当前位置:文档之家› 铁路电力系统电缆故障问题的查找与分析

铁路电力系统电缆故障问题的查找与分析

铁路电力系统电缆故障问题的查找与分析
铁路电力系统电缆故障问题的查找与分析

铁路电力系统电缆故障问题的查找与分析

发表时间:2017-03-09T11:30:35.977Z 来源:《电力设备》2017年第1期作者:张勇[导读] 随着高速铁路的发展,铁路电力系统中电缆的采用范围越来越广泛。

(中铁九局集团电务工程有限公司辽宁沈阳 121000)摘要:随着高速铁路的发展,铁路电力系统中电缆的采用范围越来越广泛,贯通线路退步采用高压电力电缆来取代架空线路,电缆的施工及故障分析、处理在铁路电力系统中占据的地位也越来越重要。

关键词:铁路电力;电缆故障;问题分析 1、引言

铁路电力系统的安全稳定直接影响着铁路系统的正常运行,同时还肩负着铁路沿线各个站区、车辆段、机务段、电务段等各个基层单位的生活、生产用电。尤其是铁路电力系统中的自闭线路,自闭线路的主要任务是用来为铁路的各个车站和电务等集中的电气装备提供安全、可靠、连续的供电,保障铁路信号系统的正常工作,以及确保列车的安全行驶。所以,在铁路电气化的时代背景下,铁路电力系统对与铁路运输的安全相当重要,铁路电力系统电缆故障问题的查找与分析也有着非常重要的意义。

2、铁路电力系统电缆故障分析 2.1故障分类

铁路电力系统中常见的电缆故障主要有短路故障、接地故障、断线故障、闪络故障和综合类故障。短路故障主要指单相或者多相输电线路之间相互接触而形成的具有破坏性的大电流出现,当电力系统发生短路故障时,大电流能使导体温度迅速升高,破坏输电线路的绝缘性质,导致设备不能正常运行或者损坏。接地故障主要指输电线路不经过绝缘体而直接和大地连接,这也算是短路故障的一种,危害也是比较大的。短线故障也称为断路故障,指的是输电线路被断开,不能够正常的传输电能,这就会直接导致用电设备断电,严重时会使设备损坏或者使某些重要工作被干扰。闪络故障就是电缆在高电压保压过程中,突然被击穿,在此电压下又能继续维持保压的故障。高电压击穿电缆层后会对周围的设备造成一定的影响,严重时还会威胁工作人员的人身安全。综合类故障主要指以上两种或者两种以上的故障同时出现时的故障,这种故障不是很常见,但是危害最大,故障的情况也最为复杂。

2.2故障原因分析

铁路电力系统的故障种类很多,造成故障的原因也很多,通常情况下铁路电力系统电缆故障原因有一下几种:第一、电缆遭到机械损坏。机械损坏对电缆的影响是比较大的,也是最为常见的,机械损坏通常指的就是电缆遭受外力的冲击,致使电缆不能够正常工作。对电缆造成机械损坏的多数时施工时,在铁路施工时,由于施工人员不仔细查看施工现场,草草了事,导致了参与施工的工程机械对电缆造成一定损坏,或者是电缆的保护措施设置不到位,导致后期很容易被其它机械损伤。另外,在施工过程中电缆的过负荷拉伸也会导致电缆的机械损伤,多度拉伸、折叠、弯曲很可能导致电缆接头或者中间连接线出现故障,这些都是常见的电缆故障。

第二、电缆的绝缘层老化电缆的绝缘层老化直接会使电缆的绝缘能力下降,对电缆的损伤是巨大的。由于电缆经常运行在大电压大电流的环境下,电缆发热是必然的,电缆的过热会对电缆绝缘性能造成一定程度的影响,使电缆的化学性能和物理性能均受到严重影响。另外电缆深埋在底下,常年处在潮湿的环境中,有时候由于化肥或者化学物品的渗透到电缆沟,还会直接对电缆绝缘层造成腐蚀,对电缆的绝缘性能造成直接破坏。另外,随着电缆绝缘性能的降低,电缆的散热性能、抗腐蚀性等均会受到影响,这也就加速了电缆绝缘层的老化,电缆绝缘层老化是一个恶性循环的问题。第三、电缆质量不合格。在电缆的使用过程中难免会出现机械破坏和绝缘层老化的问题,所以电缆的设计时就会考虑到这些潜在的破坏因素,进而将相应的应对办法添加到电缆的设计和加工制作中,增强电缆的使用寿命。但是,生产电缆的厂家有着千差万别,不乏某些厂家偷工减料,在电缆生产过程中,不按照设计图纸执行,或者为了降低成本,将电缆使用的材料进行调整,致使电缆的质量不达标,这就为电缆的使用留下了很大的安全隐患。

3、故障查找方法 3.1脉冲电流法

该方法安全、可靠、接线简单。它是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,并根据电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。该方法用互感器将脉冲电流耦合出来,波形较简单,较安全。这种方法包括直闪法及冲闪法两种。与脉冲电压法使用电阻、电容分压器进行电压取样不同,脉冲电流法使用线性电流耦合器平行地放置在低压测地线旁,与高压回路无直接电器连接,对记录仪器与操作人员来说,特别安全和方便,所以一般使用此方法。

3.2脉冲电压法

该方法可用于测量高阻与闪络故障。首先将电缆故障点在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点故障点往返一次所需的时间来测距。脉冲电压法的一个重要优点是不必将高阻与闪络性故障点烧穿,直接利用故障点击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。但缺点是:仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差。在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿。在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。

