(完整版)解不等式组的步骤:
- 格式:doc
- 大小:36.51 KB
- 文档页数:1
复习重点:不等式的解法,主要有一元一次、一元二次、一元高次不等式,分式不等式,无理不等式,指数、对数不等式及含绝对值的不等式的解法;在复习中强调基本方法及易错点。
复习难点:含字母系数的二次型不等式,无理不等式解法,数形结合的方法解不等式,及不等式变形的等价性问题。
(一)各种类型不等式基本解法中的易错点:1.二次型不等式:ax2+bx+c>0(<0)易错点:<1>是否为二次不等式;<2>含字母表示的二根的大小。
2.一元高次不等式:a(x-x1)(x-x2)……(x-x n)>0。
易错点:<1>a>0时,从右上方开始穿线;<2>奇穿偶切,如(x-2)2(x+1)3>0.各因式的幂指数为奇数时穿过ox轴,若幂指数为偶数时,与ox轴相切不穿过;<3>孤立点容易遗漏。
如:(x-3)(x+2)2(x-1)≥0(x-3)(x-1)≥0或x=-2。
3.分式不等式:,易错点:<1>方法的规范,化为(1)的形式;<2>等价性;如(2)。
4.无理不等式<1>易错点:①遗漏情况(2);②不等式组(1),省略f(x)≥0,可简化运算。
<2>注:g(x)=0为孤立点,易遗漏。
5.含绝对值不等式:注意:<1>方法的选择:分段去绝对值号;用等价不等式解或数形结合方法解决。
<2>形如的基本解法:<i>分段讨论;<ii>数形结合。
6.指数不等式及对数不等式基本类型:<1>同底型;<2>a f(x)<b、log a f(x)<b型用定义;<3>换元法解。
易错点:<1>定义域:对数式中底数、真数的限制条件;<2>利用函数单调性,要分成底数大于1还是在0与1之间考虑。
解不等式问题重点注意:i.等价变形;ii.数形结合的方法。
初中解不等式的方法解不等式是初中数学学习中的一个重要内容,掌握好解不等式的方法对于学生来说是非常重要的。
接下来,我们将介绍几种解不等式的方法,希望能够帮助大家更好地理解和掌握这一部分的知识。
一、一元一次不等式的解法。
对于一元一次不等式ax+b>c(或ax+b<c)来说,我们可以通过以下几个步骤来解题:1. 将不等式转化为等价不等式,即将不等式两边同时加上(或减去)相同的数,使得不等式的形式变得更简单。
2. 通过移项和合并同类项,将不等式化简为最简形式。
3. 根据不等式的性质,判断解的范围,并得出最终的解集。
二、一元一次不等式组的解法。
对于一元一次不等式组{ax+b>c, dx+e<d}来说,我们可以通过以下几个步骤来解题:1. 分别解出每个不等式,得到每个不等式的解集。
2. 根据不等式组的关系,求出满足所有不等式的解集。
三、二元一次不等式的解法。
对于二元一次不等式ax+by>c(或ax+by<c)来说,我们可以通过以下几个步骤来解题:1. 将不等式转化为等价不等式,即将不等式两边同时加上(或减去)相同的表达式,使得不等式的形式变得更简单。
2. 根据不等式的性质,判断解的范围,并得出最终的解集。
四、绝对值不等式的解法。
对于绝对值不等式|ax+b|<c(或|ax+b|>c)来说,我们可以通过以下几个步骤来解题:1. 根据不等式的性质,列出绝对值不等式的两种情况,并分别解出不等式。
2. 将得到的解集合并,并根据不等式的范围得出最终的解集。
以上就是初中解不等式的方法,希望通过这篇文档的介绍,能够帮助大家更好地掌握解不等式的方法。
在学习过程中,我们要多做练习,加深理解,才能够真正掌握这一部分的知识。
希望大家都能够取得好成绩,加油!。
我们要了解高一解不等式的解法步骤。
不等式是数学中用来描述数之间大小关系的工具,它表示一个数相对于另一个数是大还是小。
在解决不等式问题时,我们需要遵循一定的步骤来确保答案的准确性和完整性。
解不等式的通用步骤如下:
1. 首先,确定不等式的类型,例如:一元一次不等式,一元二次不等式等。
2. 根据不等式类型,选择合适的解法。
例如,一元一次不等式可以通过移项直接求解;一元二次不等式则需要考虑判别式等。
