由点斜式得y -2=-2(x +4),∴AC 边上的中垂线所在直线的方程为2x +y +6=0.13.解 当直线l 经过原点时,直线l 在两坐标轴上截距均等于0,故直线l 的斜率为17,∴所求直线方程为y =17x ,即x -7y =0.当直线l 不过原点时, 设其方程为x a +yb=1,由题意可得a +b =0,①又l 经过点(7,1),有7a +1b=1,②由①②得a =6,b =-6, 则l 的方程为x 6+y-6=1,即x -y -6=0.故所求直线l 的方程为x -7y =0或x -y -6=0.。