3.3脉冲回波法

针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。测试时,将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。

3.4电桥法

电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法比较简单,但需要事先知道电缆线长度截面等数据,且只适用于低阻及短路故障。但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般灵敏度的仪器很难探测。

3.5跨步电压法

故障类型和影响分析

故障类型与影响分析(FMEA) 1、故障类型影响分析得特点及优缺点: 1)能够明确地表示出局部得故障讲给系统整体得影响,确定对系统安全性给予致命影响得 故障部位。因此,对组成单元或子系统可靠性得要求更加明确,并且能够提出它们得重要度。利用FMEA也很容易从逻辑上发现设计方面遗漏与疏忽得问题、 2)能用定性分析法来判断可靠性与安全性得大小或优劣,并能提出问题与评价其重要度。 3)FMEA法不仅用于产品设计、制造、可靠性设计等方面,而且还可以把设计与质量管理、 可靠性管理等活动有机连接起来。因此,对系统规定评价就是非常有利得。 4)应用时,若把重要得故障类型忽略了,则所进行得分析,特别就是所进行得预测将就是徒 劳无用得。所以,对重要故障类型不能忽略。 5)为定量地进行系统安全性预测、评价与其她安全性研究提供一定得数据资料。 2、FMEA基本原理: 1)故障类型:运行过程中得故障;过早地启动;规定得时间内不能启动;规定得时间内不能停 车;运行能力降低、超量或受阻、 2)造成原件发生故障得原因:设计上得缺点;制造上得确定;质量管理方面得缺点;使用上得 缺点;维修方面得缺点。 3)故障等级: A简单划分时利用下表 故障类型分级表 故障等级影响程度可能造成得危害或损坏Ⅰ级致命性可能造成死亡或系统损坏 Ⅱ级严重性可能造成严重伤害、严重职业病或主要系统损坏Ⅲ级临界性可造成轻伤、轻职业病或次要系统损坏 Ⅳ级可忽略性不会造成伤害与职业病,系统也不会损坏 B评点法 上述方法中得每一项有经验来判断,也可用下面得公式来算: 评点参考表 评点因素内容点数 故障影响大小F1造成生命损失5、0造成相当素食3。0 功能损失1.0 对系统造成得影响F2对系统造成二个以上得重大影响2。0 对系统造成一个以上得重大影响1。0 对系统无太大影响0.5 故障发生得概率F3易于发生1。5 能够发生1、不太发生0。7 防止故障得可能性F4 不能1。3 能够防止1。0 易于防止0。7 就是否新设计得工艺F5 相当新得内容设计1。2 类似得设计1、0

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.doczj.com/doc/6b18634307.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.doczj.com/doc/6b18634307.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.doczj.com/doc/6b18634307.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

高压电缆故障分析判断与故障点查找

高压电缆故障分析判断与故障点查找 随着我国经济快速发展,我国加快了现代化社会建设,面对城市和农村日益增长的用电需求,高压电缆的安全性能受到了人们的高度关注。高压电缆相较于传统电缆,安全性更高、稳定性更好、维护方便,是当前电气设备、电能传输、电能分配的首选电缆,在我国现代化社会建设过程中得到了广泛应用。随之而来的高压电缆故障对供电造成了较大的影响,通过分析常见的高压电缆故障,为准确分析判断高压电缆故障,准确定位故障点提供基础依据,以便于及时有效的解决故障,保证电能正常供应,避免对人们生活、生产造成较大困扰。 标签:高压电缆;故障分析;故障点查找 一、高压电缆故障原因分析 1.1设计不足 设计师在设计过程中设计水平较低,在重要的设计场所对于电源、贯通电缆、电缆故障等问题没有设计备用电源,方便专业人员快速进行维护的措施场地。配电所的电缆没有进行单独的运行管道设计,较长的电缆没有设计电缆中间站或者对接方式。 1.2产品质量存在偏差 厂家在对于电缆生产的质量没有办法进行保证,经常出现绝缘偏心、绝缘厚度不均匀、绝缘内部有杂质、电缆防潮水平不高、电缆密封效果不良等问题。有些问题更加严重的是在运行过程中出现故障,大部分电缆系统在运行过程中都有程度大小不等的故障,导致电缆安全问题一直是电力系统运行的隐在性问题。个别厂家也出现过同种型号电缆两端色标不相对应,按颜色进行施工,竣工后发现无法正常使用。 1.3后期维护不善 在电缆运行中,相关的工作人员没有每年对于电缆进行排查,大部分的电缆都已经超过最大维护期,导致工作人员对于电缆上面重要信息掌握情况不足,如电缆上面的电阻、电压等重要数据,电缆绝缘性能下降未能及时发现,容易发生电力系统故障。 二、高壓电缆故障分析判断 目前常见的高压电缆故障类型较多,各个故障各自具备了较为复杂的特性,比如导电故障,其主要是导体出现故障,但在导体故障中又包含了导体断线造成的开路故障、导体短接造成的短路故障。