3. 对不等式进行简化,合并同类项,移项等,使其变得更易于解决。
4. 求解简化后的不等式,并给出解集。
5. 最后,根据实际情况,可能需要进一步确定解集的范围,例如:确定解集在实数范围内还是整数范围内。
总结:解不等式的关键在于确定不等式类型,然后选择合适的策略进行简化和求解。
不同类型的不等式可能有不同的解法,所以在开始解不等式之前,一定要明确其类型。
【导语】学会整合知识点。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡⽚,会让你的⼤脑、思维条理清醒,⽅便记忆、温习、掌握。
同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。
这样能够促进理解,加深记忆。
下⾯是为您整理的《北师⼤版初⼆数学下册知识点归纳》,仅供⼤家参考。
北师⼤版初⼆数学下册知识点归纳篇⼀ 第⼀章分式 1分式及其基本性质分式的分⼦和分母同时乘以(或除以)⼀个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,⽤分⼦的积作为积的分⼦,分母的积作为积的分母除法法则:分式除以分式,把除式的分⼦、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分⼦相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式⽅程及其解法 第⼆章反⽐例函数 1反⽐例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两⽀的增减性相同; 2反⽐例函数在实际问题中的应⽤ 第三章勾股定理 1勾股定理:直⾓三⾓形的两个直⾓边的平⽅和等于斜边的平⽅ 2勾股定理的逆定理:如果⼀个三⾓形中,有两个边的平⽅和等于第三条边的平⽅,那么这个三⾓形是直⾓三⾓形。
第四章四边形 1平⾏四边形 性质:对边相等;对⾓相等;对⾓线互相平分。
判定:两组对边分别相等的四边形是平⾏四边形; 两组对⾓分别相等的四边形是平⾏四边形; 对⾓线互相平分的四边形是平⾏四边形; ⼀组对边平⾏⽽且相等的四边形是平⾏四边形。
推论:三⾓形的中位线平⾏第三边,并且等于第三边的⼀半。
2特殊的平⾏四边形:矩形、菱形、正⽅形 (1)矩形 性质:矩形的四个⾓都是直⾓; 矩形的对⾓线相等; 矩形具有平⾏四边形的所有性质 判定:有⼀个⾓是直⾓的平⾏四边形是矩形;对⾓线相等的平⾏四边形是矩形; 推论:直⾓三⾓形斜边的中线等于斜边的⼀半。
高中数学不等式与不等式组的解法高中数学不等式与不等式组的解法高中数学不等式主要问题包括:大小比较(方法有作差法,作商法,图象法,函数性质法);证明题(比较法,反证法,换元法,综合法…);恒成立问题(判别式法,分离参数法…)等,下面是店铺为大家精心推荐不等式与不等式组的解法,希望能够对您有所帮助。
不等式与不等式组的数轴穿根解法数轴穿根:用根轴发解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,一次穿过这些零点,这大于零的不等式地接对应这曲线在x轴上放部分的实数x得起值集合,小于零的这相反。
做法:1.把所有X前的系数都变成正的(不用是1,但是得是正的);2.画数轴,在数轴上从小到大依次标出所有根;3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使使不等式为0的根。
例如不等式:x2-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)⒈分解因式:(x-1)(x-2)≤0;⒉找方程(x-1)(x-2)=0的根:x=1或x=2;⒊画数轴,并把根所在的点标上去;⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。
高次不等式也一样.比方说一个分解因式之后的不等式:x(x+2)(x-1)(x-3)>0一样先找方程x(x+2)(x-1)(x-3)=0的根x=0,x=1,x=-2,x=3在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。
解不等式的方法解不等式是数学中的重要内容,它在我们的日常生活和工作中都有着广泛的应用。
解不等式的方法有很多种,接下来我们将逐一介绍常见的解不等式方法,希望能帮助大家更好地理解和掌握这一部分知识。
一、一元一次不等式的解法。
对于一元一次不等式ax+b>0(或<0),我们可以通过以下步骤来解决:1. 将不等式化为等式ax+b=0;2. 求出等式的解x0;3. 根据a的正负分情况讨论:a)若a>0,则不等式的解集为{x|x>x0}(或{x|x<x0});b)若a<0,则不等式的解集为{x|x<x0}(或{x|x>x0})。
二、一元二次不等式的解法。
对于一元二次不等式ax^2+bx+c>0(或<0),我们可以通过以下步骤来解决:1. 利用一元二次不等式的解法,将不等式化为二元一次不等式;2. 求出二元一次不等式的解集{x1, x2};3. 根据a的正负和二次项系数b的正负分情况讨论:a)若a>0,且Δ=b^2-4ac>0,则不等式的解集为{x|x<x1}∪{x2<x<x2}(或{x|x>x1}∪{x2>x>x2});b)若a>0,且Δ=0,则不等式的解集为{x|x=x1};c)若a>0,且Δ<0,则不等式的解集为空集;d)若a<0,则不等式的解集为{x1<x<x2}。
三、绝对值不等式的解法。
对于绝对值不等式|ax+b|>c(或< c),我们可以通过以下步骤来解决:1. 根据不等式的正负情况分情况讨论:a)若c≥0,且a>0,则不等式的解集为{x|x<-b-a}∪{x>-b+a}(或{x|x>-b-a}∪{x<-b+a});b)若c≥0,且a<0,则不等式的解集为{x|x<-b+a}∪{x>-b-a}(或{x|x>-b+a}∪{x<-b-a});c)若c<0,则不等式的解集为全体实数集。
人教版七年级数学下册一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
二元一次不等式组的解题方法与技巧二元一次不等式组是由两个二元一次不等式构成的方程组,其解即满足这两个不等式的点集。
解题方法与技巧如下:1.理解二元一次不等式组的几何意义:二元一次不等式组可以表示平面上的一个区域。
其中的每一个解就是这个区域上的一个点。
通过对二元一次不等式组进行分析可以清楚地了解这个区域的形状和范围。
2.解二元一次不等式组的常用方法:常用的解不等式组的方法有图解法和代入法。
图解法是将二元一次不等式组画在平面坐标系上,通过观察两个不等式的交点、平行线、线段等特点,确定解集的范围。
代入法是从一个不等式中解出一个变量,然后将求解结果代入另一个不等式中,进而确定解集的范围。
3.图解法的具体步骤:首先,将二元一次不等式组转化为标准形式,即将不等式的常数项移到方程的右边,并将不等式号换成等号。
然后,将两个方程画在平面直角坐标系上,通过观察两个图形的交点、相离、平行等情况,确定解集的范围。
4.代入法的具体步骤:首先,从一个方程中解出一个变量,例如解出x,得到x=f(y)。
然后,将求解结果代入另一个方程中,得到一个关于y的不等式,例如g(y)≥0。
最后,解这个不等式,得到y的解集。
将y的解带入x=f(y)中,得到x的范围。
这样就得到了二元一次不等式组的解集。
5.注意特殊情况:在解二元一次不等式组时,需要注意考虑特殊情况。
例如,当其中一个不等式为恒等式时,需要考虑这个恒等式所表示的直线与另一个不等式所表示的直线的位置关系,并确定解集的范围。
6.应用数学方法简化计算:对于特殊的二元一次不等式组,可以应用数学方法进行简化计算。
例如,当不等式组中的两个不等式有相同的系数时,可以用消元法将二元一次不等式组简化为一元一次不等式。
7.用图像辅助解题:在解二元一次不等式组时,绘制图像可以帮助我们直观地判断解集的范围。