110千伏高压电缆异常的分析及处理

110千伏高压电缆异常的分析及处理 发表时间:2019-12-27T16:39:25.243Z 来源:《中国电业》2019年18期作者:何义良 [导读] 高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障 摘要:高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障,直接威胁到高压电缆的正常运行。本文根据某高压电缆工程展开分析,针对引起高压电缆异常情况的原因进行分析,采用局部放电试验进行验证,并提出了电缆故障的处理,并提出了高压电缆常见故障处理措施。 关键词:高压电缆;110kV;故障处理 高压电力电缆有着较高的安全性,施工起来比较便捷,已经被广泛应用到电力工程施工当中。随着城市规模的不断变大,要求高压电力电缆不要占用太多的空间,交联聚乙烯电缆有着很好的安全性,不会占用太多的面积。但电力电缆在实际运行过程中经常会存在异常现象,很多故障都是由电缆终端或中间连接部位而导致的,电缆连接终端制作工艺水平与能否安全应用有着直接关系,本文对某变电所110kV 高压电缆应用前的试验过程中发生异常现象进行分析,并制定了切实有效的解决措施,要求工作人员在高压电缆终端制作工艺提高重视,避免应用过程中产生运行故障。 1 110kV高压电缆工程基本情况 某变电所位于市区范围内,110kV高压线路进线采用交联聚乙烯绝缘保护材料,应用无缝铝护套进行防护,电缆长度为150米,采用交联户外油浸终端。按照电力工程施工计划,三根电缆施工完成后进入到试验环节。对外防护套、绝缘性能测试都达到合格标准,工频耐压测试应用串联谐振加压处理方法。采用的试验电压为2Ue,则试验电压为128kV。查找电缆资料可以得知,该高压电缆电容值每公里 0.162uF,然后按照串联谐振频率值进行计算:,电流值则为,公式当中的f则为谐振频率,I为试验样品电流值,则是试验样品电容,是分压器具备的电容值,L是电抗器具备的电感值,U是试验电压值。从试验加压曲线可以得知,A和B相电缆都通过了耐压性能试验,电流值设置在2A。C相电缆试验过程中,把电压提升到额定值,发现试验样品电流值为2.35A,已经超过计算数据1.936A,但还在正常区间。采用额定电压持续加压13分钟,户外电缆终端设备出现了轻微的放电声音,试验运行电流也呈现出变大的趋势。由于放电声音的不断变大,试验运行电流也呈现出变大趋势,如果试验电流上升到保护电流上限数值5A,保护装置会自动把电源完全切除掉,试验则会迫终止。对该高压电缆外观进行仔细地观察,没有发现该电缆存在着较为明显的放电痕迹。对该电缆再次进行加压测试时,试验电压只保持5分钟左右时间,再次出现试验电流超过保护上限值而出现的电源被切断问题,使得高压电缆耐压实验无法继续开展。 2 110kV高压电缆异常情况分析 2.1电缆绝缘或终端密封材料老化而导致的绝缘性能降低 按照以往的电缆测试经验,如果高压电缆运行时间比较长,或者存在绝缘材料局部发电现象,电缆具备的绝缘性能会出现下降问题。油浸电缆终端密封材料出现老化,环境水分进入也会导致电缆绝缘性能降低。由于该电缆为新建设变电所电源进线,还没有正式投入使用。对电缆生产厂家试验报告进行分析,发现每个电缆主绝缘电阻的实际测量值和出厂试验值并没有太大的差别,可以有效地排除掉高压电缆绝缘性能降低使得耐压试验无法继续完成的可能。高压电缆终端密封材料出厂时期只达到了一个月,还没有出现密封材料安装不当或者受损问题。 2.2电缆保护层被损坏而导致的绝缘性能下降 110kV电缆在施工作业过程中,受到异物刺伤而出现绝缘层受损。比如,铁钉、刀片等对电缆绝缘进行了破坏,会使电缆绝缘出现异常。通过对电缆绝缘性测验可以发现,没有存在绝缘受损的现象,具有较好的外绝缘保性性能,绝缘电阻值可以达到1万兆欧左右,表明电缆外绝缘保护层保存完好,在外保护内部的绝缘不会存在受到损坏的可能性,可以排除高压电缆主绝缘受损的可能。 3.3电缆终端制作工艺不合理导致的主绝缘性能降低 随着电缆故障的逐渐排除,把电缆故障的可能性转移到电缆接头制作上来,尤其是户外电缆终端制作时存在的问题,对施工作业人员进行沟通发现,在进行户外电缆终端接头制作过程中,存在着天气影响因素。对制作记录中可以发现,高压电缆终端接头制作前一天有阴雨,制作当天气温降低,气温最低达到了3度,而且空气湿度比较大。对电缆终端接头加入的为聚丁烯油,该绝缘物质可以有效地填充到电缆终端每个部位的间隙中,从而更好地保护电缆内部的绝缘。该绝缘油有着较高的粘稠度,会随着外界温度的减小而变大。该绝缘油在环境温度为5度时,呈现出较高的粘稠度,内部会夹杂着气泡。高压电缆终端接产学研制作厂家对填加的聚丁烯油过程中的温度有着较高的要求,如果环境温度低于20度,应该采用加热措施来减小绝缘油粘度,然后方可以把其注入到电缆终端,但电力工程施工作业现场的人员却没有对环境温度影响因素提高重视,缺少了加热处理工艺。 从上面的分析中可以看出,可以初步确定高压电缆缺陷是由于在户外电缆终端接头加工过程中,外界环境温度不高、空气湿度大而导致的,没有采取合理的加热处理措施,使得绝缘油中存在着气泡,混入了大量的湿度较大的空气。对高压电缆施加2倍额定电压进行性能试验时,绝缘油中存在着水分和气泡,会在高电压作用下形成游离态的气体分子,使得绝缘油中产生数量较多的带电粒子,会在气泡部位出现局部放电。释放出更多的气体会使得气泡体积不断变大,会产生更为明显的局部放电问题,使得试验电流不断变大,当大于设定保护值之后会自动退出试验。在该种条件下,高压电缆投入应用会存在着较大的安全隐患,较长时间的绝缘油内部放电会使得终端接头部位的绝缘性性能减小,最后会使电缆内部被击穿,使得电缆终端接头出现故障,严重情况下会引起爆炸问题。 3局部放电试验对电缆故障的验证 采用三相电缆分别进行局部放电试验,对每相电缆放电性能进行分析来验证,也就是在相同的试验电压和试验方法情况下,比较性能正常的A、B相和具备故障的C相高压电缆局部放电数据,对放电初始电压、熄灭电压和放电波形等进行对比分析,可以进一步证明C相电缆中存在着明显的局部放电现象,可以对故障原因进行证实,可以为后续的处理提供数据支持。 按着相关的标准,可以在环境温度条件下对每相电缆进行局部放电试验,采取的试验方法是先把试验运行电压逐步提高到1.75Ue,然后在该电压条件下保持10秒钟,再缓慢减小到1.5Ue。在该电压值下,如果放电量不超过5pC则达到合格标准。三相高压电缆在相同的性能试验条件下,获取到的试验结果有着较大的不同,从试验数据统计表1中可以看出,C相高压电缆有着较大幅度的局部放电,但该电缆在出厂性能试验中的局部放电量都达到了合格标准,也就是不超过2pC。A、B两相高压电缆在施工现场完成终端接头的制作和安装,电缆具备