利用计算机画图工具、数学软件或者图画纸等工具绘制解集图像,可以更加容易地理解二元一次不等式组的解集。
解不等式方法解不等式是数学中的重要内容,也是解决实际问题中常常会遇到的一种数学方法。
在学习解不等式方法时,我们需要掌握一些基本的解题技巧和方法,下面将介绍一些常见的解不等式方法。
一、一元一次不等式的解法。
1. 直接法。
对于一元一次不等式ax+b>0(或<0), a≠0,我们可以通过移项、合并同类项等基本的代数运算,将不等式化为一个简单的形式,然后根据a的正负情况,确定不等式的解集。
2. 图解法。
对于一元一次不等式ax+b>0(或<0),我们可以将其对应的一元一次方程ax+b=0的解x=-b/a在数轴上标出,并根据a的正负情况,确定不等式的解集。
3. 区间法。
对于一元一次不等式ax+b>0(或<0),我们可以根据a的正负情况,将解空间分成若干个区间,然后根据b的正负情况,确定不等式的解集。
二、一元二次不等式的解法。
1. 直接法。
对于一元二次不等式ax^2+bx+c>0(或<0), a≠0,我们可以通过配方法、求解二元一次方程组、利用一元二次函数的性质等方法,将不等式化为一个简单的形式,然后根据a的正负情况,确定不等式的解集。
2. 图解法。
对于一元二次不等式ax^2+bx+c>0(或<0),我们可以将其对应的一元二次方程ax^2+bx+c=0的解在坐标系中标出,并根据a的正负情况,确定不等式的解集。
3. 区间法。
对于一元二次不等式ax^2+bx+c>0(或<0),我们可以根据a的正负情况,将解空间分成若干个区间,然后根据b^2-4ac的正负情况,确定不等式的解集。
三、绝对值不等式的解法。
1. 直接法。
对于绝对值不等式|ax+b|>c(或< c),我们可以根据绝对值的性质,将不等式化为一个简单的形式,然后根据a的正负情况,确定不等式的解集。
2. 区间法。
对于绝对值不等式|ax+b|>c(或< c),我们可以根据a的正负情况,将解空间分成若干个区间,然后根据b的正负情况,确定不等式的解集。
初中数学不等式与不等式组破解策略一、解不等式(组)破解策略,解一元一次不等式的一般步骤与解一元一次方程基本一致,只是在“去分母”和“系数化为1"时,若两边同乘以(或除以)一个负数,不等号的方向要改变.1。
解含字母的不等式(组)这里所说的字母并非指未知数,而是除未知数外其他的字母,解这类不等式或不等式组,通常需要分类讨论.(1)解含字母系数的不等式将含字母系数的不等式化为ax>b,ax〈b,ax≥b,ax≤b中的某一种形式,其中a、b可以代表一个字母,也可以代表含有字母的多项式。
因为未知数的系数含有字母,它可能是正数、负数、0,所以要分三种情况来讨论,然后根据不等式的性质得到解集,下面以不等式ax〉b为例:①若a〉0,则不等式的解集为x>,-②若a〈0,则不等式的解集为x< ,③若a=0,当b<0时,不等式的解是任意实数;当b>0时,不等式无解。
(2)确定不等式组的解集先求出不等式组中的每个不等式的解集,如x〉m,x<m,x≥m,x≤m,其中m可以代表一个字母,也可以代表含有字母的多项式。
因为不等式组的解集是所有不等式解集的公共部分,所以在不确定解集端点的位置时,需要分情况来讨论,然后根据“同大取大、同小取小、大小小大中间找、大大小小找不到”的原则得到解集。
例如,对于不等式组①当m≥n时,不等式组的解集为x>m②当m≤n时,不等式组的解集为x>n再如,对于不等式组①当m≥n时,不等式组无解;②当m<n时,不等式组的解集为m<x<n。
2.解简单的含绝对值的不等式解含绝对值的不等式的基本思路是去掉绝对值符号,把它转化为一般的不等式求解,而去绝对值符号的方法有利用绝对值定义的方法,利用绝对值几何遭义的方法和零点分段法,常见的形式有以下几种:(1)形如|x|〈a的不等式当a〉0时,|x|<a等价转换为—a<x<a;当a≤0时,|x|〈无解。