故障类型和影响分析

故障类型和影响分析(FMEA) 1、故障类型影响分析的特点及优缺点: 1)能够明确地表示出局部的故障讲给系统整体的影响,确定对系统安全性给予致命影响的 故障部位。因此,对组成单元或子系统可靠性的要求更加明确,并且能够提出它们的重要度。利用FMEA也很容易从逻辑上发现设计方面遗漏和疏忽的问题。 2)能用定性分析法来判断可靠性和安全性的大小或优劣,并能提出问题和评价其重要度。 3)FMEA法不仅用于产品设计、制造、可靠性设计等方面,而且还可以把设计和质量管理、 可靠性管理等活动有机连接起来。因此,对系统规定评价是非常有利的。 4)应用时,若把重要的故障类型忽略了,则所进行的分析,特别是所进行的预测将是徒劳 无用的。所以,对重要故障类型不能忽略。 5)为定量地进行系统安全性预测、评价和其他安全性研究提供一定的数据资料。 2、FMEA基本原理: 1)故障类型:运行过程中的故障;过早地启动;规定的时间内不能启动;规定的时间内不 能停车;运行能力降低、超量或受阻。 2)造成原件发生故障的原因:设计上的缺点;制造上的确定;质量管理方面的缺点;使用 上的缺点;维修方面的缺点。 3)故障等级: A简单划分时利用下表 故障类型分级表 S12i 上述方法中的每一项有经验来判断,也可用下面的公式来算: C S=F1+F2+F3+F4+F5 评点参考表

C 风险矩阵法 严重度的等级与内容 用定性方法给故障概率分类的原则是: I 级: 故障概率很低,元件操作期间出现机会可以忽略。 II 级: 故障概率低,元件操作期间不易出现。 III 级: 故障概率中等,元件操作期间出现机会可达到50%。 IV 级: 故障概率高,元件操作期间易出现。 用定量方法给故障概率分类的原则是: I 级: 在元件工作期间,任何单个故障类型出现的概率少于全部故障概率的0.01。 II 级: 在元件工作期间,任何单个故障类型出现的概率多于全部故障概率的0.01,而少于 0.10。 III 级: 在元件工作期间,任何单个故障类型出现的概率多于全部故障概率的0.10,而少于 0.20。 IV 级: 在元件工作期间,任何单个故障类型出现的概率多于全部故障概率的0.20。 有了严重度和故障概率的数据之后,就可以用风险率矩阵评价法。如下图: 风险矩阵图

直埋高压电缆故障点查找分析初探通用版

安全管理编号:YTO-FS-PD531 直埋高压电缆故障点查找分析初探通 用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

直埋高压电缆故障点查找分析初探 通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1概述 脉冲法和直流电桥法是目前应用较广的电力电缆故障点查找方法。石家庄热电厂在几次电力电缆故障点查找中,采用脉冲法在较短时间内找到了故障点,而用传统直流电桥法却无法找到。 直流电桥法在实际应用中存在着许多不便之处,如对断线故障不可测;受故障点电阻影响较大,测量误差大;当电缆为三相短路故障,需另铺设临时线等。脉冲法特别是低压脉冲法对电力电缆的短路故障和开路故障查找具有操作简单、测量误差小的优点。 低压脉冲测量故障点的过程分粗测和定点2个步骤。粗测是将故障点定位在一较小的范围内,正确读取脉冲波形,该步是脉冲法的重要步骤,也是本文分析的重点。 石家庄热电厂电力电缆故障情况如下。 a.2001-12-22,水源地10kV电缆故障,断路器跳闸在测试中用2500V摇表测试电缆三相绝缘对地及相间均为

电缆故障点的四种实用检测方法

电缆故障点的四种实用检测方法 1 电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面: ①三芯电缆一芯或两芯接地。 ②二相芯线间短路。 ③三相芯线完全短路。 ④一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 故障类型确定后,查找故障点并不是一件容易的事情,下面根据笔者的经验,介绍几种查找故障点的方法,供参考。 2 电缆故障点的查找方法 (1) 测声法: 所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。

当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 (2) 电桥法: 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。

浅析电缆的故障及测寻方法(新版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅析电缆的故障及测寻方法(新 版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅析电缆的故障及测寻方法(新版) 【摘要】电力电缆在电力系统中作为传输和分配电能,以及连接各种电气设备等,起着不可估量的作用,因此,维护电缆的安全运行,是一项至关重要的工作。当地下电缆发生故障时,可以使用简易的测寻方法——声测法来寻找电缆故障点,缩短修复时间。 【关键词】电缆故障声测法供电可靠 随着社会经济的发展和现代化建设步伐的加快,工农业生产及人民生活的用电量日益增加,对电力的需求量越来越大,要求电网的安全运行也越来越高。而作为连接各种电气设备、传输和分配电能的电力电缆,已逐渐取代了架空线的位置。电缆供电的传输性能在城乡内比架空线既稳定,可靠性高,且占地小,不会造成对市容的影响,也不受自然环境的制约,从而提高了供电的安全性。电力电缆长期在电网的工作电压下运行,充分具备承受内部过电压和大

气过电压的能力,可靠地输送电能。但电缆在某些情况下也会发生故障,其原因很多,常见的有以下几种:(1)电力电缆在敷设过程中受到外力损伤而造成电缆绝缘层的破坏;(2)由于地下杂散电流的电化腐蚀或中性土壤化学腐蚀,从而使地埋电缆产生腐蚀;(3)由于地面的下沉或地面上叠放重物,而造成电缆受外力损害变形,导致电缆防护层、铠装、铅包、铝包破裂甚至折断;(4)长期过负荷运行或散热不良造成电缆过热或接头过热;(5)电力电缆的安装敷设不符合工艺技术和质量的要求,电缆的附件质量不过关或电缆头制作工艺不良,密封性能差,都会造成电缆在运行中发生故障,等等。这样就影响了电缆线路的运行和用户的正常用电。为了进一步了解电缆的故障,我们可以按其故障点电缆绝缘损坏的程度进行分析。 1.低阻故障:故障点绝缘阻值下降至该电缆的特性阻抗,甚至支路电阻值等于零,电缆就呈现低阻故障; 2.开路故障:电缆的绝缘电阻值为无限大或虽与正常电缆的绝缘电阻值相同,但电压却不能馈送到用电设备,电缆就呈现开路故障;

电缆故障的查找与处理

电缆故障的查找与处理 电缆常见故障有漏电接地、短路(俗称电缆“放炮“)、断线等。主要原因是电缆老化或受到外力碰、砸、挤压、接线工艺不合格以及保护失灵等。电缆故障的查找与处理程序是:先判断故障性质,后找故障点,再根据情况按规定进行处理。 (一)电缆故障性质的判断 1、漏电故障 ①电缆的绝缘水平低,出现漏电现象。 ②芯线相间或对地绝缘电阻达不到要求。 ③芯线之间或对地泄露电流过大。 2、接地故障 ①完全接地(也称“死接地”),即电缆某相芯线接地,如用摇表(或万用表)测量两者之间绝缘电阻为零。 ②低电阻接地,即电缆一相或几相芯线对地的绝缘电阻值低于500K?。 ③高电阻接地,即电缆一相或几相芯线对地的绝缘电阻值在500 K?以上,甚至1M ?以上。 3、短路故障 有完全短路、低电阻或高电阻短路;有两相同时接地短路或两相直接短路;有三相短路或接地。 4、断线故障 电缆一相或几相芯线断开,或者一相导电芯线断一部分。 5、闪络性故障 当电缆的电压达到某一定值时,芯线间或芯线对地发生闪络性击穿;当电压降低后,击穿停止。在某些情况下,即使再次提高电压时,击穿亦不出现,经过若干时间后又会发生。这种故障有自动封闭故障点的特点。

6、电缆着火 电缆着火事故,其原因是发生相间短路故障后,熔断器、过电流继电器等保护失灵,强大的短路电流产生的高温点燃了橡套电缆的胶皮,引起火灾。 7、橡套电缆龟裂 这种故障在煤矿井下低压橡套电缆中较为常见,其主要原因是由于长期过负荷运行,造成绝缘老化,芯线绝缘与芯线粘连,就容易出现相间短路事故。产生的故障原因,除电缆的型号和截面选择不当、施工工艺质量不好、电缆质量有问题外,许多故障都和电缆的管理、运行和维护有关。因此,对电缆的选用、敷设、吊挂等都要按《煤矿安全规程》有关规定进行。 (二)电缆故障点的查找 1、直接判断 首先应确定哪条电缆出了故障。当维修人员无法查明是过负荷跳闸还是故障跳闸时,可以进行一次试送电来判断跳闸停电原因。 如果属于电缆事故跳闸,应首先用摇表测定电缆芯线之间和对地的绝缘电阻,初步判断故障的性质。凡属电缆漏电故障,往往是通过检测绝缘电阻和做泄露实验时发现,或者从检漏继电器指针数值判断。凡接地事故,可通过检漏继电器跳闸发现;如果属于短路故障,常常是因接地短路或短路后接地,也有少数只短路不接地。 对于在空气中敷设的电缆,包括井下沿巷道敷设的电缆,如果因短路故障造成外皮烧伤,一般通过沿电缆线路查找外观就可找到故障点。电缆接线盒出现短路事故时,如果检查得及时,接线盒表面可以摸到有温度。电缆某处短路,有时可以看到烧穿的伤痕或穿孔,在短路点还可以嗅到绝缘烧焦的特殊气味。 2、用万用表查找 首先将电缆两端的芯线全部开路,如果电缆故障是相间短路,将发生短路的两根芯线的端头与万用表相连接;如果是接地故障,就将发生接地的芯线和接地芯线接到万用表上。将万用表的选择开关打到欧姆档,然后由检修人员对电缆逐段进行弯曲或翻动。当弯曲到某一点,万用表指针有较大的摆动时,说明这就是故障点;也可用干燥的木棒敲打电缆护套,当敲打到某处,万用表针有较大的摆动时,也就找到了故障点。