(2)形如|x|≥a的不等式,当a〉0时,|x|≥a等价转换为x≥a或x≤—a;当a〈0时,|x|≥a的解为任意实数。
二元一次方程组及解不等式组1、二元一次方程:含有两个未知数,且含未知数的项的次数为1, 二元一次方程有无数多个解.2、二元一次方程组:有一个解,可以用代入消元法和加减消元法解.3、三元一次方程组:先转化为二元一次方程组.4、应用题:解、设、列、解、验、答5、典型例题:①二元一次方程满足的条件:系数≠0,次数=1②平方+绝对值= 0③已知方程(组)的解,求其它未知数的值4、解不等式组的步骤:(1)先求出各个不等式的解集(2)将这些解集表示在同一个数轴上(3)在数轴上找出这些解集的公共部分,就是这个不等式组的解集。
5、典型例题:①已知解集求未知数范围:看解集不等号方向是否改变,不变则系数>0,改变则系数<0 ②已知不等式(组)的解求未知数的值:令所求解集等于已知解集③已知不等式(组)的整数解求未知数的值:先求出解集,令解集满足一定条件解法:消元法1)代入消元法用代入消元法的一般步骤是:1.选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;2.将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;3.解这个一元一次方程,求出x 或y 值;4.将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;5。
把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
[1]例:解方程组:x+y=5①6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89得y=59/7把y=59/7代入③,得x=5-59/7得x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
2)加减消元法①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
解一元一次不等式组的基本步骤哎,今天咱们来聊聊一元一次不等式组,听上去有点高深,实际上就是那些不太严肃的数学问题,咱们可以轻松搞定。
想想看,咱们平时在生活中,总会遇到一些需要比较的事,比如你今天想买个包,花钱得有个限度,或者你在规划时间,得考虑到怎么能兼顾学习和娱乐。
你一定能感受到不等式的魅力了吧?解一元一次不等式组的第一步,咱得把不等式列出来。
有的时候,可能会有些眼花缭乱,别担心,慢慢来。
想象一下,就像整理你的衣柜,先把衣服都摆出来,然后再挑你喜欢的、合适的。
比方说,你有两个不等式,一个是 (2x + 3 > 7),另一个是 (x 1 < 4)。
听起来不复杂吧?所以,咱们要把这些问题拿到台面上,准备一番。
咱得分别解这两个不等式。
先从第一个开始,咱们就像是拆包裹,先把外面的包装拆掉,看到里面的真相。
(2x + 3 > 7),把3移到另一边,咱们就变成了 (2x > 4)。
这时候,别忘了,解不等式的时候,得保持不变的方向。
然后,咱们把2除过去,最后得出(x > 2)。
多简单啊,就像吃饭一样,吃到最后一口还得留点意犹未尽的感觉。
然后,咱再来看第二个不等式(x 1 < 4)。
又是一个简单的拆包过程,把1移过去,咱们得出 (x < 5)。
是不是感觉就像是在和朋友聊天,互相分享彼此的小秘密?所以,现在我们有了两个结果,一个是 (x > 2),另一个是 (x < 5)。
这时,咱们得把这两个结果结合起来,形成一个范围。
想象一下,咱们在一个乐园里,有个好玩的游乐设施,适合在2到5之间的人去玩。
换句话说,x的值得在2和5之间,咱们可以把它写成一个不等式: (2 < x < 5)。
这就像是在给我们的数学问题画个圈,告诉大家,只有在这个圈里的朋友才能一起玩耍。
解完这些不等式,心里是不是觉得特别爽?就像是找到了心仪的衣服,穿上后,立刻有种焕然一新的感觉。