电缆故障测试仪的四种实用测定方法

https://www.doczj.com/doc/6b18634307.html, 电缆故障测试仪的四种实用测定方法电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断

https://www.doczj.com/doc/6b18634307.html, 线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障

https://www.doczj.com/doc/6b18634307.html, 芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX +R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。

10kV电力电缆故障测寻技术与波形分析

10kV电力电缆故障测寻技术与波形分析 摘要:随着城市电网建设持续快速发展,为了整洁明快的城市市容市貌,地下电力电缆输配电线路逐步取代架空线路。由于电力电缆敷设隐蔽,很难发现故障位置,这给迅速排除故障恢复供电带来困难。文章介绍了采用脉冲反射法(即闪测法)波形分析进行电缆故障点的测寻,它可以减少测距误差,从而迅速精准地确定电缆故障位置,便于维修,以确保正常供电。 关键词:供电系统电力电缆故障测寻波形检测分析 1 前言 随着我国城市化的快速推进,电力电缆以其安全、可靠、隐蔽性好等优点在城市配电网中得到了越来越广泛的应用。配电网的供电方式已逐渐由电缆供电取代架空线供电,尽管电缆供电有着显而易见的优点。由于电缆数量的急剧增加。故障频率也相应加大,且电缆地下隐蔽性,在故障排查等问题上难以像架空线路那样直观,给电缆运行维护带来了许多麻烦,对电网持续可靠供电带来了困难,所以如何快速准确查找电力电缆故障点,提高城市电缆供电的可靠率、提升优质服务水平,是供电企业迫需解决的问题。本文现对电缆故障发生的原因及测寻方法与原理进行分析探讨。 2 电缆故障主要原因分析 2.1机械损伤。机械损伤是电缆故障中较为常见的,所占比例也是最大的,主要由于安装时损伤、外力直接破坏和自然损坏等。 2.2绝缘受潮。这种情况也很常见,一般发生在直埋或排管里的电缆接头处。如果电缆接头制作不合格和在潮湿的气候条件下做接头,会使接头进水或混入水蒸气枝,逐渐损害电缆的绝缘强度而造成故障。 2.3长期过负荷运行。超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产乍附加热量,从而使电缆温度升高。长期超负荷运行时,过高的温度会加速绝缘的老化,以至绝缘被击穿。尤其在炎热的夏季,电缆的温升常常导致电缆绝缘薄弱处首先被击穿,因此在夏季,电缆的故障也就特别多。 2.4电缆接头故障。电缆接头是电缆线路中最薄弱的环节,由人员直接过失(施工不良)引发的电缆接头故障时常发生。施工人员在制作电缆接头过程中,如果有接头压接不紧、加热不充分等原网,都会导致电缆头绝缘降低,从而引发事故。 2.5化学腐蚀。电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。

电缆故障事故调查

电缆故障着火事故调查报告 事故发生时间:2006年4月21日凌晨 事故地点:主井井口 事故经过:2006年4月21日凌晨主井口着火,2:20分发现火情时,西面塔衣中部有1.5m见方着火面,因气候干燥、风力大、塔衣又属易燃化纤物,所以很快引起西侧塔衣的全面燃烧及围墙外电缆大面积着火。 电缆着火后引起开关跳闸,吊泵断电停运。潜水泵电源开关跳闸。 施工单位立即组织灭火。6:45分水泵恢复排水。 早7:00通知工程部, 工程部人员赶到现场时。施工单位在做现场清理工作。围墙根部电缆绝缘均已烧毁,堆积部分电缆未发现短路迹象,电缆芯线无过载痕迹。 事故原因分析: 当时下井电缆有三根。 一.吊泵电源:电缆标注型号:VV-3×70+1×35 电缆长度720m,其中井下120m,地面600m盘8字堆放,8字长

4m、宽1m。电压等级660V,井下吊泵功率150kw,额定 电流163A,电流表显示150A。吊泵已连续运转20小时, 运转正常。事故发生后对电缆线径实测,线径不足 50mm2。灭火后将原VV-3×70+1×35电缆复用一部分 给吊泵供电,吊泵正常运转,说明吊泵是好的。 存在问题有: 1、电缆线径不足,容易过载发热; 2、电缆选型不合适,用不阻燃VV型普通电力电缆代替矿用电缆; 3、VV型普通电力电缆电缆不适用于移动电器设备,在抢险时电缆过度弯曲会造成内部绝缘损伤,塑料绝缘破坏,出现局部弧光放电现象; 4、电缆堆放不合适,会产生涡流发热、或因散热不良造成局部发热。 5、部分电缆被塔衣覆盖,散热不良。 二、潜水泵电源:电缆型号:U-3×25+1×16,电压等级380V,负荷7.5kw潜水泵,电缆截面足够,发热量不大。 三、信号电缆:不带负荷,属空载状态。 四、不排除外因火的可能性。 事故教训:本次火灾事故造成VV型电力电缆600m、信号电缆、部分矿用电缆严重损毁,虽未造成人员伤害,但事故的性质很严重。根据事故处理“四不放过”原则,要求施工单位就此事故引以为戒,结合安监局的检查时所提出的问题,制定整改措施,强化安全管理。

电缆故障测试检测查找仪器使用方法

HL-2132电缆寻迹 及故障定位仪 使用说明书 武汉华力通达电力设备有限公司 Wuhan HuaLiTongDa Power Euqipment Co., Ltd. 地址:武汉市东湖高新技术开发区水蓝路3号 电话:86-27-87775951 传真:86-27-87775851 https://www.doczj.com/doc/6b18634307.html,

尊敬的客户: 感谢您选用武汉华力通达电力设备有限的产品!我们将竭诚为您提供全面周到的服务和技术支持。为了您能安全有效的使用本仪器,充分发挥本仪器的各项功能,在使用本公司仪器之前,请仔细阅读本使用说明书,以便您能更好更全面的体验本公司产品给您带来的便利和高效。 本使用说明书手册将向您提供电缆寻迹及故障定位仪的性能、设置方法、测试方法、安装注意事项和操作使用的其他须知。 欢迎您随时向我们反馈您在使用本产品过程中对我们产品的意见和建议,我们将热忱为您服务! 本手册版权归属武汉华力通达电力设备有限公司所有,未经许可,不得转印、发布和扩散,及将本手册内容用于其他用途。 武汉华力通达电力设备有限公司 Wuhan HuaLiTongDa Power Euqipment Co., Ltd. 地址:武汉市东湖高新技术开发区水蓝路3号 电话:86-27-87775951 传真:86-27-87775851 https://www.doczj.com/doc/6b18634307.html,

目录 1 概述 3 2 主要特点 3 3 主要技术参数 3 4 仪器工作原理 3 4.1寻迹原理 3 4.2定位原理 5 5 仪器组成 6 5.1 HL-2132路径仪 6 5.1.1面板结构 6 5.1.2作用说明 6 5.2 HL-2132定位仪 7 5.2.1面板结构 7 5.2.2作用说明 8 6仪器操作使用 9 6.1路径探测 9 6.1.1路径仪接线图 9 6.1.2定位仪接线图 9 6.1.3操作步骤 9 6.2用差分电位法定位故障 10 6.2.1路径仪接线图 10 6.2.2定位仪接线图 10 6.2.3操作步骤 10 6.2.4注意事项 11 7充电 11 8装箱清单 12 9产品保证 12

直埋高压电缆故障点查找分析初探(正式版)

文件编号:TP-AR-L2643 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 直埋高压电缆故障点查 找分析初探(正式版)

直埋高压电缆故障点查找分析初探 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1概述 脉冲法和直流电桥法是目前应用较广的电力电缆 故障点查找方法。石家庄热电厂在几次电力电缆故障 点查找中,采用脉冲法在较短时间内找到了故障点, 而用传统直流电桥法却无法找到。 直流电桥法在实际应用中存在着许多不便之处, 如对断线故障不可测;受故障点电阻影响较大,测量 误差大;当电缆为三相短路故障,需另铺设临时线 等。脉冲法特别是低压脉冲法对电力电缆的短路故障 和开路故障查找具有操作简单、测量误差小的优点。

低压脉冲测量故障点的过程分粗测和定点2个步骤。粗测是将故障点定位在一较小的范围内,正确读取脉冲波形,该步是脉冲法的重要步骤,也是本文分析的重点。 石家庄热电厂电力电缆故障情况如下。 a.2001-12-22,水源地10kV电缆故障,断路器跳闸在测试中用2500V摇表测试电缆三相绝缘对地及相间均为50MΩ,直流耐压值为16kV。而后在水源地将电缆三相短路,在测试端测试任意两相芯线环流电阻,两芯线均不通,初步判断为电缆开路。 b.2001-12-26,#7~#9深井电缆故障,断路器跳闸用2500V摇表测试电缆A相绝缘对地为0,B、C 两相分别为600MΩ和800MΩ,初步判断为A相短路接地。 2脉冲法介绍

电力电缆事故案例

案例3:可燃气体引发的电力电缆爆破事故 2000年11月25日凌晨至上午9点,武汉市某所变电所低压总空气开关接连发生3次跳闸现象,经查,临时从该所接电,在所住宅区北墙外施工的市自来水公司有1台电焊机电源短路,排除故障后,送电正常。下午5点,位于住宅区西北角新建球场处1个窨井突然发生爆炸,1个面积约2m<sup>2</sup>,厚度50mm的窨井水泥盖板被炸碎。据现场目击者叙述,爆炸前几分钟还有几个小孩在附近玩耍。此时,变电所低压总空气开关未跳闸,而居民家中电灯忽明忽暗非常明显,在距爆炸点正南方10m远处,检查人员听到地下断续放电声响,故判断此处埋设电缆发生故障,随后立即停电,将这2路电缆退出电网,挖开故障点,发现2路电缆已断,中间约1m多长一截电缆不知去向。 2 事故分析 该所住宅区用电是由马路对面所区一容量为315KV·A的变压器采用直埋电缆方式引到住宅区配电房的,损坏的2根电缆1根为截面70mm<sup>2</sup>动力电缆,另1根为截面120mm<sup>2</sup>照明电缆,于1987年在同一壕沟中敷设。1998年,因居民用电量增加,电缆负荷过大,

故对住宅区电网进行一次扩容,另挖一条濠沟,敷设1根截面150mm<sup>2</sup>电缆与原照明电缆并联。 经现场勘察情况发现,可燃易爆的物质就是沼气。原来,所饭店厨房下水通过1条排水沟流入1个面积约2m<sup >2</sup>,深1m多的窨井中。由于近期新球场的建立,使原本透气的排水沟至窨井盖四周被混凝土浇注严实,加上窨井盖为自制水泥盖板,没有透气孔,至使窨井中高浓度有机污水产生的沼气无法顺利排出,而沼气的主要成分是甲烷,其爆炸极限浓度在5%~15%之间,属易燃易爆气体。此外,电缆敷设又不符合规定要求:(1)电缆埋设深度为~,没有敷盖混凝土保护板,电缆外皮有明显划伤痕迹,部分划伤处已开裂;(2)所饭店厨房排水沟位置设置不当,排水沟与埋地电缆交叉,沟底与电缆几乎挨着,没有防渗措施。 综上所述,由于电缆在敷设时,外皮受到机械损伤,埋地深度不够,没有覆盖保护板,加上所饭店厨房排水沟与电缆交叉,沟底与电缆几乎挨着,安全净距为零,且没有采取防渗措施,使电缆长期受到污水浸蚀。当电焊机电源线发生短路时,短路电流使电缆迅速发热,加速了电缆绝缘老化,导致受损处电缆绝缘破损发生相间短路。由于短路产生的电弧温度可以高达6000℃,当电弧遇排水沟中沼气时,就引起窨

怎样电缆查找故障点

电缆故障点的查找方法 1.电缆故障的种类与判断 电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面: ①三芯电缆一芯或两芯接地。②二相芯线间短路。③三相芯线完全短路。④一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判断故障类型。 2.电缆故障点的查找方法 故障类型确定后,查找故障点并不是一件容易的事情,下面介绍几种查找故障点的方法。 (1)零电位法 零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算,其接地如图1所示。测量原理如下:将电缆故障芯线与等长的比较导线并联,在b、c两端加电压VE时,相当于在两个并联的均匀电阻丝两端接了电源,此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零,反之,电位差为零的两点必然是对应点。因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导线上移动至指示值为零时的点与故障点等电位,即故障点的对应点。 S为单相闸刀开关,E为6E蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下: 1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。 2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。 3)合上闸刀开关S,将软导线的端头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。 (2)电桥法 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路如图2所示,首先测出芯线a与b之间的电阻R1,R1=2RX+R其中RX为a相或b相至故障点的一相电阻值,只为短接点的接触电阻。再就电桥移到电缆的另一端,测出a1与b1芯线间的直流电阻值R2,则R2=2R(L-X)+R,R(L-X)为a1相或b1相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b1与c1短路,测出b、c两相芯线间的直流电阻值,则该组织的1/2为每相芯线的电阻值,用RL 表示,RL=RX+R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL表,因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。 采用电桥法时应保证测量精度,电桥连接线要尽量短,线径要足够大,与电缆芯线连接要采用压接或焊接,

电力电缆常见故障检测方法

电力电缆常见故障检测方法 随着城市环网电缆数量的增多,由于电缆绝缘损坏等原因,故障发生概率大大增加,电缆故障带来的查找困难也越来越受到电力系统运行部门的关注和重视。电缆故障点的及时、快速查找与测量是保证电力供应畅通、保证供电可靠性的必需手段,但由于受到电缆线路的隐蔽性、电缆运行资料不完善以及测试设备探测水平的局限性,使电缆故障的查找非常困难。下面,根据多年的运行经验和参考有关资料,总结出电力电缆的常见故障和检测办法。 1电力电缆故障常见原因 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。电缆发生故障的原因是多方面的,常见的几种主要原因归纳如下。 1.1机械损伤 很多故障是由于电缆安装敷设时造成的机械损伤或安装后靠近电缆路径作业造成的机械损伤而直接引起的。损伤如果轻微,很可能在当时不影响正常运行,但在几个月甚至几年后损伤部位才发展到铠装或绝缘护套,造成绝缘降低,形成故障。 1.2绝缘老化变质 电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。当绝缘介质电离时,气隙中产生臭氧、腐蚀绝缘,绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。过热会引起绝缘老化变质。造成电缆过热的因素有

多方面。内因主要是电缆绝缘内部气隙游离造成局部过热,从而使绝缘炭化外因是电缆过负荷产生过热。安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆、套管中的电缆,以及电缆与热力管道接近的部分等,都会因本身过热而使绝缘加速损坏。长期过负荷运行,会使电缆的绝缘随之下降,薄弱处和对接头处首先被击穿。在夏季,电缆故障率高原因正在于此。 1.3化学腐蚀 电缆路径在有酸碱作业的地区通过,或煤气站的苯蒸汽往往造成电缆铠装和铅(铝)护套大面积长距离被腐蚀,出现麻点、开裂或穿孔,造成故障。 1.4设计和制作工艺不良 电缆中间头、终端头安装工艺不良,材料选用不当,不按技术要求敷设电缆,同样会造成电场分布不均匀,这些往往也都是形成电缆故障的重要原因。 材料缺陷主要表现在三个方面。一是电缆制造的问题,铅(铝)护层留下的缺陷,在包缠绝缘过程中,纸绝缘上出现褶皱、裂损、破口和重叠间隙等缺陷二是电缆附件制造上的缺陷,如铸铁件有砂眼,瓷件的机械强度不够,其它零件不符合规格或组装时不密封等三是对绝缘材料的维护管理不善,造成电缆绝缘受潮、脏污和老化。 2电力电缆故障检测方法 对于电缆的故障点检测一般都要经过故障类型的诊断、故障点测距、精确定点三个主要步骤。故障类型诊断主要是确定电缆故障点的故障

相关主题
文本预览
相关文档 最新文档